直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

怎么学习人工智能并应用到赚钱

回答

学习人工智能并应用到赚钱可以从以下几个方面入手:

  1. 掌握基础知识:学习人工智能的基本概念、原理和技术,包括机器学习、深度学习、自然语言处理等。
  2. 提升技能:通过相关课程和实践,提高自己在数据处理、模型训练和优化等方面的能力。
  3. 学习商业应用:了解人工智能在金融、医疗、制造业等行业的应用案例,例如学习微软的《面向商业用户的人工智能学习》《人工智能商学院》等课程。
  4. 深入研究经典机器学习:可参考《机器学习入门课程》。
  5. 掌握特定技术:如使用 Azure 认知服务(Azure Cognitive Services)来创建实用的人工智能应用,包括《视觉》《自然语言处理》《使用 Azure OpenAI 服务的生成式人工智能》等课程。
  6. 持续学习和实践:人工智能领域发展迅速,需要不断更新知识和技能,并将其应用到实际项目中。

然而,需要注意的是,学了人工智能有可能赚钱,但不一定保证每个人都能赚到钱。人工智能领域确实有很多高薪工作,比如数据科学家、机器学习工程师等,但能否赚钱还取决于很多因素,比如个人的学习能力、实际应用能力、对市场和商业的理解等等。仅仅学会一些基础知识可能还不足以在竞争激烈的市场中脱颖而出。大型语言模型主要基于语言理解和生成,并非专门设计用于数学计算,在处理数学问题时可能出错。同时,关于 GPTs/GLMs 能否帮助创作者赚钱,答案是能,但大多数人不能,具体原因会在相关文章中详细阐述。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

十七问解读生成式人工智能

大型语言模型有时候会算错小学数学题,因为它们主要是基于语言理解和生成,而不是专门设计来进行数学计算的。语言模型是通过大量的文本数据进行训练的,这些数据主要是自然语言,而不是数学公式和计算。因此,语言模型在处理数学问题时,更多地依赖于模式识别和文本生成,而不是实际的数学计算。这就导致它们在处理一些简单的数学问题时,可能会出现错误。[heading1]问题十七、学了AI就能赚钱吗?[content]学了AI有可能赚钱,但不一定保证每个人都能赚到钱。人工智能领域确实有很多高薪工作,比如数据科学家、机器学习工程师等。学会了AI技术,可以在这些岗位上找到工作,获得不错的收入。此外,AI技术在各行各业都有应用,比如金融、医疗、制造业等,掌握AI技能可以增加就业机会和职业发展的可能性。然而,是否能赚钱还取决于很多因素,比如个人的学习能力、实际应用能力、对市场和商业的理解等等。仅仅学会一些基础知识可能还不足以在竞争激烈的市场中脱颖而出,需要持续学习和实践。一人前行有时跑的很快,但一群人前行,会走的很远。欢迎你加入我们的社区,共同学习,共同进步。[heading1]

微软AI初学者入门课程

[title]微软AI初学者入门课程人工智能的商业应用案例。如需要了解这方面的信息,可以考虑学习以下两个微软的课程:《[面向商业用户的人工智能学习](https://learn.microsoft.com/en-us/training/paths/introduction-ai-for-business-users/?WT.mc_id=academic-77998-cacaste)》、《[人工智能商学院](https://learn.microsoft.com/en-us/training/paths/transform-your-business-with-microsoft-ai/)》(和欧洲工商管理学院INSEAD共同开发)。经典机器学习。这在我们的《[机器学习入门课程](https://github.com/Microsoft/ML-for-Beginners)》中有详细介绍。使用Azure认知服务(Azure Cognitive Services)来创建实用的人工智能应用。如有需要,我们建议你从以下微软课程开始学习:《[视觉](https://learn.microsoft.com/en-us/training/paths/create-computer-vision-solutions-azure-ai/?WT.mc_id=academic-77998-cacaste)》、《[自然语言处理](https://learn.microsoft.com/en-us/training/paths/explore-natural-language-processing/?WT.mc_id=academic-77998-cacaste)》、《[使用Azure OpenAI服务的生成式人工智能](https://learn.microsoft.com/en-us/training/paths/develop-ai-solutions-azure-openai/?WT.mc_id=academic-77998-bethanycheum)》等。

从GPTs/GLMs如何赚钱谈起:AI应用的曙光在哪?

[title]从GPTs/GLMs如何赚钱谈起:AI应用的曙光在哪?恭喜智谱!不管GPTs还是GLMs的上线,民间讨论最多的莫过于“能不能赚钱?”“怎麽赚钱”。所以GPTs/GLMs到底能不能帮我们(创作者)赚到钱?我的答案可能会让大多数人失望:能,但大多数人不能。为什么不能?答案我会在下面的文章中慢慢给出。今天这篇文章,不聊高大上的东西,也不聊深奥的技术,从最俗气的角度“钱”出发,以一个AI产品经理的角色复盘2023年的所见所闻所感来聊聊AI赚钱(应用落地)这件事情。先来看一组数据,作为目前最大的第三方GPTs商店,BeBeGPTs收录了10W+的GPTs数据(官方300W+)。我们来简单拉一下数据。这一组数据是从bebegpts已经整理过的数据库里直接拉出来的,那些没有整理的数据不在其中。数据按照GPTs的实际对话次数做了一个分组排序,即使我们没办法收录到所有的GPTs,在收集数据的过程中也会存在少量错误数据,但结果其实还是很明显的。

其他人在问
人工智能和机器学习的区别
人工智能和机器学习的区别主要体现在以下几个方面: 1. 范畴:机器学习是人工智能的一个子领域。 2. 学习方式:机器学习通过输入数据训练模型,使计算机在没有明确编程的情况下学习。模型可以是监督的(使用标记的数据从过去的例子中学习并预测未来的值),也可以是无监督的(专注于发现原始数据中的模式)。 3. 复杂程度:深度学习是机器学习的一个子集,使用人工神经网络处理更复杂的模式,可使用标记和未标记的数据进行半监督学习。 4. 应用目的:人工智能是一个更广泛的目标,旨在让机器展现智慧;机器学习则是实现这一目标的一种手段,让机器自动从资料中找到公式。 5. 技术手段:生成式人工智能是人工智能的一个子集,试图学习数据和标签之间的关系以生成新内容;而机器学习主要通过训练模型来实现学习和预测。
2024-11-21
什么是人工智能?
人工智能(Artificial Intelligence)是一门令人兴奋的科学,旨在使计算机表现出智能行为,例如完成人类擅长的任务。 最初,查尔斯·巴贝奇发明计算机用于按明确程序运算。现代计算机虽更先进,但仍遵循受控计算理念。然而,有些任务如根据照片判断人的年龄,无法明确编程,因为我们不清楚大脑完成此任务的具体步骤,这类任务正是人工智能感兴趣的。 人工智能分为 ANI(artificial narrow intelligence 弱人工智能)和 AGI(artificial general intelligence)。ANI 只能做一件事,如智能音箱、网站搜索、自动驾驶等;AGI 则能做任何人类能做的事。 机械学习是让电脑在不被编程的情况下自己学习的研究领域,是学习输入输出的从 A 到 B 的映射。 数据科学是分析数据集以获取结论和提示,输出通常是幻灯片、结论、PPT 等。 神经网络/深度学习有输入层、输出层和中间层(隐藏层)。
2024-11-21
人工智能诈骗成功多个案例
以下是为您整合的相关内容: 拜登签署的 AI 行政命令要求最强大的 AI 系统开发者与美国政府分享安全测试结果等关键信息。依照《国防生产法》,开发对国家安全、经济安全、公共卫生和安全构成严重风险的基础模型的公司,在训练模型时必须通知联邦政府,并分享所有红队安全测试的结果。国家标准与技术研究所将制定严格的标准进行广泛的红队测试,国土安全部将把这些标准应用于关键基础设施部门并建立 AI 安全与保障委员会,能源部和国土安全部也将处理 AI 系统对关键基础设施以及化学、生物、放射性、核和网络安全风险的威胁。同时,商务部将制定内容认证和水印的指导,以明确标记 AI 生成的内容,联邦机构将使用这些工具让美国人容易知道从政府收到的通信是真实的,并为私营部门和世界各地的政府树立榜样。 关于 AI 带来的风险,包括:AI 生成和传播的虚假信息可能破坏获取可靠信息的途径以及对民主机构和进程的信任;AI 工具可能被用于自动化、加速和放大高度针对性的网络攻击,增加恶意行为者的威胁严重性。 大型语言模型等技术进步带来了变革性发展,在经济和社会领域有诸多应用,例如能自动化写代码、用于交通应用、支持基因医学等,但也存在隐私风险等问题。
2024-11-20
人工智能诈骗
以下是关于人工智能诈骗的相关信息: 拜登签署的 AI 行政命令中提到,要保护美国人免受人工智能带来的诈骗和欺骗,商务部将为内容认证和水印制定指导方针,以清晰标注人工智能生成的内容。联邦机构将使用这些工具,让美国人容易知晓从政府收到的通信是真实的,并为全球的私营部门和政府树立榜样。 欧洲议会和欧盟理事会规定,特定旨在与自然人互动或生成内容的人工智能系统,无论是否符合高风险条件,都可能带来假冒或欺骗的具体风险。在特定情况下,这些系统的使用应遵守具体的透明度义务,自然人应被告知正在与人工智能系统互动,除非从自然人角度看这一点显而易见。若系统通过处理生物数据能识别或推断自然人的情绪、意图或归类,也应通知自然人。对于因年龄或残疾属于弱势群体的个人,应考虑其特点,相关信息和通知应以无障碍格式提供给残疾人。
2024-11-20
人工智能诈骗
以下是关于人工智能诈骗的相关信息: 拜登签署的 AI 行政命令中提到,要保护美国人免受人工智能带来的诈骗和欺骗,商务部将制定内容认证和水印的指导方针,以清晰标注人工智能生成的内容。联邦机构将使用这些工具,让美国人容易知晓从政府收到的通信是真实的,并为全球的私营部门和政府树立榜样。 欧洲议会和欧盟理事会规定,特定旨在与自然人互动或生成内容的人工智能系统,无论是否符合高风险条件,都可能带来假冒或欺骗的具体风险。在特定情况下,这些系统的使用应遵守具体的透明度义务,自然人应被告知正在与人工智能系统互动,除非从自然人角度看这一点显而易见。若系统通过处理生物数据能识别或推断自然人的情绪、意图或归类,也应通知自然人。对于因年龄或残疾属于弱势群体的个人,应考虑其特点,相关信息和通知应以无障碍格式提供给残疾人。
2024-11-20
人工智能诈骗技术
以下是关于人工智能诈骗技术的相关内容: 欧洲议会和欧盟理事会规定,某些人工智能系统采用潜意识成分或其他操纵欺骗技术,以人们无法意识到的方式颠覆或损害人的自主、决策或自由选择,可能造成重大伤害,特别是对身体、心理健康或经济利益产生不利影响,此类系统应被禁止。例如脑机界面或虚拟现实可能促进这种情况发生。同时,若人工智能系统利用个人或特定群体的特殊状况实质性扭曲个人行为并造成重大危害也应被禁止。若扭曲行为由系统之外且不在提供者或部署者控制范围内的因素造成,则可能无法推定有扭曲行为的意图。 拜登签署的 AI 行政命令要求最强大的人工智能系统开发者与美国政府分享安全测试结果等关键信息。依照《国防生产法》,开发对国家安全、经济安全或公共卫生和安全构成严重风险的基础模型的公司,在训练模型时必须通知联邦政府,并分享所有红队安全测试的结果。商务部将为内容认证和水印制定指导方针,以明确标记人工智能生成的内容,联邦机构将使用这些工具让美国人容易知晓从政府收到的通信是真实的,并为私营部门和世界各国政府树立榜样。 关于人工智能相关危害的可争议性或补救途径的评估中,提到了一系列高水平风险,如人工智能生成和传播的虚假信息可能破坏获取可靠信息的途径以及对民主机构和进程的信任。人工智能工具可被用于自动化、加速和放大有针对性的网络攻击,增加恶意行为者的威胁严重性。
2024-11-20
我想学习ai做副业赚钱,应该怎么做?
学习 AI 做副业赚钱可以参考以下步骤: 1. 基础学习: 了解 AI 基本概念,阅读「」部分,熟悉术语和基础概念,包括人工智能的主要分支及它们之间的联系,浏览入门文章了解其历史、应用和发展趋势。 开始 AI 学习之旅,在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,通过在线教育平台按自己节奏学习并争取获得证书。 2. 深入学习: 根据兴趣选择特定模块深入学习,比如图像、音乐、视频等领域。 掌握提示词技巧,因其上手容易且实用。 3. 实践尝试: 理论学习后进行实践,巩固知识,尝试使用各种产品做出作品。 在知识库分享实践后的作品和文章。 4. 体验产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解工作原理和交互方式,获得实际应用中的第一手体验,激发对 AI 潜力的认识。 需要注意的是,学了 AI 有可能赚钱,但不保证每个人都能赚到钱。人工智能领域有很多高薪工作,如数据科学家、机器学习工程师等,学会 AI 技术可增加在这些岗位就业及职业发展的可能性。然而,能否赚钱还取决于个人的学习能力、实际应用能力、对市场和商业的理解等因素。仅仅学会基础知识可能不足以在竞争激烈的市场中脱颖而出,需要持续学习和实践。
2024-11-21
AI如何做副业赚钱
以下是关于 AI 做副业赚钱的一些信息: 生成式 AI 在艺术创作方面有应用。当前许多 AI 工具存在一些问题,如出现幻觉或处理请求时间长,但为满足高级用户需求,不少公司会推出如 ChatGPT 那样的“专业版”套餐来实现盈利。 生成式 AI 能将想象变为现实,内容创作是其第一个主流用例,如 Lensa 所展示的。肖像画只是开始,它还将服务于各种用例,包括消费者娱乐创作和创作者或个体创业者的盈利创作。 若 AI 导致工作机会变化,政府可通过税收平衡差异,全民基本收入(UBI)是一种解决方法。
2024-11-20
怎么用ai兼职赚钱快?推荐职业
以下是关于用 AI 兼职赚钱及相关职业的一些信息: 学习 AI 有可能通过兼职赚钱,但不能确保每个人都能快速获得收益。在人工智能领域,存在一些高薪工作,例如数据科学家、机器学习工程师等。掌握了 AI 技术,有机会在这些岗位上就业并获取不错的收入。而且,AI 技术在金融、医疗、制造业等众多行业均有应用,具备 AI 技能能增加就业机会和职业发展的可能性。 然而,能否通过 AI 兼职赚钱取决于多种因素,包括个人的学习能力、实际应用能力以及对市场和商业的理解等。仅仅掌握一些基础知识可能难以在竞争激烈的市场中突出重围,需要持续学习和实践。 目前常见的利用 AI 兼职赚钱的职业有: 1. AI 内容创作:利用 AI 工具生成文章、故事、广告文案等。 2. AI 图像设计:借助 AI 绘画工具为客户设计图片、海报等。 3. 数据标注与预处理:为 AI 模型的训练提供准确的数据标注。 但要注意,在从事相关兼职工作时,要不断提升自己的技能和能力,以适应市场的需求和变化。
2024-11-07
ai音乐的出现,如何靠这个赚钱
以下是关于靠 AI 音乐赚钱的一些方法和相关信息: Suno 和 Udio 推出了上传音频文件生成音乐的功能,这一功能具有精确的控制力。有了前置旋律,可以精确控制每首歌的速度(Tempo),无需再背绕口的速度词,能精确控制想要的 BPM;控制旋律(Melody),自己制作简单旋律让 AI 补全并贯穿整首歌,还能实现一谱变速,节省大量 Roll 旋律的时间;控制配器(Instrumentation),按想法选择乐器,也可选择特殊音色;控制合成(synthesizer),对相同 BPM 和调性的音乐进行拆分组合尝试新效果。 节省了上传音频的点数消耗后,每月的点数可以这样使用:用提示词多 Roll 一些和流派、心情、场景相关的曲子,减少限制让 AI 音乐发挥更多创造力,把好旋律存起来作为制作素材;用于 roll 更多细节调整,如让某段曲子升调,提升作品品质。 LAIVE 是利用 AI 技术一次性生成音乐、歌词、主唱等的创作平台,使用者可选择喜欢的类型和情调,上传参考音源,AI 分析生成音乐,还能选择主唱和修改歌词,目前为开放测试阶段。输入促销代码“LAIVEcreator”可获得 50 代币(入口在个人资料),令牌有效期为输入代码后的 30 天,促销码失效日期为 4 月 17 日。 DataMind Audio 推出了 Combobulator 插件,这是一个基于 AI 的效果插件,利用神经网络通过样式转移的过程重新合成输入音频,从而使用自己的声音重现其他艺术家的风格。
2024-11-06
使用AI赚钱的方法
以下是一些使用 AI 赚钱的方法: 1. 艺术创作:生成式 AI 可用于内容创作,如通过像 Lensa 这样的应用生成肖像画等,从消费者“仅为了娱乐”地创造内容,到创作者或个体创业者通过内容实现盈利。 2. 就业于相关岗位:学会 AI 技术,如成为数据科学家、机器学习工程师等,在相关岗位工作获得不错的收入。AI 技术在金融、医疗、制造业等各行各业都有应用,掌握 AI 技能可增加就业机会和职业发展可能性。 3. 开发 AI 产品或应用:例如创建自己的 GPTs 等,但大多数人可能难以成功,需要综合考虑多种因素,如对市场和商业的理解等。
2024-11-05
现在通过AIGC赚钱容易么
通过 AIGC 赚钱并非易事,以下是一些相关情况: AIGC 艺术家土豆人 tudou_man 认为,做有美感、有创意的 AI 作品能实现价值增值,但要注意定价和建立体系。当前制片公司竞争激烈,技术普及可能导致甲方也能掌握相关技能,广告公司角色面临挑战。对于 AIGC 作品的版权问题,要有职业素养,从源头使用正版账号,或找专业团队训练模型。 自媒体人通过 AIGC 赚钱的方式包括:参加中视频计划获取流量收益,如尺寸为 19201080 的原创横屏视频(时长≥1 分钟),可享受西瓜视频、抖音、今日头条的流量分成,但要通过西瓜后台发布视频并同步到抖音才有抖音的收益;进行知识付费,课程价格从 198 元到 598 元不等;接受平台约稿,如重大事件科技、体育事件等,价格视平台而定;与平台签约,如成为 B 站签约 UP 主,每月有固定费用,但具体价格因合约档位而异。 金沙江创投主管合伙人朱啸虎表示,任何公司都应拥抱 AIGC 以降本增效,如用 AIGC 训练的机器人取代回答员工福利问题的人力,在游戏图片生成等方面也能立竿见影地实现降本增效。
2024-11-02
学习AI
以下是针对新手学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-23
有什么 ai 辅助打工人学习的工具推荐
以下是为打工人推荐的一些 AI 辅助学习工具: 英语学习工具: 1. Speak:这是一款 AI 英语学习 APP,利用先进的 AI 语言学习技术,提供全面实时反馈,支持随时随地练习口语,且 OpenAI 曾投资该公司。 2. Duolingo:提供游戏化学习平台,通过 AI 辅助教学,帮助学习新词汇和短语,其口语练习功能有助于练习发音和口语表达。 3. Call Annie:在发音过程中能根据发言调整表情和动作,让人感觉如同与真人对话,可随时通过视频或语音进行英语对话。 英语和数学通用学习方法: 1. 利用智能辅助工具,如英语写作助手 Grammarly 进行写作和语法纠错。 2. 借助语音识别应用,如 Call Annie 进行口语练习和发音纠正。 3. 使用自适应学习平台,如 Duolingo 为您量身定制学习计划。 4. 运用智能导师和对话机器人,如 ChatGPT 进行会话练习和对话模拟。 数学学习工具: 1. 自适应学习系统,如 Khan Academy,结合 AI 技术提供个性化学习路径和练习题。 2. 智能题库和作业辅助工具,如 Photomath,通过图像识别和数学推理技术提供数学问题解答和解题步骤。 3. 虚拟教学助手,如 Socratic,利用 AI 技术解答数学问题、提供教学视频和答疑服务。 4. 参与交互式学习平台,如 Wolfram Alpha 的数学学习课程和实践项目,利用 AI 技术进行数学建模和问题求解。 内容仿写工具: 1. 秘塔写作猫:https://xiezuocat.com/ ,是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,实时同步翻译,支持全文改写、一键修改、实时纠错并给出修改建议,智能分析文章属性并打分。 2. 笔灵 AI 写作:https://ibiling.cn/ ,是智能写作助手,支持多种文体写作,能一键改写/续写/扩写,智能锤炼打磨文字。 3. 腾讯 Effidit 写作:https://effidit.qq.com/ ,由腾讯 AI Lab 开发,能提升写作者的写作效率和创作体验。 更多 AI 写作类工具可以查看:https://www.waytoagi.com/sites/category/2 。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-23
国内的,AI学习类关于阅读和听力提升的应用(具备AI能力的应用)或者工具有哪些?
目前国内具备 AI 能力、有助于提升阅读和听力的应用和工具相对较多。例如,流利说英语在听力和口语训练方面表现出色,它能通过 AI 技术为用户提供个性化的学习方案和精准的发音纠正。还有百词斩,其在单词记忆和阅读拓展方面有独特的功能,利用 AI 算法推荐适合用户水平的阅读材料。此外,网易有道词典也具备一定的 AI 辅助功能,能帮助用户提升听力理解和阅读能力。
2024-11-23
AI学习类关于阅读和听力提升的应用或者工具有哪些?
以下是一些有助于提升阅读和听力的 AI 学习应用或工具: 英语学习方面: 1. 智能辅助工具:如 Grammarly,可进行英语写作和语法纠错,改进英语表达和写作能力。 2. 语音识别和发音练习:例如 Call Annie,用于口语练习和发音纠正,提供实时反馈和建议。 3. 自适应学习平台:像 Duolingo,利用 AI 技术为您量身定制学习计划,提供个性化学习内容和练习。 4. 智能导师和对话机器人:比如 ChatGPT,可进行英语会话练习和对话模拟,提高交流能力和语感。 数学学习方面: 1. 自适应学习系统:如 Khan Academy,结合 AI 技术提供个性化数学学习路径和练习题,精准推荐。 2. 智能题库和作业辅助:例如 Photomath,通过图像识别和数学推理技术提供数学问题解答和解题步骤。 3. 虚拟教学助手:如 Socratic,利用 AI 技术解答数学问题、提供教学视频和答疑服务。 4. 交互式学习平台:如 Wolfram Alpha,参与数学学习课程和实践项目,进行数学建模和问题求解。 此外,在教育领域,还有一些其他的应用: 1. 语言学习:Speak、Quazel、Lingostar 等,提供实时交流和发音反馈。 2. 数学指导:Photomath、Mathly 帮助学生解决数学问题。 3. 历史学习:PeopleAI、Historical Figures 通过模拟与杰出人物聊天教授历史。 4. 写作辅助:Grammarly、Orchard、Lex 帮助学生克服写作难题,提升写作水平。 5. 内容处理:Tome、Beautiful.ai 协助创建演示文稿。 需要注意的是,内容由 AI 大模型生成,请仔细甄别。
2024-11-23
学习大模型的路径
学习大模型的路径主要包括以下几个步骤: 1. 收集海量数据:就像教孩子成为博学多才的人需要让其阅读大量书籍、观看纪录片、与人交谈一样,对于大模型,要收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。 2. 预处理数据:如同为孩子整理学习资料,AI 研究人员需要清理和组织收集到的数据,包括删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段。 3. 设计模型架构:如同为孩子设计学习计划,研究人员要设计大模型的“大脑”结构,通常是一个复杂的神经网络,例如 Transformer 架构,这种架构擅长处理序列数据如文本。 4. 训练模型:如同孩子开始阅读和学习,大模型开始“阅读”提供的数据,通过反复尝试预测句子中的下一个词,不断重复这个过程,逐渐学会理解和生成人类语言。 此外,关于大模型的底层原理,计算机科学家/工程师以大脑神经元细胞结构为灵感,在计算机上利用概览模型实现对人脑结构的模仿,不过计算机的神经元节点更为简单,本质上只是进行一些加法和乘法运算而后输出。大模型内部如同人类大脑是一个混沌系统,即使是 OpenAI 的科学家也无法解释其微观细节。
2024-11-22
如何起步开始学习ai设计
以下是关于如何起步开始学习 AI 设计的一些建议: 1. 阅读相关文章: 如 ,了解市场动态和生成式 AI 商业模式的相关问题。 ,认识到尽早学习的重要性,避免被其他熟练掌握 AI 动力设计技巧的设计师超越。 ,了解设计的当前状态、常见问题及实用技巧。 ,学习最佳实践和利用 UX 策略使 AI/ML 系统更易于解释和透明。 2. 利用工具: 了解星流一站式 AI 设计工具,在入门模式下,熟悉右侧生成器的图片参考部分,如快速参考、风格迁移、Tile 分块、重新上色等功能。 掌握基础模型,包括星流通用大模型及基础模型 F.1、基础模型 XL、基础模型 1.5 等,了解它们在效果和生成速度上的差异。 了解增强模型,可通过收藏、查看例图和选择风格等方式进行使用。
2024-11-22
excel的ai应用软件
以下是一些与 Excel 相关的 AI 应用软件: 1. Excel Labs:是 Excel 插件,新增基于 OpenAI 技术的生成式 AI 功能,用于数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的整合办公软件的 AI 工具,能通过聊天形式完成数据分析、格式创建等任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器功能,支持自然语言交互进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,可生成公式、文本内容、执行情感分析、语言翻译等任务。 此外,还有以下相关的 AI 应用: 1. WPS 文档翻译功能:可快速翻译办公文档,如 Word、Excel、PPT 等,提高工作效率。 2. 在表格类的 AI 产品中,6 月访问量排名靠前的有 Highcharts、Fillout.com、Coefficient 等。 随着技术发展,未来可能会有更多 AI 功能集成到 Excel 中,进一步提高工作效率和智能化水平。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-23
如何搭建利用产品原图和模特模板生成商业图的工作流 或者有没有这类ai 应用
以下是关于利用产品原图和模特模板生成商业图的工作流及相关 AI 应用的信息: 美国独立站搭建工作流中,有给模特戴上珠宝饰品的应用。 大淘宝设计部在主题活动页面、超级品类日传播拍摄创意、产品营销视觉、定制模特生成、产品场景生成等方面应用了 AI。例如,七夕主题活动页面通过 AI 生成不受外部拍摄条件限制的素材;在 UI 设计场景中,利用 SD 中 controlnet 生成指定范围内的 ICON、界面皮肤等;通过对 AI 大模型的训练和应用,提升合成模特的真实性和美感,提供定制化线上真人模特体验,如 AI 试衣间、AI 写真等;还能根据商品图和用户自定义输入生成多张场景效果,无需 3D 模型、显卡渲染和线下拍摄。
2024-11-22
结构仿真分析中AI应用
在结构仿真分析中,AI 有着多方面的应用。 在绘制逻辑视图、功能视图、部署视图方面,以下是一些可用的 AI 工具和传统工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括上述视图,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具配合使用,该工具提供图形化界面创建模型。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持创建多种架构视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建相关视图。 6. draw.io(现称 diagrams.net):免费在线图表软件,允许创建各种类型图表,包括逻辑视图和部署视图等。 7. PlantUML:文本到 UML 转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 在 2024 年,AI 在生物医学、气象预测等领域也有重要突破与应用: 1. 诺贝尔物理学奖和化学奖先后颁给 AI,推动了机器学习的理论创新,揭示了蛋白质折叠问题,标志着人工智能真正成为一门科学学科和加速科学的工具。 2. 基于深度学习和 Transformer 架构的蛋白质结构预测模型——AlphaFold 3,能够高精度地预测包括蛋白质、DNA、RNA、配体等生物分子的结构和相互作用,为细胞功能解析、药物设计和生物科学的发展提供有力支持。 3. DeepMind 展示新的实验生物学能力——AlphaProteo,能够设计出具有三到三百倍亲和力的亚纳米摩尔蛋白结合剂的生成模型。 4. 生物学前沿模型的扩展:进化规模 ESM3,是一种前沿多模态生成模型,在蛋白质序列、结构和功能上进行训练,能够学习预测任何模态组合的完成情况。 5. 学习设计人类基因组编辑器的语言模型——CRISPRCas 图谱。
2024-11-22
推荐一款常用的AI画图应用
以下为您推荐一些常用的 AI 画图应用: 1. Creately 简介:是一个在线绘图和协作平台,利用 AI 功能简化图表创建过程,适合绘制流程图、组织图、思维导图等。 功能:智能绘图功能,可自动连接和排列图形;丰富的模板库和预定义形状;实时协作功能,适合团队使用。 官网:https://creately.com/ 2. Whimsical 简介:专注于用户体验和快速绘图的工具,适合创建线框图、流程图、思维导图等。 功能:直观的用户界面,易于上手;支持拖放操作,快速绘制和修改图表;提供多种协作功能,适合团队工作。 官网:https://whimsical.com/ 3. Miro 简介:在线白板平台,结合 AI 功能,适用于团队协作和各种示意图绘制,如思维导图、用户流程图等。 功能:无缝协作,支持远程团队实时编辑;丰富的图表模板和工具;支持与其他项目管理工具(如 Jira、Trello)集成。 官网:https://miro.com/ 4. Lucidchart 简介:强大的在线图表制作工具,集成了 AI 功能,可以自动化绘制流程图、思维导图、网络拓扑图等多种示意图。 功能:拖放界面,易于使用;支持团队协作和实时编辑;丰富的模板库和自动布局功能。 官网:https://www.lucidchart.com/ 5. Microsoft Visio 简介:专业的图表绘制工具,适用于复杂的流程图、组织结构图和网络图。其 AI 功能可以帮助自动化布局和优化图表设计。 功能:集成 Office 365,方便与其他 Office 应用程序协同工作;丰富的图表类型和模板;支持自动化和数据驱动的图表更新。 官网:https://www.microsoft.com/enus/microsoft365/visio/flowchartsoftware 6. Diagrams.net 简介:免费且开源的在线图表绘制工具,适用于各种类型的示意图绘制。 功能:支持本地和云存储(如 Google Drive、Dropbox);多种图形和模板,易于创建和分享图表;可与多种第三方工具集成。 官网:https://www.diagrams.net/ 使用 AI 绘制示意图的步骤: 1. 选择工具:根据您的具体需求选择合适的 AI 绘图工具。 2. 创建账户:注册并登录该平台。 3. 选择模板:利用平台提供的模板库,选择一个适合您需求的模板。 4. 添加内容:根据您的需求,添加并编辑图形和文字。利用 AI 自动布局功能优化图表布局。 5. 协作和分享:如果需要团队协作,可以邀请团队成员一起编辑。完成后导出并分享图表。 以下是一些可以绘制逻辑视图、功能视图、部署视图的工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可使用拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,包括逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图的创建,可与 Archi 工具一起使用,该工具提供图形化界面创建 ArchiMate 模型。 4. Enterprise Architect:强大的建模、设计和生成代码的工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现在称为 diagrams.net):免费的在线图表软件,允许用户创建各种类型的图表,包括软件架构图,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费的开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图的创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。
2024-11-22