Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

ollama是什么,使用场景有什么

Answer

Ollama 是一个开源的框架,旨在简化在本地运行大型语言模型(LLM)的过程。

它具有以下特点和优势:

  1. 支持多种大型语言模型:包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。
  2. 易于使用:适用于 macOS、Windows 和 Linux 系统,支持 CPU 和 GPU,能让用户轻松在本地环境中启动和运行大模型。
  3. 模型库:提供丰富的模型库,用户可从中下载不同参数和大小的模型以满足不同需求和硬件条件,通过 https://ollama.com/library 查找。
  4. 自定义模型:用户能通过简单步骤自定义模型,如修改温度参数调整创造性和连贯性,或设置特定系统消息。
  5. API 和集成:提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。
  6. 社区贡献丰富:包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。

总的来说,Ollama 是一个高效、功能齐全的大模型服务工具,不仅适用于自然语言处理研究和产品开发,也适合初学者或非技术人员使用,特别是那些希望在本地与大型语言模型交互的用户。

其使用场景包括但不限于:

  1. 自然语言处理研究。
  2. 产品开发。

安装方法:官方下载地址为 https://ollama.com/download 。安装完成后,在 macOS 上启动 ollama 应用程序,在 Linux 上通过 ollama serve 启动,可通过 ollama list 确认是否安装成功。运行大模型时,在命令行中输入相应命令即可,模型会自动下载到本地。在 Python 程序中使用时,需确保 ollama 服务已开启并下载好模型。

Content generated by AI large model, please carefully verify (powered by aily)

References

本地部署资讯问答机器人:Langchain+Ollama+RSSHub 实现 RAG

1.支持多种大型语言模型:Ollama支持包括通义千问、Llama 2、Mistral和Gemma等在内的多种大型语言模型,这些模型可用于不同的应用场景。2.易于使用:Ollama旨在使用户能够轻松地在本地环境中启动和运行大模型,适用于macOS、Windows和Linux系统,同时支持cpu和gpu。3.模型库:Ollama提供了一个模型库,用户可以从中下载不同的模型。这些模型有不同的参数和大小,以满足不同的需求和硬件条件。Ollama支持的模型库可以通过https://ollama.com/library进行查找。4.自定义模型:用户可以通过简单的步骤自定义模型,例如修改模型的温度参数来调整创造性和连贯性,或者设置特定的系统消息。5.API和集成:Ollama还提供了REST API,用于运行和管理模型,以及与其他应用程序的集成选项。6.社区贡献:Ollama社区贡献丰富,包括多种集成插件和界面,如Web和桌面应用、Telegram机器人、Obsidian插件等。7.总的来说,Ollama是一个为了方便用户在本地运行和管理大型语言模型而设计的框架,具有良好的可扩展性和多样的使用场景。后面在捏Bot的过程中需要使用Ollama,我们需要先安装,访问以下链接进行下载安装。https://ollama.com/download/安装完之后,确保ollama后台服务已启动(在mac上启动ollama应用程序即可,在linux上可以通过ollama serve启动)。我们可以通过ollama list进行确认,当我们还没下载模型的时候,正常会显示空:可以通过ollama命令下载模型,目前,我下载了4个模型:几个模型简介如下:

手把手教你本地部署大模型以及搭建个人知识库

Ollama是一个开源的框架,旨在简化在本地运行大型语言模型(LLM)的过程。Ollama作为一个轻量级、可扩展的框架,提供了一个简单的API来创建、运行和管理模型,以及一个预构建模型库,进一步降低了使用门槛。它不仅适用于自然语言处理研究和产品开发,还被设计为适合初学者或非技术人员使用,特别是那些希望在本地与大型语言模型交互的用户总的来说,Ollama是一个高效、功能齐全的大模型服务工具,通过简单的安装指令和一条命令即可在本地运行大模型,极大地推动了大型语言模型的发展和应用[heading2]安装Ollama[content]官方下载地址:https://ollama.com/download当安ollama之后,我们可以通过访问如下链接来判断ollama是否安装成功[heading2]使用Ollama运行本地大模型[content]当安装完成ollama之后,我们就可以在命令行中运行如下命令既可以其中[model name]就是你想运行的本地大模型的名称,如果你不知道应该选择哪个模型,可以通过[model library](https://ollama.com/library)进行查看。这里我们选择llama2大模型:[llama2](https://ollama.com/library/llama2)考虑到我机器的配置以及不同版本的内存要求,我这里选择7b参数的模型当我们运行大模型的时候,ollama会自动帮我们下载大模型到我们本地。

本地部署资讯问答机器人:Langchain+Ollama+RSSHub 实现 RAG

|导入依赖库加载所需的库和模块。其中,feedparse用于解析RSS订阅源ollama用于在python程序中跑大模型,使用前请确保ollama服务已经开启并下载好模型|从订阅源获取内容下面函数用于从指定的RSS订阅url提取内容,这里只是给了一个url,如果需要接收多个url,只要稍微改动即可。然后,通过一个专门的文本拆分器将长文本拆分成较小的块,并附带相关的元数据如标题、发布日期和链接。最终,这些文档被合并成一个列表并返回,可用于进一步的数据处理或信息提取任务。|为文档内容生成向量这里,我们使用文本向量模型bge-m3。https://huggingface.co/BAAI/bge-m3bge-m3是智源研究院发布的新一代通用向量模型,它具有以下特点:支持超过100种语言的语义表示及检索任务,多语言、跨语言能力全面领先(M ulti-Lingual)最高支持8192长度的输入文本,高效实现句子、段落、篇章、文档等不同粒度的检索任务(M ulti-Granularity)同时集成了稠密检索、稀疏检索、多向量检索三大能力,一站式支撑不同语义检索场景(M ulti-Functionality)从hf下载好模型之后,假设放置在某个路径/path/to/bge-m3,通过下面函数,利用FAISS创建一个高效的向量存储。|实现RAG

Others are asking
Ollama
以下是关于 Ollama 的相关信息: 在电脑上运行本地大模型的相对简化模式: 步骤: 1. 打开 Ollama 官网 https://ollama.com,下载应用并安装。 2. 在 Mac 系统搜索 terminal 或终端,点击回车,弹出的简洁框框就是。输入想要运行的大模型(例如:ollama run llama2),并回车。等待下载完成,即可输入内容,和 llama2 愉快交流。 TagTool With Ollama 打标工具: 先去下载并安装 Ollama,然后打开 Powershell 运行相关命令。 Win 编辑 run_win.ps1 文件,Mac 编辑 run_mac.sh 文件,将目录中的图片路径和触发词填写,运行即可。 从 LLM 大语言模型、知识库到微信机器人的全本地部署教程中的 Ollama 部署: 步骤: 1. 点击进入,根据电脑系统,在 https://ollama.com/download 下载 Ollama。 2. 下载完成后,双击打开,点击“Install”。 3. 安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成:http://127.0.0.1:11434/ 。 4. 下载 qwen2:0.5b 模型(0.5b 是为了方便测试,下载快,自己设备充足的话,可以下载更大的模型)。 5. 对于 Windows 电脑,点击 win+R,输入 cmd,点击回车;对于 Mac 电脑,按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。复制相关命令行,粘贴进入,点击回车。等待下载完成即可。
2025-02-18
类似于ollama和vllm这样的LLM 框架有哪些
以下是类似于 ollama 和 vllm 的 LLM 框架: 1. Encoderonly 框架(也叫 AutoEncoder),典型代表如 BERT 等。 2. Encoderdecoder 框架,典型代表如 T5 和 GLM 等。 3. Decoderonly 框架(也叫 AutoRegressive),典型代表如 GPT 系列、LLaMa、PaLM 等。 此外,还有一些在 LLM 应用中发挥重要作用的框架,如: 1. LangChain:是当前大模型应用开发的主流框架之一,提供了一系列工具和接口,其核心在于“链”概念,包括 Model I/O、Retrieval、Chains、Agents、Memory 和 Callbacks 等组件,生态系统还包括 LangSmith、LangGraph 和 LangServe 等工具。 2. LlamaIndex:在促进 LLM 和整合上下文数据方面表现出色,抽象出许多提示链的细节,与外部 API 的接口,从向量数据库检索上下文数据,并在多个 LLM 调用中维持内存。
2025-02-17
Ollama配置
以下是关于 Ollama 配置的详细步骤: 1. 进入 ollama.com 下载程序并安装,该程序支持 Windows、Linux 和 MacOS 系统。 2. 查找 cmd 进入命令提示符(Windows 系统)或通过相应方式进入终端(Mac 系统),输入“ollama v”检查版本,安装完成后版本应显示 0.1.26。 3. 输入“cls”清空屏幕,然后直接输入“ollama run gemma”运行模型(默认是 2b 版本),首次需要下载,需等待一段时间。若想用 7b 版本,运行“ollama run gemma:7b”。 4. 完成以上操作后就可以直接对话。2b 版本的反应速度快,但能互动的话题有限。7b 版本能运行,但可能会有卡顿,输出内容质量相对较高,但无论 2b 还是 7b,对非英文语种的反馈都不是很稳定。 5. 模型里一些常用的内部指令:“/set”显示设置界面可调整的设置项,“/show”显示模型信息。 另外,还有一种部署 Ollama 的方式: 1. 点击进入 ollama.com 根据电脑系统下载 Ollama。 2. 下载完成后,双击打开,点击“Install”。 3. 安装完成后,将“http://127.0.0.1:11434/”复制进浏览器中,若出现相应字样,表示安装完成。 4. 下载 qwen2:0.5b 模型(可根据自身设备情况选择更大的模型)。 对于 Windows 电脑,点击 win+R,输入 cmd 点击回车。 对于 Mac 电脑,按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 5. 复制相关命令行,粘贴进入并回车,等待下载完成。下载完成后,大模型已在本地运行,输入文本即可进行对话。
2025-02-16
如何在本机上安装ollama
在本机上安装 Ollama 的步骤如下: 1. 点击进入 https://ollama.com/download ,根据您的电脑系统下载 Ollama。 2. 下载完成后,双击打开,点击“Install”进行安装。 3. 安装完成后,将 http://127.0.0.1:11434/ 复制进浏览器中。如果出现相关字样,表示安装完成。 此外,还需注意: 下载 qwen2:0.5b 模型(0.5b 是为了方便测试,下载快,自己设备充足的话,可以下载更大的模型): 如果是 Windows 电脑,点击 win+R,输入 cmd,点击回车。 如果是 Mac 电脑,按下 Command(⌘)+Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 复制相关命令行,粘贴进入,点击回车。 安装完之后,确保 ollama 后台服务已启动(在 mac 上启动 ollama 应用程序即可,在 linux 上可以通过 ollama serve 启动)。可以通过 ollama list 进行确认。还可以通过 ollama 命令下载模型。
2025-02-06
Ollama
以下是关于 Ollama 的相关信息: 打标工具安装: 先去下载并安装 Ollama,然后打开 Powershell 运行相关命令。 Win 编辑 run_win.ps1 文件,Mac 编辑 run_mac.sh 文件,将目录中的图片路径和触发词填写,运行即可。 对于 Windows 版,打开 WebUI,找到 Tagger 选项卡,如果没有则参考教程安装插件。 前往 https://github.com/starik222/BooruDatasetTagManager/releases 下载软件包,解压缩后双击运行即可。 本地部署资讯问答机器人: 支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 cpu 和 gpu。 提供模型库,可通过 https://ollama.com/library 查找并下载不同模型,以满足不同需求和硬件条件。 支持自定义模型,可修改模型的温度参数等设置特定的系统消息。 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 社区贡献丰富,包括多种集成插件和界面。 安装时访问 https://ollama.com/download/ ,安装完后确保 ollama 后台服务已启动(在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动),可通过 ollama list 确认。 应用实例本地部署 Google Gemma: 环境准备:进入 ollama.com 下载程序并安装(支持 windows、linux 和 macos),在命令提示符中输入 ollama v 检查版本,安装完成后版本应为 0.1.26,cls 清空屏幕,输入 ollama run gemma 运行模型(默认 2b),首次需下载,想用 7b 则运行 ollama run gemma:7b 。 常用内部指令:/set 显示设置界面可调整的设置项,/show 显示模型信息,/load<model> 加载已有模型,/bye 退出。 2b 反应速度快但互动话题有限,7b 输出内容质量相对较高但有卡顿,对非英文语种反馈不稳定。
2025-02-06
除了ollama外还有什么好用
除了 Ollama 外,以下是一些好用的本地部署或相关的工具和框架: 1. Google Gemma:Google 发布的家用版小模型,分别有 2b(20 亿参数)和 7b(70 亿参数)版本。相对千亿参数的大模型,这种小模型可能不适合解决特别复杂的任务,但从趋势上看是模型本地化提升基础操作效率的模板。小型的 llama 也支持本地部署。 2. Langchain:支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,易于使用,适用于多种操作系统,同时支持 cpu 和 gpu。提供模型库,用户可从中下载不同模型,还支持自定义模型、API 和集成,社区贡献丰富。 如果您想了解更多关于这些工具和框架的详细信息,建议您进一步查阅相关资料。
2025-02-03
AI编程的落地场景是什么
以下是 AI 编程的一些落地场景: 1. 智能体开发:从最初只有对话框的 chatbot 到具有更多交互方式的应用,低代码或零代码的工作流在某些场景表现较好。 2. 证件照应用:以前实现成本高,现在可通过相关智能体和交互满足客户端需求。 3. 辅助编程: 适合原型开发、架构稳定且模块独立的项目。 对于像翻译、数据提取等简单任务,可通过 AI 工具如 ChatGPT 或 Claude 解决,无需软件开发。 支持上传图片、文档,执行代码,甚至生成视频或报表,大幅扩展应用场景。 4. 自动化测试:在模块稳定后引入,模块变化频繁时需谨慎。 5. 快速迭代与发布 MVP:尽早发布产品,不追求完美,以天或周为单位快速迭代。 需要注意的是,AI 编程虽强,但目前适用于小场景和产品的第一个版本,在复杂应用中可能导致需求理解错误从而使产品出错。在进度不紧张时可先尝试新工具,成熟后再大规模应用。同时,压缩范围,定义清晰的 MVP(最小可行产品),先完成一个 1 个月内可交付的版本,再用 1 个月进行优化迭代。
2025-02-21
不同ai模型的应用场景
以下是不同 AI 模型的应用场景: 基于开源模型: Civitai、海艺 AI、liblib 等为主流创作社区,提供平台让用户利用 AI 技术进行图像创作和分享,用户无需深入了解技术细节即可创作出较高质量的作品。 基于闭源模型: OpenAI 的 DALLE 系列: 发展历史:2021 年初发布 DALLE,2022 年推出 DALLE 2,2023 年发布 DALLE 3,不断提升图像质量、分辨率、准确性和创造性。 模型特点:基于变换器架构,采用稀疏注意力机制,DALLE 2 引入 CLIP 模型提高文本理解能力,DALLE 3 优化细节处理和创意表现。 落地场景:2C 方面可控性强于 Midjourney,但复杂场景和细节处理能力不如 Midjourney;2B 方面与 Midjourney 场景类似。 商业化现状:通过提供 API 服务,使企业和开发者能集成到应用和服务中,采取分层访问和定价策略。 伦理和合规性:加强对生成内容的审查,确保符合伦理和法律标准。 大模型: 文本生成和内容创作:撰写文章、生成新闻报道、创作诗歌和故事等。 聊天机器人和虚拟助手:提供客户服务、日常任务提醒和信息咨询等服务。 编程和代码辅助:用于代码自动补全、bug 修复和代码解释。 翻译和跨语言通信:促进不同语言背景用户之间的沟通和信息共享。 情感分析和意见挖掘:为市场研究和产品改进提供数据支持。 教育和学习辅助:创建个性化学习材料、自动回答学生问题和提供语言学习支持。 图像和视频生成:如 DALLE 等模型可根据文本描述生成相应图像,未来可能扩展到视频内容生成。 游戏开发和互动体验:创建游戏中的角色对话、故事情节生成和增强玩家沉浸式体验。 医疗和健康咨询:理解和回答医疗相关问题,提供初步健康建议和医疗信息查询服务。 法律和合规咨询:帮助解读法律文件,提供合规建议,降低法律服务门槛。 这些只是部分应用场景,随着技术进步和模型优化,AI 模型在未来可能会拓展到更多领域和场景。同时,也需注意其在隐私、安全和伦理方面的挑战。
2025-02-21
能在局域内网,没有网络,离线的场景使用的AI编程工具,可以是单独运行的,也可以是JetBrains IDEs中作为插件使用的
以下是一些可以在局域内网、没有网络、离线场景使用的 AI 编程工具: 1. PyCharm:是 JetBrains 推出的智能代码补全工具,支持 Java、Python 和 JavaScript 等多种语言。因其高准确性著称,帮助开发人员节省编程时间。价格:起价每月 24.90 美元。 2. AIXcoder:AI 驱动的编程助手,支持 Java、Python 和 JavaScript 等语言。它提供了自动任务处理、智能代码补全、实时代码分析以及输入时的错误检查功能。价格:暂无信息。 3. Ponicode:AI 驱动的代码工具,旨在帮助开发人员优化编码流程。利用自然语言处理和机器学习,根据用户的描述生成代码。由 CircleCI 维护。 4. Jedi:开源的代码补全工具,主要作为 Python 静态分析工具的插件运行,适用于各种编辑器和 IDE。价格:免费。 此外,还有以下相关工具: 1. Cursor:网址:https://www.cursor.com/ ,通过对话获得代码。 2. Deepseek:网址:https://www.deepseek.com/zh ,方便国内访问,网页登录方便,目前完全免费。 3. 通义灵码:在 Pytharm 中,“文件”“设置”“插件”红色框位置搜索“通义灵码”进行安装(目前免费)。 4. JetBrains 自身的助手插件:在 Pytharm 中,“文件”“设置”“插件”红色框位置搜索“Jetbrains AI assistant”进行安装(收费,目前有 7 天免费试用)。 5. AskCodi:一款 AI 代码助手,提供各种应用程序用于代码生成、单元测试创建、文档化、代码转换等。由 OpenAI GPT 提供支持,可以作为 Visual Studio Code、Sublime Text 和 JetBrains 的 IDE 的扩展/插件使用。 6. ODIN(Obsidian 驱动信息网络):是一个插件,可以在 Obsidian 中使用。它提供了一些功能,包括通过图形提示栏进行 LLM 查询、图形可视化、下拉菜单功能等。安装 ODIN 需要先安装 Obsidian 并按照指示进行插件的安装和启用。
2025-02-21
在没有明确答案的场景,怎么做RL?
在没有明确答案的场景下做 RL 可以参考以下内容: 分析关键要素:包括状态空间、行为空间和奖励模型。 方法推测:如采用类似 AlphaGo/AlphaZero 的概率较大。原因包括 OpenAI 员工受相关理念影响,且有将搜索方法和 LLM 融合的尝试。 对于领域泛化能力:o1 的思考能力能否泛化到 Reward 不好量化的领域是关键。OpenAI 可能已找到一些非数理学科的 Reward 定义方法,例如针对写作文列出好文章的标准作为 Reward 标准。 以 DeepSeek R1 为例:在“冷启动”阶段通过少量人工精选的思维链数据初步引导,随后主要依靠强化学习,在奖励系统(准确率奖励和格式奖励)的反馈下自主探索推理策略,实现自我进化。Alpha Zero 完全摒弃人类数据进行纯强化学习,展现出创造性风格。DeepSeek R1 更注重学习推理底层策略,培养通用推理能力以实现跨领域运用。
2025-02-21
waytoAGI解决的核心场景是什么,有哪些应用案例
WaytoAGI 是一个 AI 开源社区,其核心场景包括: 1. 提供 AI 领域的最新进展、教程、工具和一线实战案例,引领并推广开放共享的知识体系。 2. 倡导共学共创等形式,孵化了如 AI 春晚、离谱村等大型共创项目。 3. 作为思想交流平台,汇聚行业顶尖创作者和 KOL。 应用案例方面: 1. 在上海国际 AIGC 大赛中,如《嘉定汇龙》项目中,利用多种 AI 技术如 stable diffusion 艺术字生成、comfyui 转绘、steerablemotion、runway 文生视频、图生视频等,并通过合成剪辑完成作品。 2. 社区内有像三思这样的高手分享具体教程。
2025-02-21
养老场景实时健康监测与风险预警在技术上怎么实现,用AI大模型实现,请给出一个可行的方案
以下是一个利用 AI 大模型实现养老场景实时健康监测与风险预警的可行方案: 首先,需要明确相关的概念和技术名词。AI 即人工智能,机器学习是电脑找规律学习,包括监督学习、无监督学习和强化学习。监督学习是基于有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归。无监督学习是在无标签数据中自主发现规律,例如聚类。强化学习是从反馈中学习以最大化奖励或最小化损失,类似训小狗。深度学习参照人脑,具有神经网络和神经元,因层数多被称为深度,神经网络可用于多种学习方式。生成式 AI 能生成文本、图片、音频、视频等内容形式,LLM 是大语言模型,生成图像的扩散模型不属于大语言模型,像谷歌的 BERT 模型可用于语义理解,如上下文理解、情感分析、文本分类。 在技术里程碑方面,2017 年 6 月谷歌团队发表的《Attention is All You Need》论文首次提出了 Transformer 模型,其完全基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。 对于养老场景的实时健康监测与风险预警,可利用传感器收集老人的生理数据,如心率、血压、血糖等。这些数据通过物联网传输到服务器,利用深度学习算法对数据进行分析和处理。例如,使用基于 Transformer 模型的大模型,对历史健康数据和当前实时数据进行学习和分析,建立老人的健康模型。通过与正常健康指标的对比,及时发现异常情况,并结合无监督学习中的聚类算法,对不同健康状况的老人进行分类,以便提供个性化的预警和建议。同时,利用强化学习不断优化模型的预警准确性和及时性。 总之,通过整合传感器数据采集、物联网传输、深度学习算法分析和模型优化等环节,借助 AI 大模型实现养老场景的实时健康监测与风险预警。
2025-02-20
DeepSeek的V3版本适合那些配置的电脑使用
DeepSeek 的 V3 版本在以下云计算厂商中的使用情况如下: 腾讯云(调用 API):API 调用 DeepSeek 系列模型限时免费,包括 DeepSeekV3。即日至北京时间 2025 年 2 月 25 日 23:59:59,所有腾讯云用户均可享受 DeepSeekV3 模型限时免费服务,单账号限制接口并发上限为 5。在此之后,模型价格将恢复至原价。 京东云:未提及 DeepSeekV3 版本的相关配置和使用情况。 Gitee AI:未提及 DeepSeekV3 版本的相关配置和使用情况。 需要注意的是,不同云计算厂商的配置和价格可能会有所变化,建议您在实际使用时进一步了解和确认。
2025-02-22
dify使用秘诀
Dify 是一个开源的大模型应用开发平台,具有以下特点和优势: 1. 理念创新:结合后端即服务和 LLMOps 的理念。 2. 界面直观:为用户提供直观的界面,能快速构建和部署生产级别的生成式 AI 应用。 3. 功能强大:具备强大的工作流构建工具,支持广泛的模型集成,提供功能丰富的提示词 IDE 以及全面的 RAG Pipeline 用于文档处理和检索。 4. 智能体支持:允许用户定义 Agent 智能体。 5. 性能优化:通过 LLMOps 功能对应用程序的性能进行持续监控和优化。 6. 部署灵活:提供云服务和本地部署选项,满足不同用户需求。 7. 数据可控:通过开源特性确保对数据的完全控制和快速的产品迭代。 8. 设计理念:注重简单性、克制和快速迭代,旨在帮助用户将 AI 应用的创意快速转化为现实。 9. 适用场景广泛:无论是创业团队构建 MVP、企业集成 LLM 以增强现有应用的能力,还是技术爱好者探索 LLM 的潜力,Dify 都能提供相应的支持和工具。 Dify 官方手册:https://docs.dify.ai/v/zhhans 一般来说,如果是个人研究,推荐单独使用 Dify;如果是企业级落地项目,推荐使用多种框架结合,效果更好。
2025-02-21
如何使用ai提示词
以下是关于如何使用 AI 提示词的详细介绍: 1. 提示词的定义和输入语言: 提示词用于描绘您想要的画面。 不同模型对输入语言有不同要求,如星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如“一个长头发的金发女孩”),基础模型 1.5 使用单个词组(如“女孩、金发、长头发”),且支持中英文输入。 2. 写好提示词的方法: 预设词组:小白用户可点击提示词上方官方预设词组进行生图。 内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,例如“一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量”。 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,输入不想生成的内容,如“不好的质量、低像素、模糊、水印”。 利用“加权重”功能:在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。还可对已有的提示词权重进行编辑。 辅助功能:包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。 3. 对使用提示词的认识: 不能期待设计一个完美的提示词就得到完美答案,提示词实际上是一个相对完善的“谈话方案”,成果在与 AI 的对话中产生,需要在对话中限缩自己思维中的模糊地带。 要接受 AI 的“不稳定性”,对其进行教育、监督和鞭策。
2025-02-21
有没有关于使用coze制作在线客服的案例或教程
以下是关于使用 Coze 制作在线客服的案例和教程: 画小二:通过 Coze 定制开发插件案例,包括创建智能体、添加插件等,还可发布到微信成为专职客服技能,并有手把手的会员教程和 AIGC 商业案例实操课海报。 扣子案例合集:包含保姆级教程,如如何用扣子搭建一个免费好用的“图片转表格”AI 客服等。 Agent 相关比赛中的 Coze 相关教程:包括不同分享人的主题分享及流程安排,如大聪明、大圣、艾木、罗文、Itao 的分享,均有回放地址可供查看。
2025-02-21
你使用了哪些大模型
以下是关于大模型的相关信息: 大模型的定义:大模型的“大”指用于表达 token 之间关系的参数多,主要是模型中的权重(weight)与偏置(bias),例如 GPT3 拥有 1750 亿参数。以 Transform 为代表的大模型采用自注意力(Selfattention)机制来学习不同 token 之间的依赖关系,生成高质量 embedding。数字化便于计算机处理,为让计算机理解 Token 之间的联系,需把 Token 表示成稠密矩阵向量,这个过程称为 embedding,常见算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。 国内部分大模型: 北京:百度(文心一言)https://wenxin.baidu.com 、抖音(云雀大模型)https://www.doubao.com 、智谱 AI(GLM 大模型)https://chatglm.cn 、中科院(紫东太初大模型)https://xihe.mindspore.cn 、百川智能(百川大模型)https://www.baichuanai.com/ 上海:商汤(日日新大模型)https://www.sensetime.com/ 、MiniMax(ABAB 大模型)https://api.minimax.chat 、上海人工智能实验室(书生通用大模型)https://internai.org.cn 部分大模型的特点:在聊天状态下能生成 Markdown 格式的有智谱清言、商量 Sensechat、MiniMax;目前不能进行自然语言交流的有昇思、书生;受限制使用的有 MiniMax;特色功能方面,昇思能生图,MiniMax 能语音合成。 大模型的动手实验:由于作者使用的是 macOS 系统,因此采用 GGML 量化后的模型。比较有名的相关项目有 ggerganov/llama.cpp:Port of Facebook's LLaMA model in C/C++ 中下载模型,3G 到 7G 不等。此外,llama.cpp 还提供了 WebUI 供用户使用,首先启动 server,它默认监听 8080 端口,打开浏览器就可以对话。
2025-02-20