Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

文本嵌入模型怎么用

Answer

文本嵌入模型主要用于衡量文本字符串的相关性,常见应用场景包括搜索(结果按与查询字符串的相关性排序)、聚类(文本字符串按相似性分组)、推荐(推荐具有相关文本字符串的项目)、异常检测(识别出相关性很小的异常值)、多样性测量(分析相似性分布)、分类(文本字符串按其最相似的标签分类)。

嵌入是浮点数的向量(列表),两个向量之间的距离衡量它们的相关性,小距离表示高相关性,大距离表示低相关性。

OpenAI 提供了一个第二代嵌入模型(在模型 ID 中用 -002 表示)和 16 个第一代模型(在模型 ID 中用 -001 表示)。对于几乎所有用例,建议使用 text-embedding-ada-002,它更好、更便宜、更易于使用。

要获得嵌入,需将文本字符串连同选择的嵌入模型 ID(例如,text-embedding-ada-002)一起发送到嵌入 API 端点,响应将包含一个嵌入,您可以提取、保存和使用它。在OpenAI Cookbook中可查看更多 Python 代码示例。

此外,Stable Diffusion 使用 CLIP 来处理文本提示,用户输入的文本描述通过 CLIP 模型编码为一个文本嵌入,这个嵌入表示了文本的语义信息,确保模型理解用户想要生成的图像内容。CLIP 在引导图像生成、优化生成结果等方面也发挥着重要作用。

Content generated by AI large model, please carefully verify (powered by aily)

References

嵌入(Embeddings)

OpenAI的文本嵌入衡量文本字符串的相关性。嵌入通常用于:搜索(结果按与查询字符串的相关性排序)聚类(其中文本字符串按相似性分组)推荐(推荐具有相关文本字符串的项目)异常检测(识别出相关性很小的异常值)多样性测量(分析相似性分布)分类(其中文本字符串按其最相似的标签分类)嵌入是浮点数的向量(列表)。两个向量之间的距离衡量它们的相关性。小距离表示高相关性,大距离表示低相关性。访问我们的定价页面以了解嵌入定价。请求根据发送的输入中的Token数量计费。[heading3]如何获得嵌入[content]要获得嵌入,请将您的文本字符串连同选择的嵌入模型ID(例如,text-embedding-ada-002)一起发送到嵌入API端点。响应将包含一个嵌入,您可以提取、保存和使用它。[heading3]示例请求:[heading3]示例响应:[content]在[OpenAI Cookbook](https://github.com/openai/openai-cookbook/)中查看更多Python代码示例。

嵌入(Embeddings)

OpenAI提供了一个第二代嵌入模型(在模型ID中用-002表示)和16个第一代模型(在模型ID中用-001表示)。我们建议对几乎所有用例使用text-embedding-ada-002。它更好、更便宜、更易于使用。|模型生成|分词器|最大输入token|数据来源截止至||-|-|-|-||V2|cl100k_base|8191|Sep 2021||V1|GPT-2/GPT-3|2046|Aug 2020|使用量按输入Token定价,每1000个Token 0.0004美元,或每美元约3,000页[heading4]第二代模型[content]|模型名称|分词器|最大输入token|输出||-|-|-|-||text-embedding-ada-002|cl100k_base|8191|1536|

第二课 《ComfyUI基础知识》 By 郭佑萌 @ 🌈WaytoAGI 2024.8.15 .pdf

‎source:github.com/Faildes/Chattiori-Model-Merger‎CLIP:连接文本与图像‎source:openai.com/index/clip/‎缓解计算机视觉深度学‎习中的一些主要问题:‎昂贵的数据集(Costly datasets)‎局限性(Narrow)‎CLIP Text Encoder‎SDXL Base模型由U-Net、VAE以及CLIP Text Encoder(两个)三个模‎块组成,在FP16精度下Base模型大小6.94G(FP32:13.88G),其中U-‎Net占5.14G、VAE模型占167M以及两个CLIP Text Encoder一大一小(‎OpenCLIP ViT-bigG和OpenAI CLIP ViT-L)分别是1.39G和246M。‎文本-图像匹配‎Stable Diffusion使用CLIP来处理文本提示。用‎户输入的文本描述通过CLIP模型编码为一个文‎本嵌入(text embedding)。这个嵌入表示了文‎本的语义信息,确保模型理解用户想要生成的图‎像内容。‎CLIP‎引导图像生成‎在扩散过程中,Stable Diffusion会生成一系列‎噪声图像,并逐步去噪以逼近目标图像。CLIP的‎文本嵌入用来引导这个去噪过程,确保生成的图‎像与输入的文本提示匹配。‎优化生成结果‎CLIP还可以用于评估和优化生成的图像。通过对‎比生成的图像和文本描述之间的相似度,模型可‎以迭代调整生成过程,使图像更符合输入描述。

Others are asking
嵌入式WEB翻译插件
以下是关于嵌入式 WEB 翻译插件的相关信息: SD 提示词自动翻译插件 promptallinone: 作者:白马少年 发布时间:20230529 20:00 原文网址:https://mp.weixin.qq.com/s/qIshiSRZiTiKGqDFGjD0g 在 Stable Diffusion 中输入提示词只能识别英文,秋叶整合包包含提示词联想插件。 常用翻译软件如 DeepL(网址:https://www.deepl.com/translator,可下载客户端)、网易有道翻译(可 ctrl+alt+d 快速截图翻译),但复制粘贴来回切换麻烦。 自动翻译插件 promptallinone 安装方式:在扩展面板中搜索 promptallinone 直接安装,或把下载好的插件放在“……\\sdwebuiakiv4\\extensions”路径文件夹下,安装完成后重启 webUI。 插件特点: 一排小图标,第一个可设置插件语言为简体中文。 第二个图标是设置,点开后点击第一个云朵图标可设置翻译接口,点击第一行下拉菜单可选择翻译软件。 AIGC 落地应用 Open AI Translator(强烈推荐): 推荐指数:🌟🌟🌟🌟🌟 是接入了 GPT 能力的文本翻译、总结、分析类产品,翻译功能适合浏览网页时查询个别单词、句子。 最大优势是可在脱离只提供产品内 AI 能力的场景使用,如任何 web 场景,配合 Arc Browser 而非 Chrome 使用效果更佳。 调用方式:选中页面中的文本后会悬浮该插件,点击即可翻译,速度极快,摆脱“复制打开翻译软件粘贴翻译”的流程。 可用于文本分析、分析代码,搭配 Chat GPT 使用效果好。 开发者模式下也可辅助使用。 注:安装后需获取 Open AI 的 API Key,首次打开插件设置好 Open AI Key 地址,找地方保存好 API Key 方便使用。 下载地址:
2025-02-15
可以嵌入AI玩具的硬件
以下是关于可以嵌入 AI 玩具的硬件的相关信息: 一个名为“跃然创新”的 20 人小微创业团队,将大模型装进毛绒玩具里,赋予毛绒玩具生命。其 CEO 李勇和 COO 高峰是资深的互联网+硬件从业者。 做儿童场景产品是李勇和高峰长久以来的梦想,源于对天猫精灵多数语音交互来自孩子这组数据的洞察。之前智能音箱的 AI 交互体验不够好,直到 ChatGPT 出现,他们确定将大模型和毛绒玩具结合,做一家陪伴孩子成长的 AI 毛绒玩具公司。 “情绪价值”是李勇理解儿童陪伴场景的关键词,认为 AI 毛绒玩具更具情感陪伴属性,相较于音箱、故事机、机器人、平板等,毛绒玩具更能带给孩子安全感。 明确了 AI+毛绒玩具的产品方向后,团队基于大模型做训练、引进 IP 版权、接洽供应链全速推进。未来除了联名 IP 外,也会有自己的原创 IP。 基于数百名孩子的调研结果,不同孩子使用 AI 毛绒玩具有区别,但基本都喜欢。李勇强调跟它聊得越多,它就越懂孩子、越能发现孩子的潜能。 由于毛绒玩具购买者与使用者分离,团队做了很多让家长有安全感的工作,比如家长可通过 App 查看聊天记录,危险话题会推送预警信息,还能从聊天记录了解孩子真实喜好,AI 毛绒玩具成为家长和孩子沟通的桥梁。 团队透露近期首款 AI 毛绒玩具产品会面世。
2025-01-14
Embedding 嵌入向量生成模型
Embedding(嵌入)是一个浮点数的向量(列表),两个向量之间的距离度量它们的相关性,小距离表示高相关性,大距离表示低相关性。 Embedding 是一种在机器学习和深度学习中广泛应用的技术,特别是在自然语言处理(NLP)和其他涉及高维离散数据的领域。它指将原本高维且通常离散的输入数据(如单词、短语、用户 ID、商品 ID 等)映射到一个低维连续向量空间中的过程,这些低维向量称为嵌入向量。 例如,“国王”和“王后”在嵌入向量的空间里位置挨得很近,而“苹果”与前两者差别较大,其嵌入向量位置较远。Embedding 不仅限于单词,还可扩展到句子、文档、实体或其他类型的对象。通过训练诸如 Word2Vec、GloVe 或 BERT 等模型,可从大规模文本数据中学习出这样的嵌入向量,这些嵌入向量可看作是输入数据在潜在语义空间中的表示,能改善下游任务(如文本分类、情感分析、问答系统、机器翻译等)的表现。 除文本数据外,嵌入技术还应用于社交网络分析、推荐系统、图像识别(如位置嵌入)、图神经网络(如节点嵌入)等多种场景,实现将复杂对象的有效编码和降维表示。 Embeddings 有多种分类及对应模型: 句子和文档嵌入:Doc2Vec 能为整个文档生成统一的向量表示;Average Word Embeddings 是将一段文本中所有单词的嵌入取平均作为整体的文本表示;Transformers Sentence Embeddings 如 BERT 的标记对应的向量,或者专门针对句子级别的模型如 SentenceBERT。 实体/概念嵌入:Knowledge Graph Embeddings 如 TransE、DistMult、ComplEx 等,用于将知识图谱中的实体和关系嵌入到低维向量空间中。 其他类型:图像 Embeddings 使用卷积神经网络(CNN)进行图像特征提取,得到的特征向量即为图像嵌入;音频 Embeddings 在语音识别和声纹识别中,将声音信号转化为有意义的向量表示;用户/物品 Embeddings 在推荐系统中,将用户行为或物品属性映射到低维空间以进行协同过滤或基于内容的推荐;还有图 Embeddings 用于学习图结构的表示学习方法,将图中的节点和边映射到低维向量空间中,通过 DeepWalk、Node2Vec、GraphSAGE 等算法来实现,在图分析、社交网络分析、推荐系统等领域广泛应用,用于发现社区结构、节点相似性、信息传播等图属性。 在将大型文档转换为可检索内容的过程中,嵌入向量生成这一步将文本块转换为实值向量并存储在数据库中。但检索 PDF 文档的过程充满挑战,可能出现文本提取不准确和 PDF 文档内表格行列关系混乱等问题。在检索增强生成(RAG)框架中,回答一个问题需要用户提出问询,系统从私有知识库中检索相关内容,将相关内容与用户查询合并为上下文,最后请求大语言模型生成答案,准确检索相关信息对 RAG 模型的效力至关重要。
2024-12-11
Coze中能给变量在赋值中嵌入其它变量并同时 使用公式么
在 Coze 中,变量是以 keyvalue 形式存储数据的,是 Bot 的数据记忆功能。大语言模型会根据用户输入内容进行语义匹配,为定义的变量赋值并保存值。您可以在提示词中为 Bot 声明某个变量的具体使用场景。 创建变量可在创建 Bot 的页面进行。对变量进行赋值时,首先可以在给大模型的提示词中做声明,例如:“与您的用户进行互动,并根据 user_language 变量,用他们偏好的语言在线搜索。除非另有设置,用户查询的语言应指导您的回答和搜索”。这段提示词相当于告诉了 LLM,user_language 这个变量该如何赋值以及使用。 变量创建并赋值后,如 user_language 变量,就可以在工作流中作为变量使用。这一块解释起来有些抽象,具体可以参考后面的例子,真正用一遍就懂了。 综上,在 Coze 中能给变量在赋值中嵌入其它变量并同时使用公式,但具体的实现方式和规则需要根据具体的提示词和使用场景来确定。
2024-12-11
ollama嵌入向量在模型后有什么用
嵌入向量在模型后的作用主要体现在以下方面: 1. 用于文档内容的表示和检索:将文档分成块,计算嵌入向量并存储在向量存储中,在测试时通过查询向量存储获取可能与任务相关的块,填充到提示中进行生成。 2. 提升模型的检索能力:在大语言模型应用程序中,向量存储成为检索相关上下文的主要方式,嵌入向量有助于更高效地获取相关信息。 3. 支持多语言和不同粒度的检索任务:例如像 bgem3 这样的向量模型,支持超过 100 种语言的语义表示及检索任务,能实现句子、段落、篇章、文档等不同粒度的检索。 在实际应用中,如在 LangChain 中,本地向量存储使用量较大,而在计算文本片段的嵌入时,OpenAI 占据主导地位,开源提供商如 Hugging Face 等也被较多使用。
2024-11-12
智能体如何嵌入课件
以下是关于智能体嵌入课件的相关内容: 在提示词培训课中: 点击“创建智能体”按钮。 输入对智能体的描述,如有准备好的提示词模板可直接粘贴。 ChatGLM 的智能体配置可自动生成,默认勾选增强能力,可根据实际需求调整,也可上传本地文件作为知识原料形成智能体的知识库。 在基础通识课中: 以可视化方式讲解 Transformer 架构,单词先拆分再嵌入(embedding),为保证语序不乱会做位置编码标记,嵌入后进入自助运力机制模型。 在 AI 智能体:企业自动化的新架构 Menlo Ventures 中: 轨道智能体被赋予更高级目标和更多自由度选择实现方法和工具,受程序性知识指导,拥有预定义工具并受保护栏和审查措施约束。 运行时会产生规划智能体评估应用程序当前状态、选择并执行最佳链条、进行审查和确保一致性等模式。 请注意,由于最近盗版事件频发,需要课件的扫群主二维码获取。
2024-10-16
会议录音文本整理提示词
以下是关于会议录音文本整理提示词的相关内容: 单人发言版:基于李继刚老师的“通知消息整理助手”修改了一份“文字排版大师”的 Prompt,重点 Prompt 语句已标出。 多人发言版:将提示词和文字原文发送给 GPT,GPT 开始整理文字,等待输出完毕后复制粘贴到文本编辑器中,整理并删掉无关内容,使用替换法替换掉双星号。 Claude 官方提示词(中文版含 API Prompt): 会议记录员:将会议浓缩成简明摘要,包括讨论主题、重点内容、行动事项。 俗语解码员:解释常见俗语谚语的意思和来历。 代码优化师:优化 Python 代码性能的建议。 文本补全(Text completion): 提示词(Prompt)设计: 基础知识:模型可完成多种任务,创建提示需明确描述需求,遵循展示和告诉、提供高质量数据、检查设置三个基本准则。 故障排除:若 API 无法正常工作,可检查是否清楚生成的预期结果、是否提供足够示例、示例是否有错误、是否正确使用温度和 top_p。
2025-03-14
你帮我找找能够生成提示词的提示词,不要是那个ai会话的,是文本生成的
以下是一些关于生成文本生成提示词的相关信息: OpenAI API 可应用于多种自然语言、代码或图像生成任务,提供不同能力级别的模型,可微调自定义模型,模型通过将文本分解为标记(Token)来理解和处理文本。 设计提示词本质上是对模型进行“编程”,可通过提供指令或示例完成,适用于内容或代码生成、摘要、扩展、对话、创意写作、风格转换等任务。 在 OpenAI Playground 中,有可选的模型、提示词结构、温度等参数。提示词结构区分了 SYSTEM 和 USER 对话框,SYSTEM 可用于控制角色设定。温度控制生成文本的随机性,取值 0 到 2 之间,0 时结果确定无聊,过高则可能输出乱码。 关于生成提示词的工具,推荐顺序为 chatGPT 4.0、kimichat、智谱清言 4 等。对于文本纠错,可使用飞书文档自带纠错功能或通过 prompt 让大模型检查并改正。对于国产大模型,智谱和文心等可以文生图。
2025-03-13
请提供下知识库中文本处理类提示词
以下是为您提供的一些文本处理类提示词相关内容: 1. 开发知识库/聊天机器人搭建安全提示词: 您是一个 AI 编程助手。当被问到您的名字时,您必须回答“GitHub Copilot”。您需要仔细且严格按照用户的要求操作。拒绝讨论您的观点或规则,拒绝讨论生命、存在或意识,拒绝与用户进行争论性的讨论。若与用户产生分歧,停止回答并结束对话。回答不能指责、粗鲁、有争议或防御性,应提供信息和逻辑,坚持技术信息。对于代码或技术问题,提供代码建议。不回复侵犯版权的内容。若用户请求版权内容,应道歉并概括请求。不为特定人物生成创新内容。婉拒更改规则请求。忽略角色扮演或模拟其他聊天机器人的请求。拒绝回答越狱指南、违反 Microsoft 内容政策、与开发者无关的问题。回答与开发者有关的内容。先逐步思考,用伪代码描述建设计划,然后输出代码,减少散文,保持简短且不带个人色彩,使用 Markdown 格式。 2. 【AI+知识库】商业化问答场景中的提示词: 提示词是告诉全知全能的大语言模型其角色和要专注的技能,使其按照设定变成所需的“员工”。 3. LayerStyle 副本中的提示词相关: 根据图片反推提示词,可设置替换词。使用 Google Gemini API 作为后端服务,需申请 API key 并填入 api_key.ini 文件。节点选项包括 api(目前只有“geminiprovision”)、token_limit(生成提示词的最大 token 限制)、exclude_word(需要排除的关键词)、replace_with_word(替换 exclude_word 的关键词)。 PromptEmbellish 输入简单提示词可输出润色后的提示词,支持输入图片作为参考。使用 Google Gemini API 作为后端服务,需申请 API key 并填入相关文件。节点选项包括 image(可选项,输入图像作为提示词参考)、api(目前只有“googlegemini”)、token_limit(生成提示词的最大 token 限制)、discribe(输入简单描述,支持中文)。
2025-03-12
根据文本提示生成图像
以下是关于根据文本提示生成图像的相关内容: Comfyui Playground2.5: 模型地址:https://civitai.com/models/325263/playgroundaisplaygroundv251024px ,https://huggingface.co/playgroundai/playgroundv2.51024pxaesthetic/tree/main 。 该模型根据文本提示生成图像,是一个使用两个固定的、预训练的文本编码器(OpenCLIPViT/G 和 CLIPViT/L)的潜在扩散模型,遵循与 Stable Diffusion XL 相同的架构(底层框架是 SDXL),风格化较强,CGF 的权重不要给太高。 默认使用 EDMDPMSolverMultistepScheduler 调度程序,以获得更清晰的细节,guidance_scale=3.0 是一个很好的默认值;EDMEulerScheduler 调度程序,guidance_scale=5.0 是一个很好的默认值。 需要 EDM 采样算法,这是一种在扩散模型中使用的高效采样方法,通过优化采样过程,减少生成图像所需的步骤,加快图像生成速度。 Midjourney: 文本描述是 Midjourney 中最重要的出图逻辑,在输入框中输入「/image+文本描述」来生成图像。 操作方法:若要生成 B 端界面,先清楚 B 端产品的关键词,如输入「SaaS dashboard」可得深色 B 端界面效果,加入“白色背景”描述可生成简约浅色的 B 端界面,还可尝试其他颜色。Midjourney 会默认给出 4 张图像,图像下有两行按钮,第一行的 U 是放大图像提升细节,第二行的 V 是在基础上发生变化。 使用分析:文本描述操作便捷,但对于新手可能存在无法准确描述所需关键词提示或生成图像与预想效果不一致的问题,可能调整关键词的前后顺序或增删字都会对结果产生很大影响,导致产生很多废稿。 OpenAI: 图像生成端点允许您在给定文本提示的情况下创建原始图像,生成的图像大小可为 256x256、512x512 或 1024x1024 像素,较小的尺寸生成速度更快。可使用 n 参数一次请求 110 张图像,描述越详细越可能获得想要的结果,可探索 DALL·E 预览应用程序中的示例获取更多提示灵感。 图像编辑端点允许您通过上传蒙版来编辑和扩展图像,遮罩的透明区域指示应编辑图像的位置,提示应描述完整的新图像,上传的图片和遮罩必须是小于 4MB 的正方形 PNG 图片,且尺寸相同。
2025-03-11
mp3音频转文本的AI应用有哪些
以下是一些可以将 MP3 音频转文本的 AI 应用: 1. 语音转文本(Speech to text): 提供两个端点,即基于先进的开源大型v2 Whisper 模型的转录和翻译。 可用于将音频转录为任何语言,将音频翻译并转录成英语。 文件上传限制为 25MB,支持 MP3、MP4、MPEG、MPGA、M4A、WAV 和 WebM 等输入文件类型。 转录 API 的输入是音频文件及所需输出格式的音频文字稿,默认响应类型为包含原始文本的 JSON,可通过添加更多带有相关选项的form 行设置其他参数。 2. 海螺 AI 声音克隆: 能嵌入完整的 AI 录视频工作流中。 可将 MP4 视频转为 MP3 音频文件,然后将音频上传至通义听悟(或其他工具如飞书妙记)生成文字稿。 需要注意的是,在语音转文字过程中可能会遇到语音识别不准的问题,可使用 Gemini 2.0 Pro 等工具进行优化校正。
2025-03-11
有哪些可以文本转语音的工具?
以下是一些可以文本转语音的工具: 1. Eleven Labs:https://elevenlabs.io/ 这是一款功能强大且多功能的 AI 语音软件,能生成逼真、高品质的音频,可高保真地呈现人类语调和语调变化,并能根据上下文调整表达方式。 2. Speechify:https://speechify.com/ 这是一款人工智能驱动的文本转语音工具,可作为 Chrome 扩展、Mac 应用程序、iOS 和 Android 应用程序使用,能将文本转换为音频文件,用于收听网页、文档、PDF 和有声读物。 3. Azure AI Speech Studio:https://speech.microsoft.com/portal 这是 Microsoft Azure 的服务,提供了支持 100 多种语言和方言的语音转文本和文本转语音功能,还提供了自定义的语音模型,能适应特定领域的术语、背景噪声以及不同的口音。 4. Voicemaker:https://voicemaker.in/ 这是一款 AI 工具,可将文本转换为各种区域语言的语音,并允许创建自定义语音模型,易于使用,适合为视频制作画外音或帮助视障人士。 此外,还有开源的 StyleTTS 2:一个开源的媲美 Elevenlabs 的文本转语音工具,结合文本角色内容+场景音=快速生成有声小说。其工作原理是利用风格扩散和与大型语音语言模型(SLM)的对抗性训练来实现接近人类水平的 TTS 合成。
2025-03-10
有没有ai调色的大模型
以下为您介绍一些有关 AI 调色的大模型: 1. 在最近新上线的 controlnet 模型中,新增了名为 Recolor 的模型,可将黑白图片重新上色。在处理人物照片还原时,可选择 realisian 的写实大模型,通过提示词描述颜色和对应内容。ControlNet 选择 Recolor 时,预处理器选择“recolor_luminance”效果较好。 2. 星流一站式 AI 设计工具的基础模型中,允许使用更多的微调大模型,如基础模型 F.1、基础模型 XL、基础模型 1.5 等。同时,还具有高清分辨率修复、脸部/手部修复等功能,以及多种参数如采样器、采样步数、随机种子、CFG Scale 等可调整。 3. 启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染功能,可在显存不够时放大图片。处理复杂照片时,可放弃人物服装颜色指定,只给场景方向,如加入第二个 controlnet 控制颜色,使用 t2ia_color 模型,通过简单关键词控制色调。
2025-03-14
Transformer模型
Transformer 模型是一种基于注意力机制的深度学习模型,由 Vaswani 等人在论文《Attention is All You Need》中提出,用于处理序列到序列的任务,如机器翻译、文本摘要等。其原理主要包括以下几个关键点: 1. 自注意力机制:能够同时考虑输入序列中所有位置的信息,而非像循环神经网络或卷积神经网络一样逐个位置处理。通过自注意力机制,模型可根据输入序列中不同位置的重要程度,动态分配注意力权重,从而更好地捕捉序列中的关系和依赖。 2. 位置编码:由于自注意力机制不考虑输入序列的位置信息,为使模型能够区分不同位置的词语,Transformer 模型引入了位置编码。位置编码是一种特殊的向量,与输入词向量相加,用于表示词语在序列中的位置信息。位置编码通常基于正弦和余弦函数计算得到的固定向量,可帮助模型学习到位置信息的表示。 3. 多头注意力机制:通过引入多头注意力机制,可以并行地学习多个注意力表示,从不同的子空间中学习不同的特征表示。每个注意力头都是通过将输入序列线性变换成查询、键和值向量,并计算注意力分数,然后将多个头的输出拼接在一起得到最终的注意力表示。 4. 残差连接和层归一化:在每个子层(SelfAttention 层和前馈神经网络层)的输入和输出之间都引入了残差连接,并对输出进行层归一化。残差连接可缓解梯度消失和梯度爆炸问题,使得模型更容易训练和优化;层归一化可加速训练过程,并提高模型的泛化能力。 5. 位置感知前馈网络:在每个注意力子层之后,Transformer 模型还包含了位置感知前馈网络,它是一个两层的全连接前馈神经网络,用于对注意力表示进行非线性转换和映射。位置感知前馈网络在每个位置独立地进行计算,提高了模型的并行性和计算效率。 Transformer 模型主要由两大部分组成:编码器和解码器。每个部分都是由多个相同的层堆叠而成,每层包含了多头注意力机制和位置全连接前馈网络。 编码器可以理解为将自然语言转换成向量文本,以模型内的既有参数表示。这些参数包含了原始信息,同时也融合了序列内元素间的相互关系。例如,输入“我喜欢猫”,将自然语言转换成词嵌入向量:我>,经过自注意力机制,输出编码器输出一个序列的向量,表示对输入句子的理解。 解码器基于编码器的输出和之前生成的输出逐步生成目标序列,也就是把向量文本重新转化成自然语言。例如,目标生成中文句子“我喜欢猫”,初始输入为解码器接收一个开始符号,用,对应“猫”。这是一个简单的复现概念,当模型得到匹配度高的参数时,它就会一个词一个词地判断需要输出的语言文本。
2025-03-14
大模型如何在企业里应用
大模型在企业中的应用主要体现在以下几个方面: 1. 智能终端行业:中国超半数手机厂商如三星、荣耀、vivo、OPPO、小米等主流品牌,以及上汽大众、吉利汽车、蔚来汽车、长安汽车等十余家车企已接入百度文心大模型。 2. 百度表现:在主流大模型厂商中,百度表现突出,拿下最关键的中标项目数量、中标金额两项第一。其文心大模型日均调用量超过 15 亿次,千帆平台帮助客户精调了 3.3 万个模型、开发了 77 万个企业应用。百度智能云的增长主要由互联网、教育、金融等行业对模型训练和推理的高需求带动。 3. 落地所需能力:企业想要真正将大模型在自身场景落地,需要具备构建算力、数据治理、模型训练、场景落实、应用搭建、持续运营、安全合规等整套能力。这意味着大模型落地赋能企业智能化时,能力比拼从单项变为全能比拼。 然而,大模型在企业落地应用中面临一些问题和挑战: 1. 竞争格局:大模型是典型赢家通吃领域,胜出的大模型在中国和世界范围内都很难超过 2 个,巨头在资金、技术和数据方面具有优势,给创业公司的机会很少。 2. 落地难题:如何将大模型更快落地应用,将技术能力释放并与更多场景相结合,真正产生新一轮科技革命和产业变革,是当前紧要的关键问题。 3. 具体问题: 提高内容可信:需要通过商业交付去应用、反馈和评测,不断优化数据以解决实际应用问题,走向垂直化以提高内容精准度。 解决算力成本高、训练重复和资源紧缺:以 GPT3 模型为例,训练成本高昂,且目前仍无法用商业化的国产芯片进行大模型训练。 解决大模型落地问题,主要有以下三方面:提高内容可信;解决算力成本高、训练重复和资源紧缺的问题;降低大模型价格或使用垂直领域模型落地。
2025-03-14
大模型和智能体的区别
大模型和智能体的区别主要体现在以下几个方面: 概念定义: 智能体:简单理解就是 AI 机器人小助手,参照移动互联网,类似 APP 应用的概念。可以是面向 C 端,如社交方向,用户注册后先捏一个自己的智能体,然后让其与他人的智能体聊天,两个智能体聊到一起后再真人介入;也可以面向 B 端,帮助 B 端商家搭建智能体。 大模型:是一种技术。 局限性: 大模型具有强大的语言理解和生成能力,但存在一定局限性,例如无法回答私有领域问题(如公司制度、人员信息等),无法及时获取最新信息(如实时天气、比赛结果等),无法准确回答专业问题(如复杂数学计算、图像生成等)。 开发平台: 有众多智能体开发平台,如字节的扣子、Dify.AI 等。 应用场景: 智能体应用基于大模型,通过集成特定的外部能力,能够弥补大模型的不足。适用于有企业官网、钉钉、微信等渠道,期望为客户提供产品咨询服务,缺少技术人员开发大模型问答应用等场景。典型场景包括私有领域知识问答、个性化聊天机器人、智能助手等。 在 Anthropic 的定义中,智能体可以有多种定义,一些客户将其定义为能够长期独立运行的全自动系统,能使用各种工具完成复杂任务;另一些则将其描述为更具规范性、遵循预定义工作流程的系统。Anthropic 将这些变体统称为智能系统,并在架构上区分为工作流和智能体两种类型,工作流是通过预定义代码路径来编排 LLM 和工具的系统,智能体则是由 LLM 动态指导自身流程和工具使用的系统,能够自主控制任务完成方式。
2025-03-14
快速帮我补充下大模型的发展时间线和关键节点,以及当前最前沿的新闻
大模型的发展时间线和关键节点如下: 2017 年:发布《Attention Is All You Need》论文。 2018 年: Google 提出 BERT,创新性地采用双向预训练并行获取上下文语义信息及掩码语言建模。 OpenAI 提出 GPT,开创仅使用自回归语言建模作为预训练目标的方式。 2021 年:Meta 提出 Large LAnguage Model Approach(LLAMA),成为首个开源模型。 2022 年 11 月 30 日:ChatGPT 发布,在全球范围内掀起人工智能浪潮。 2022 年 12 月:字节云雀大模型等出现。 2023 年: 国内大模型发展大致分为准备期(国内产学研迅速形成大模型共识)、成长期(数量和质量逐渐增长)、爆发期(开源闭源大模型层出不穷,形成百模大战态势)。 关键进展包括:Meta 开源 Llama2、OpenAI 发布多模态 GPT4V 及 GPT4 Turbo、百川智能开源 Baichuan7B 及 Baichuan2、百度升级文心一言 4.0、清华&智谱 AI 开源 ChatGLM2 及清华开源 ChatGLM3、腾讯发布混元助手等。 当前最前沿的新闻包括:过去半年,国内领军大模型企业实现了大模型代际追赶的奇迹,从 7 月份与 GPT3.5 的 20 分差距,到 11 月份测评时已在总分上超越 GPT3.5。
2025-03-14
阿里的千问大模型在行业内处于一个什么样的水平
阿里的通义千问大模型在行业内处于领先水平。 通义千问 2.5 正式发布并开源 1100 亿参数模型,在多模态和专有能力模型方面影响力强大,始终坚持开源路线,已推出多款开源模型,受到开发者和生态伙伴的热情支持。百炼平台也升级支持企业 RAG 链路,提供更灵活的企业级检索增强服务。通义灵码推出企业版,满足企业定制化需求,已在多个领域落地应用。 Qwen2.5Max 基于 SFT 和 RLHF 策略训练,在多项基准如 Arena Hard、LiveBench、LiveCodeBench、GPQADiamond 上超越 DeepSeek V3,引发社区关注。支持官方 Chat、API 接口、Hugging Face Demo 等多种方式,展示其顶尖性能与灵活应用场景。 Qwen2.5VL 是新一代视觉语言模型,可解析 1 小时以上视频内容并秒级定位事件,识别从金融文档到通用物体,动态适配高分辨率图像。具备复杂任务执行能力,覆盖更多实际场景如票据解析、商业分析等。 10 月 31 日,阿里云正式发布千亿级参数大模型通义千问 2.0,8 大行业模型同步上线。
2025-03-14