Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

Embedding 嵌入向量生成模型

Answer

Embedding(嵌入)是一个浮点数的向量(列表),两个向量之间的距离度量它们的相关性,小距离表示高相关性,大距离表示低相关性。

Embedding 是一种在机器学习和深度学习中广泛应用的技术,特别是在自然语言处理(NLP)和其他涉及高维离散数据的领域。它指将原本高维且通常离散的输入数据(如单词、短语、用户 ID、商品 ID 等)映射到一个低维连续向量空间中的过程,这些低维向量称为嵌入向量。

例如,“国王”和“王后”在嵌入向量的空间里位置挨得很近,而“苹果”与前两者差别较大,其嵌入向量位置较远。Embedding 不仅限于单词,还可扩展到句子、文档、实体或其他类型的对象。通过训练诸如 Word2Vec、GloVe 或 BERT 等模型,可从大规模文本数据中学习出这样的嵌入向量,这些嵌入向量可看作是输入数据在潜在语义空间中的表示,能改善下游任务(如文本分类、情感分析、问答系统、机器翻译等)的表现。

除文本数据外,嵌入技术还应用于社交网络分析、推荐系统、图像识别(如位置嵌入)、图神经网络(如节点嵌入)等多种场景,实现将复杂对象的有效编码和降维表示。

Embeddings 有多种分类及对应模型:

  • 句子和文档嵌入:Doc2Vec 能为整个文档生成统一的向量表示;Average Word Embeddings 是将一段文本中所有单词的嵌入取平均作为整体的文本表示;Transformers Sentence Embeddings 如 BERT 的[CLS]标记对应的向量,或者专门针对句子级别的模型如 Sentence-BERT。
  • 实体/概念嵌入:Knowledge Graph Embeddings 如 TransE、DistMult、ComplEx 等,用于将知识图谱中的实体和关系嵌入到低维向量空间中。
  • 其他类型:图像 Embeddings 使用卷积神经网络(CNN)进行图像特征提取,得到的特征向量即为图像嵌入;音频 Embeddings 在语音识别和声纹识别中,将声音信号转化为有意义的向量表示;用户/物品 Embeddings 在推荐系统中,将用户行为或物品属性映射到低维空间以进行协同过滤或基于内容的推荐;还有图 Embeddings 用于学习图结构的表示学习方法,将图中的节点和边映射到低维向量空间中,通过 DeepWalk、Node2Vec、GraphSAGE 等算法来实现,在图分析、社交网络分析、推荐系统等领域广泛应用,用于发现社区结构、节点相似性、信息传播等图属性。

在将大型文档转换为可检索内容的过程中,嵌入向量生成这一步将文本块转换为实值向量并存储在数据库中。但检索 PDF 文档的过程充满挑战,可能出现文本提取不准确和 PDF 文档内表格行列关系混乱等问题。在检索增强生成(RAG)框架中,回答一个问题需要用户提出问询,系统从私有知识库中检索相关内容,将相关内容与用户查询合并为上下文,最后请求大语言模型生成答案,准确检索相关信息对 RAG 模型的效力至关重要。

Content generated by AI large model, please carefully verify (powered by aily)

References

通过增强PDF结构识别,革新检索增强生成技术(RAG)

大语言模型的训练数据主要来源于公开互联网资源,包括网页、书籍、新闻和对话文本。这意味着大语言模型主要依赖互联网资源作为它们的训练数据,这些资源量级大、种类繁多且易于访问,支持大语言模型扩展其性能。然而,在垂直领域应用中,专业任务需要大语言模型利用领域知识(Domain knowledge)。遗憾的是,这些知识是私有数据,并不属于它们预训练数据中的一部分。为大语言模型配备领域知识的一种流行方法是检索增强生成(Retrieval-Augmented Generation,以下简称RAG)。RAG框架回答一个问题需要四个步骤:用户提出问询;系统从私有知识库中检索相关内容;将相关内容与用户查询合并为上下文;最后请求大语言模型生成答案。图1通过一个简单示例说明了这个过程。该过程反映了遇到问题时的典型认知过程,包括查阅相关参考资料,然后推导出答案。在这个框架中,关键部分是要准确地检索相关信息,这对RAG模型的效力至关重要。图1检索增强生成(RAG)的工作流然而,检索PDF文档的过程充满挑战,经常会出现文本提取的不准确和PDF文档内表格的行列关系混乱等问题。因此,在RAG之前,我们需要将大型文档转换为可检索内容。转换涉及以下几个步骤,如图2所示:图2将PDF文档转换为可检索内容的过程文档解析和文本切分(Document parsing & chunking)。这一步涉及到提取段落、表格和其他内容块,然后将提取的内容分块以进行后续检索。嵌入向量(Embedding)生成。这一步将文本块转换为实值向量并存储在数据库中。由于这些步骤中的每一步都可能导致信息损失,因此复合损失会显著影响RAG响应的效果。

认识大模型 Embedding 技术加实战

Embedding(嵌入)是一个浮点数的向量(列表)。两个向量之间的距离度量它们的相关性,小的距离表示高相关性,大的距离表示低相关性。Embedding(嵌入)也是是一种在机器学习和深度学习中广泛应用的技术,特别是自然语言处理(NLP)和其他涉及高维离散数据的领域。它指的是将原本高维且通常是离散的输入数据(如单词、短语、用户ID、商品ID等)映射到一个低维连续向量空间中的过程。这些低维向量称为嵌入(Embedding vectors)。例如,“国王”和“王后”在嵌入向量的空间里,位置就会挨得很近;而“苹果”这个词,虽然也是个词,但因为它的意思和前两者差别较大,所以它的嵌入向量就会落在离“国王”和“王后”比较远的地方。Embedding不仅限于单词,还可以扩展到句子、文档、实体或其他类型的对象。通过训练诸如Word2Vec、GloVe或BERT等模型,可以从大规模文本数据中学习出这样的嵌入向量。这些嵌入向量可以被看作是输入数据在潜在语义空间中的表示,使得机器学习模型能够更好地理解和处理这些数据,从而改善下游任务(如文本分类、情感分析、问答系统、机器翻译等)的表现。除了文本数据,嵌入技术也被应用于社交网络分析、推荐系统、图像识别(如位置嵌入)、图神经网络(如节点嵌入)等多种场景中,实现将复杂对象的有效编码和降维表示。

认识大模型 Embedding 技术加实战

Doc2Vec:扩展了Word2Vec,能够为整个文档生成统一的向量表示。Average Word Embeddings:将一段文本中所有单词的嵌入取平均作为整体的文本表示。Transformers Sentence Embeddings:如BERT的[CLS]标记对应的向量,或者专门针对句子级别的模型如Sentence-BERT。[heading3]实体/概念嵌入[content]Knowledge Graph Embeddings:如TransE、DistMult、ComplEx等,用于将知识图谱中的实体和关系嵌入到低维向量空间中。[heading3]其他类型[content]图像Embeddings:使用卷积神经网络(CNN)进行图像特征提取,得到的特征向量即为图像嵌入。音频Embeddings:在语音识别和声纹识别中,将声音信号转化为有意义的向量表示。用户/物品Embeddings:在推荐系统中,将用户行为或物品属性映射到低维空间以进行协同过滤或基于内容的推荐。还有一种图Embeddings:是用于学习图结构的表示学习方法,将图中的节点和边映射到低维向量空间中。通过学习图嵌入,可以将复杂的图结构转化为向量表示,以捕捉节点之间的结构和关联关系。这些方法可以通过DeepWalk、Node2Vec、GraphSAGE等算法来实现。图嵌入在图分析、社交网络分析、推荐系统等领域中广泛应用,用于发现社区结构、节点相似性、信息传播等图属性。下面以OpenAI为例继续展开介绍

Others are asking
列举出不同的 embedding模型
以下是不同的 embedding 模型: 1. 词嵌入: Word2Vec:包括 CBOW(Continuous BagofWords)和 SkipGram 模型,由 Google 提出,用于学习单词之间的语义关系。 GloVe(Global Vectors for Word Representation):由斯坦福大学开发,旨在结合全局统计信息和局部上下文窗口的优势来生成单词嵌入。 FastText:由 Facebook AI 团队推出,不仅考虑单个单词,还考虑内部字符 ngram,对于罕见词汇有更好的表现。 ELMo(Embeddings from Language Models):利用双向 LSTM 对整个句子进行建模,产生上下文敏感的单词嵌入。 2. 情景化的词嵌入: BERT(Bidirectional Encoder Representations from Transformers):由 Google 推出,利用 Transformer 架构的预训练模型,能够根据上下文提供动态的单词嵌入。 GPT(Generative Pretraining Transformer)及其后续版本 GPT2/3/4:由 OpenAI 开发,也是基于 Transformer 的自回归模型,同样能产出上下文相关的嵌入。 XLNet、RoBERTa 等都是 BERT 之后改进或扩展的预训练模型。 3. 句子和文档嵌入: Doc2Vec:扩展了 Word2Vec,能够为整个文档生成统一的向量表示。 Average Word Embeddings:将一段文本中所有单词的嵌入取平均作为整体的文本表示。 Transformers Sentence Embeddings:如 BERT 的标记对应的向量,或者专门针对句子级别的模型如 SentenceBERT。 4. 实体/概念嵌入: Knowledge Graph Embeddings:如 TransE、DistMult、ComplEx 等,用于将知识图谱中的实体和关系嵌入到低维向量空间中。 5. 其他类型: 图像 Embeddings:使用卷积神经网络(CNN)进行图像特征提取,得到的特征向量即为图像嵌入。 音频 Embeddings:在语音识别和声纹识别中,将声音信号转化为有意义的向量表示。 用户/物品 Embeddings:在推荐系统中,将用户行为或物品属性映射到低维空间以进行协同过滤或基于内容的推荐。 图 Embeddings:是用于学习图结构的表示学习方法,将图中的节点和边映射到低维向量空间中。通过学习图嵌入,可以将复杂的图结构转化为向量表示,以捕捉节点之间的结构和关联关系。这些方法可以通过 DeepWalk、Node2Vec、GraphSAGE 等算法来实现。图嵌入在图分析、社交网络分析、推荐系统等领域中广泛应用,用于发现社区结构、节点相似性、信息传播等图属性。 此外,以 OpenAI 为例,第一代嵌入模型(不推荐)包括: 所有第一代模型(以001 结尾的模型)都使用 GPT3 分词器,最大输入为 2046 个分词。 第一代嵌入由五个不同的模型系列生成,这些模型系列针对三个不同的任务进行了调整:文本搜索、文本相似性和代码搜索。 相似性嵌入:textsimilaritybabbage001、textsimilaritycurie001、textsimilaritydavinci001。 文本搜索嵌入:textsearchadaquery001、textsearchbabbagedoc001、textsearchbabbagequery001、textsearchcuriedoc001、textsearchcuriequery001、textsearchdavincidoc001、textsearchdavinciquery001。 代码搜索嵌入:codesearchadatext001、codesearchbabbagecode001、codesearchbabbagetext001。 对于001 文本嵌入(不是002,也不是代码嵌入),建议将输入中的换行符替换为单个空格,因为当存在换行符时可能会有更糟糕的结果。
2025-03-12
Text Embedding
文本嵌入(Text Embedding)是将文本转换为数值表示的一种方法。 在 OpenAI 中,其文本嵌入用于衡量文本字符串的相关性,常见应用包括搜索(按与查询字符串的相关性排序结果)、聚类(按相似性分组文本字符串)、推荐(推荐具有相关文本字符串的项目)、异常检测(识别相关性很小的异常值)、多样性测量(分析相似性分布)、分类(按最相似的标签分类文本字符串)等。嵌入是浮点数的向量,两个向量之间的距离衡量它们的相关性,小距离表示高相关性,大距离表示低相关性。要获得嵌入,需将文本字符串连同选择的嵌入模型 ID 发送到嵌入 API 端点,响应将包含可提取、保存和使用的嵌入。访问定价页面可了解嵌入定价,请求根据发送输入中的 Token 数量计费。 在 word2vec 领域,词嵌入是将单个单词转换为单词数字表示(即向量化)的技术,当每个单词被映射到一个向量时,这个向量会以类似于神经网络的方式被学习,试图捕捉该单词与整个文本相关的各种特征,包括语义关系、定义、上下文等。但简单的嵌入如 onehot 编码存在多种限制。 在深度学习和自然语言处理(NLP)中,Embedding 是一种特征工程方法,用于将高维度的数据(如单词、短语、句子等)转换为低维度的向量,其主要目的是降低数据的抽象和复杂性,使机器学习模型能更有效地理解和处理数据,帮助模型理解语义关系。例如在电影推荐系统中,可为每个用户和电影创建 Embedding 来预测评分;在文本分类中,如垃圾邮件检测器,可使用词嵌入将单词转换为向量来进行预测。
2025-03-02
Embedding
嵌入(Embeddings)是一种在深度学习和自然语言处理(NLP)中常用的特征工程方法,用于将高维度的数据(如单词、短语、句子等)转换为低维度的向量。 其主要用途包括: 1. 搜索:结果按与查询字符串的相关性排序。 2. 聚类:文本字符串按相似性分组。 3. 推荐:推荐具有相关文本字符串的项目。 4. 异常检测:识别出相关性很小的异常值。 5. 多样性测量:分析相似性分布。 6. 分类:文本字符串按其最相似的标签分类。 嵌入通常是浮点数的向量(列表),两个向量之间的距离衡量它们的相关性,小距离表示高相关性,大距离表示低相关性。 要获得嵌入,可将文本字符串连同选择的嵌入模型 ID(例如,textembeddingada002)一起发送到嵌入 API 端点,响应将包含一个嵌入,可提取、保存和使用。在中可查看更多 Python 代码示例。 词嵌入是一种将单个单词转换为单词数字表示(即向量化)的技术。当每个单词被映射到一个向量时,这个向量会以一种类似于神经网络的方式被学习,试图捕捉该单词与整个文本相关的各种特征,如语义关系、定义、上下文等。这些数字化表示可用于确定单词之间的相似性或不相似性,也是机器学习各个方面不可或缺的输入。但简单的嵌入(如对文本数据进行 onehot 编码)存在多种限制。 以下是两个例子帮助更好地理解 Embedding: 1. 电影推荐系统:每个用户和电影都可被视为独特分类标签,直接处理困难,可使用 Embedding 为用户和电影创建低维度向量,捕捉兴趣和特性,通过比较预测评分。 2. 文本分类:如垃圾邮件检测器,可使用词嵌入将单词转换为向量,相似单词有相似向量,基于向量预测邮件是否为垃圾邮件。
2025-02-24
embedding是什么
Embedding 是一种在深度学习和自然语言处理(NLP)中常用的特征工程方法,本质上是将高维度的数据(如单词、短语、句子等)转换为低维度的向量。其主要目的是降低数据的抽象性和复杂性,以便机器学习模型更有效地理解和处理数据,同时帮助模型理解语义关系,如单词之间的相似性、句子的情感等。 以下是几个关于 Embedding 的例子: 1. 电影推荐系统:假设存在一个电影推荐系统,用户可给电影打分,目标是预测用户未看过电影的评分。此时,每个用户和电影都可视为独特分类标签,直接处理这些高维度且稀疏的标签较困难。通过为每个用户和电影创建 Embedding(低维度向量),可捕捉用户兴趣和电影特性,进而通过比较 Embedding 来预测评分。 2. 文本分类:在文本分类任务中,Embedding 可将文本转换为适合模型处理的向量形式。 此外,在 Stable Diffusion 中,Embedding 相当于提示词打包的功能,能将大量提示词汇总到一个文件里,调用该文件就相当于输入了很多提示词,尤其在负向提示词中,当文本量很大且固定不变时,使用打包好的负向提示词 Embedding 可达到一词顶一百词的效果。 Embedding 是一个浮点数的向量(列表),两个向量之间的距离可度量它们的相关性,小距离表示高相关性,大距离表示低相关性。Embedding 有词、句子、文档、图像等分类。在大模型中,Embedding 具有重要价值,例如从数据集中获取 Embedding 结果并保存为 csv 文件。进阶到企业级应用开发的大模型技术还会涉及利用开源的 Embedding 模型、向量数据库去做检索增强生成(RAG),以及购买 GPU 服务器去基于开源大模型搭建企业级大模型项目。 参考链接:OpenAI 官网文档 https://platform.openai.com/docs/introduction
2024-08-27
embedding是什么?
Embedding 是一种在深度学习和自然语言处理(NLP)中的特征工程方法,用于将高维度的数据(如单词、短语、句子等)转换为低维度的向量。其本质是通过向量空间映射将文本转换为数值表示,主要目的是降低数据的抽象和复杂性,使机器学习模型能更有效地理解和处理数据,帮助模型理解语义关系,如单词之间的相似性、句子的情感等。 以下是几个关于 Embedding 的例子帮助您更好地理解: 1. 电影推荐系统:假设我们有一个电影推荐系统,用户可以给电影打分,目标是预测用户未看过的电影的评分。每个用户和电影都可视为独特分类标签,直接处理这些高维度和稀疏的标签很困难。此时可使用 Embedding,为每个用户和电影创建低维度向量,捕捉用户兴趣和电影特性,通过比较向量来预测评分。 2. 在 Stable Diffusion 中,Embedding 相当于提示词打包功能,能把很多提示词汇总到一个文件里。调用一个 Embedding 文件就相当于输入很多提示词,对于文本量很大且固定不变的提示词,如常见的负向提示词,使用打包好的负向提示词 Embedding 可达到一词顶一百词的效果。 此外,我们认识到 Embedding 是一个浮点数的向量(列表),两个向量之间的距离度量它们的相关性,小距离表示高相关性,大距离表示低相关性。Embedding 共有词、句子、文档、图像等分类。在大模型中,Embedding 具有重要价值,实战中可从数据集中获取 Embedding 结果,并保存为 csv 文件。进阶到企业级应用开发的大模型技术还会涉及利用开源的 Embedding 模型、向量数据库去做检索增强生成(RAG),以及购买 GPU 服务器去基于开源大模型搭建企业级大模型项目。OpenAI 官网文档链接:https://platform.openai.com/docs/introduction
2024-08-26
嵌入式模型有哪些
以下是一些常见的嵌入式模型: 1. OpenAI 提供了第二代嵌入模型 textembeddingada002,它具有更好、更便宜、更易于使用的特点。使用 cl100k_base 分词器,最大输入 token 为 8191,输出为 1536。 2. OpenAI 还提供了 16 个第一代模型(以 001 结尾),均使用 GPT3 分词器,最大输入为 2046 个分词。第一代嵌入模型包括针对不同任务调整的五个系列,如相似性嵌入(如 textsimilaritybabbage001、textsimilaritycurie001、textsimilaritydavinci001)、文本搜索嵌入(如 textsearchadaquery001 等)、代码搜索嵌入(如 codesearchadatext001 等)。 3. 此外,还有 Whisper 这种通用的语音识别模型,它是多任务模型,可执行多语言语音识别以及语音翻译和语言识别,目前可通过 OpenAI 的 API(模型名 whisper1)使用 Whisper v2large 模型。
2025-04-09
你嵌入了这么多AI应用是与他们都达成了合作吗
在 AI 应用方面,存在多种合作情况。例如,毅恒为拥有 12 万名员工的客户做了 AI 评分应用,合作流程包括设定评分标准/KPI 参数、提供初始数据调优测试等,且支持语音和视频讲解,员工可查看分数和分析结果报告。若您有兴趣,可加微信号 yiheng0203 或扫描二维码。 Manus 与通义千问达成战略合作,基于通义千问开源模型在国产平台上实现 Manus 功能,中方版本已启动开发,技术团队深度协作。 智谱 AI 的“灵搭”平台具有多项优势,已与阿里云、腾讯云、火山引擎、华为政企等企业达成深度合作,主要服务电力能源行业,成功落地多个应用场景。中财数碳作为基于内容增强型知识插槽技术的大模型应用服务商,在双碳、财金等领域已落地多个应用场景。
2025-03-21
有没有针对AI工具嵌入个人工作流方方面面赋能工作的信息
AI 工作流是将 AI 工具引入到工作流程的各个环节中,以提高工作效率。 在说 AI 工作流之前,要先了解工作流的概念。工作流即工作流程,比如写公众号文章,可拆分为选题、列大纲写初稿、改稿、写标题、排版、发布等步骤,每个步骤都有明确的输入和产出,环环相扣。 搭建 AI 工作流有一套工作流: 1. 找到一个熟悉的工作场景,如写文章、做 PPT 等。 2. 拆解工作流程,例如写文章可拆分为选题、写稿、改稿、写标题等步骤。 3. 针对每个步骤嵌入工具,可参考他人经验,灵活选择最优解,目的是提高工作效率,而非增加工作的含 AI 量。 搭建 AI 工作流需要三层能力: 1. 了解各种 AI 工具,知晓其特点和用途。 2. 学会写提示词,以便向 AI 清晰表述任务。 3. 搭建 AI 智能体,使多个 AI 工具协同工作,自动完成任务。
2025-03-17
文本嵌入模型怎么用
文本嵌入模型主要用于衡量文本字符串的相关性,常见应用场景包括搜索(结果按与查询字符串的相关性排序)、聚类(文本字符串按相似性分组)、推荐(推荐具有相关文本字符串的项目)、异常检测(识别出相关性很小的异常值)、多样性测量(分析相似性分布)、分类(文本字符串按其最相似的标签分类)。 嵌入是浮点数的向量(列表),两个向量之间的距离衡量它们的相关性,小距离表示高相关性,大距离表示低相关性。 OpenAI 提供了一个第二代嵌入模型(在模型 ID 中用 002 表示)和 16 个第一代模型(在模型 ID 中用 001 表示)。对于几乎所有用例,建议使用 textembeddingada002,它更好、更便宜、更易于使用。 要获得嵌入,需将文本字符串连同选择的嵌入模型 ID(例如,textembeddingada002)一起发送到嵌入 API 端点,响应将包含一个嵌入,您可以提取、保存和使用它。在中可查看更多 Python 代码示例。 此外,Stable Diffusion 使用 CLIP 来处理文本提示,用户输入的文本描述通过 CLIP 模型编码为一个文本嵌入,这个嵌入表示了文本的语义信息,确保模型理解用户想要生成的图像内容。CLIP 在引导图像生成、优化生成结果等方面也发挥着重要作用。
2025-03-14
嵌入式WEB翻译插件
以下是关于嵌入式 WEB 翻译插件的相关信息: SD 提示词自动翻译插件 promptallinone: 作者:白马少年 发布时间:20230529 20:00 原文网址:https://mp.weixin.qq.com/s/qIshiSRZiTiKGqDFGjD0g 在 Stable Diffusion 中输入提示词只能识别英文,秋叶整合包包含提示词联想插件。 常用翻译软件如 DeepL(网址:https://www.deepl.com/translator,可下载客户端)、网易有道翻译(可 ctrl+alt+d 快速截图翻译),但复制粘贴来回切换麻烦。 自动翻译插件 promptallinone 安装方式:在扩展面板中搜索 promptallinone 直接安装,或把下载好的插件放在“……\\sdwebuiakiv4\\extensions”路径文件夹下,安装完成后重启 webUI。 插件特点: 一排小图标,第一个可设置插件语言为简体中文。 第二个图标是设置,点开后点击第一个云朵图标可设置翻译接口,点击第一行下拉菜单可选择翻译软件。 AIGC 落地应用 Open AI Translator(强烈推荐): 推荐指数:????? 是接入了 GPT 能力的文本翻译、总结、分析类产品,翻译功能适合浏览网页时查询个别单词、句子。 最大优势是可在脱离只提供产品内 AI 能力的场景使用,如任何 web 场景,配合 Arc Browser 而非 Chrome 使用效果更佳。 调用方式:选中页面中的文本后会悬浮该插件,点击即可翻译,速度极快,摆脱“复制打开翻译软件粘贴翻译”的流程。 可用于文本分析、分析代码,搭配 Chat GPT 使用效果好。 开发者模式下也可辅助使用。 注:安装后需获取 Open AI 的 API Key,首次打开插件设置好 Open AI Key 地址,找地方保存好 API Key 方便使用。 下载地址:
2025-02-15
可以嵌入AI玩具的硬件
以下是关于可以嵌入 AI 玩具的硬件的相关信息: 一个名为“跃然创新”的 20 人小微创业团队,将大模型装进毛绒玩具里,赋予毛绒玩具生命。其 CEO 李勇和 COO 高峰是资深的互联网+硬件从业者。 做儿童场景产品是李勇和高峰长久以来的梦想,源于对天猫精灵多数语音交互来自孩子这组数据的洞察。之前智能音箱的 AI 交互体验不够好,直到 ChatGPT 出现,他们确定将大模型和毛绒玩具结合,做一家陪伴孩子成长的 AI 毛绒玩具公司。 “情绪价值”是李勇理解儿童陪伴场景的关键词,认为 AI 毛绒玩具更具情感陪伴属性,相较于音箱、故事机、机器人、平板等,毛绒玩具更能带给孩子安全感。 明确了 AI+毛绒玩具的产品方向后,团队基于大模型做训练、引进 IP 版权、接洽供应链全速推进。未来除了联名 IP 外,也会有自己的原创 IP。 基于数百名孩子的调研结果,不同孩子使用 AI 毛绒玩具有区别,但基本都喜欢。李勇强调跟它聊得越多,它就越懂孩子、越能发现孩子的潜能。 由于毛绒玩具购买者与使用者分离,团队做了很多让家长有安全感的工作,比如家长可通过 App 查看聊天记录,危险话题会推送预警信息,还能从聊天记录了解孩子真实喜好,AI 毛绒玩具成为家长和孩子沟通的桥梁。 团队透露近期首款 AI 毛绒玩具产品会面世。
2025-01-14
企业建立私有大模型时候,采用什么工具进行RAG,高效实习企业知识文档、表格和pdf图纸的向量化
企业建立私有大模型进行 RAG 并实现企业知识文档、表格和 PDF 图纸向量化时,可参考以下工具和方法: 1. 本地部署资讯问答机器人: 导入依赖库,如 feedparse 用于解析 RSS 订阅源,ollama 用于在 Python 程序中跑大模型(使用前需确保 ollama 服务已开启并下载好模型)。 从订阅源获取内容,通过专门的文本拆分器将长文本拆分成较小的块,并附带相关元数据,最终合并成列表返回。 为文档内容生成向量,可使用文本向量模型 bgem3,从 hf 下载好模型后,假设放置在某个路径 /path/to/bgem3,通过函数利用 FAISS 创建高效的向量存储。 2. 开发:LangChain 应用开发指南 大模型的知识外挂 RAG 加载数据,根据数据源类型选择合适的数据加载器,如网页可使用 WebBaseLoader。 将文档对象分割成较小的对象,根据文本特点选择合适的文本分割器,如博客文章可用 RecursiveCharacterTextSplitter。 将文档对象转换为嵌入并存储到向量存储器中,根据嵌入质量和速度选择合适的文本嵌入器和向量存储器,如 OpenAI 的嵌入模型和 Chroma 的向量存储器。 创建检索器,使用向量存储器检索器,传递向量存储器对象和文本嵌入器对象作为参数创建检索器对象。 创建聊天模型,根据性能和成本选择合适的聊天模型,如 OpenAI 的 GPT3 模型。 以下是使用 LangChain 构建 RAG 应用的示例代码。
2025-02-27
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
如何将自有的材料做向量化处理
很抱歉,目前没有关于如何将自有的材料做向量化处理的相关内容。但一般来说,将自有材料进行向量化处理可以考虑以下步骤: 1. 数据清洗和预处理:清理和整理材料中的噪声、错误和不一致的数据。 2. 特征提取:根据材料的特点选择合适的特征,例如文本材料可以提取词袋模型、TFIDF 等特征。 3. 选择向量化方法:常见的有词向量(如 Word2Vec、GloVe 等)、文档向量(如 Doc2Vec)等。 4. 训练模型:使用选择的向量化方法和预处理后的数据进行训练。 由于缺乏具体的材料类型和应用场景等详细信息,以上步骤仅为一般性的指导,实际操作可能会有所不同。
2025-02-06
机器学习的子领域包括: 监督学习,常用算法如线性回归、决策树、支持向量机(SVM)。 无监督学习,如聚类、降维等算法。 强化学习,那深度学习是哪一种啊
深度学习是机器学习的一个子领域。 在机器学习中,深度学习是一种利用深度神经网络来学习数据特征和模式的方法。 深度学习的特点包括: 1. 具有复杂的网络结构,如前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等。 2. 能够自动从大量数据中提取高级特征。 深度学习在图像识别、语音识别、自然语言处理等领域取得了显著的成果。
2025-01-21
向量数据库和矢量数据库的区别
向量数据库和传统数据库(可视为您所提到的“矢量数据库”)主要有以下区别: 1. 查找方式: 传统数据库需要精确的关键词或类别进行查找,如同在普通图书馆中需知道书的具体位置或分类。 向量数据库可以通过自然语言描述所需内容,系统能理解意图并找到最相关的内容。 2. 组织方式: 传统数据库中信息被严格分类和组织,类似图书馆里的书架和编号系统。 向量数据库中信息根据内在特征和相似性自然聚集,如同魔法图书馆里书籍自动根据内容相似性浮动聚集。 3. 灵活性: 传统数据库若要更换组织方式,可能需重新安排整个架构。 向量数据库中,新加入的数据会自动找到合适位置,无需重新组织整个系统。 4. 发现新内容: 传统数据库较难偶然发现相关但之前未知的内容。 向量数据库在搜索时可能发现许多相关但之前不知道的内容,因其理解内容本质而非仅依赖标签。 此外,向量数据库以多维向量形式保存信息,代表某些特征或质量,能根据数据的向量接近度或相似度快速、精确地定位和检索数据,从而实现根据语义或上下文相关性进行搜索。而传统数据库通常以表格形式存储简单数据,搜索依赖精确匹配或设定标准。 为了在人工智能和机器学习应用中利用非结构化数据(如文本、图像和音频等),需要使用嵌入技术将其转换为数字表示,嵌入过程通常通过特殊神经网络实现,使计算机能更有效地辨别数据中的模式和关系。
2025-01-10
大模型的系统提示词
大模型的系统提示词主要包括以下方面: 1. 在“五津:一键生成‘摸鱼打工猫’视频”中,针对用户选择的主题和回答,总结用户的创作意图,如“打工猫摸鱼的 2 小时,在巴厘岛能看一场日落”,并根据此生成 4 组体现幽默风趣、以宫崎骏风格描绘主角为摸秋刀鱼橘猫的绘图提示词,以数组形式输出到“tishici”,将用户意图输出到“biaoti”。 2. 在“云中江树:智能对决:提示词攻防中的 AI 安全博弈”中,系统提示词的相关防御措施分为输入侧、模型侧和输出侧三个部分。输入侧可进行意图识别、语义匹配等综合判断用户输入是否恶意;模型侧对于有能力的厂商应增强安全性并平衡性能,开发者则要在开发中带着安全意识优化系统提示词,加入安全引导和禁止内容等;输出侧可使用传统防御和内容过滤手段,并针对大模型特点进行私有数据泄露等检查。此外,还提到间接注入和提示词泄露的情况,间接注入常发生在应用获取依赖外部数据资源时,攻击者通过隐藏恶意指令完成攻击;提示词泄露指试图操纵模型输出获取部分或全部系统提示词,大模型输出内容可分为系统提示词、用户提示和助手提示词三段,通过攻击手段可获取系统提示词。
2025-04-18
通义千问Qwen2.5-VL、阶跃星辰step-1.5v-mini、Gemini-2.0-Flash,这3个视觉理解大模型哪个最厉害?
以下是对通义千问 Qwen2.5VL 模型的介绍: 版本:有 3B、7B 和 72B 三个尺寸版本。 主要优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 Qwen 特色文档解析:设计了更全面的文档解析格式,称为 QwenVL HTML 格式,能够精准还原文档中的版面布局。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 然而,对于阶跃星辰 step1.5vmini 和 Gemini2.0Flash 模型,目前提供的信息中未包含其与通义千问 Qwen2.5VL 模型的直接对比内容,因此无法确切判断哪个模型在视觉理解方面最厉害。但从通义千问 Qwen2.5VL 模型的上述特点来看,其在视觉理解方面具有较强的能力和优势。
2025-04-15
目前全世界最厉害的对视频视觉理解能力大模型是哪个
目前在视频视觉理解能力方面表现出色的大模型有: 1. 昆仑万维的 SkyReelsV1:它不仅支持文生视频、图生视频,还是开源视频生成模型中参数最大的支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其具有影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等优势。 2. 通义千问的 Qwen2.5VL:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。擅长万物识别,能分析图像中的文本、图表、图标、图形和布局等。
2025-04-15
目前全世界最厉害的视频视觉理解大模型是哪个
目前全世界较为厉害的视频视觉理解大模型有以下几个: 1. 昆仑万维的 SkyReelsV1:不仅支持文生视频、图生视频,是开源视频生成模型中参数最大且支持图生视频的模型。在同等分辨率下各项指标实现开源 SOTA。其优势包括影视化表情识别体系、人物空间位置感知、行为意图理解、表演场景理解等。 2. 腾讯的混元:语义理解能力出色,能精准还原复杂的场景和动作,如特定品种的猫在复杂场景中的运动轨迹、从奔跑到跳跃的动作转换、琴音化作七彩音符等。 3. Pixverse V3.5:全球最快的 AI 视频生成模型,Turbo 模式下可在 10 秒内生成视频,最快仅需 5 6 秒。支持运动控制更加稳定、细节表现力强、首尾帧生成功能,具备顶尖动漫生成能力。
2025-04-15
目前全世界最厉害的视觉理解大模型是哪个
目前在视觉理解大模型方面,较为突出的有 DeepSeek 的 JanusPro 模型,它将图像理解和生成统一在一个模型中;还有通义千问的视觉理解模型,其价格有较大降幅。此外,Pixverse V3.5 是全球最快的 AI 视频生成模型,在某些方面也展现出了出色的能力。但很难确切地指出全世界最厉害的视觉理解大模型,因为这取决于不同的评估标准和应用场景。
2025-04-15
大模型对话产品的优劣
大模型对话产品具有以下优点: 1. 具有强大的语言理解和生成能力。 2. 能够提供类似恋爱般令人上头的体验,具有一定的“想象力”和“取悦能力”。 3. 可以通过陪聊建立人和 AI 之间的感情连接,产品粘性不完全依赖技术优越性。 4. 能够为用户提供产品咨询服务,适用于有企业官网、钉钉、微信等渠道的客户。 5. 具有多种应用场景,如私有领域知识问答、个性化聊天机器人、智能助手等。 大模型对话产品也存在一些缺点: 1. 存在记忆混乱的问题。 2. AI 无法主动推动剧情,全靠用户脑补,导致用户上头期短,疲劳度高,长期留存低。 3. 无法回答私有领域问题(如公司制度、人员信息等)。 4. 无法及时获取最新信息(如实时天气、比赛结果等)。 5. 无法准确回答专业问题(如复杂数学计算、图像生成等)。
2025-04-14