直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

人工智能视阈下高校设计学科教学 改革的新路径研究

回答

以下是为您整合的相关内容:

在高校设计学科教学改革方面,相关法案提到了对人工智能领域的支持,包括支持跨学科研究、教育和培训项目,以促进学生和研究人员在人工智能方法和系统方面的学习,并培养相关领域专家的跨学科视角和合作。同时,在高等教育中,有人认为大型语言模型(LLMs)可能会对其产生显著的积极影响,特别是提升人文学科的重要性。LLMs 具有深度且内在的文本属性,与大学人文学科课程所强调的技能和方法直接相关。此外,还有法案涉及推动机器学习的发展,支持跨多个机构和组织的人工智能及相关学科的跨学科研究和开发。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

【法律法规】《2020年国家人工智能倡议法案》.pdf

(9)MACHINELEARNING.—The(b)INITIATIVE ACTIVITIES.—In carrying out the Ini-(4)Support for interdisciplinary research,edu-8cation,and training programs for students and re-9searchers that promote learning in the methods and10systems used in artificial intelligence and foster11interdisciplinary perspectives and collaborations12among subject matter experts in relevant fields,in-13cluding computer science,mathematics,statistics,14engineering,social sciences,psychology,behavioral15science,ethics,security,legal scholarship,and other16disciplines that will be necessary to advance artificial17intelligence research and development responsibly.18

教育:一个历史老师用GPT给学生讲课

[title]教育:一个历史老师用GPT给学生讲课[heading3]Teaching will get weirder — and that’s probably aIn the long term,I suspect that LLMs will have a significant positive impact on higher education.Specifically,I believe they will elevate the importance of the humanities.If this happens,it will be a shocking twist.We’ve been hearing for over a decade now that the humanities are in crisis.When faced with raw data about declining enrollments and majors like[this](https://www.theatlantic.com/ideas/archive/2018/08/the-humanities-face-a-crisisof-confidence/567565/)and[this](https://www.newyorker.com/magazine/2023/03/06/the-end-of-the-english-major),it is difficult not to agree.From the perspective of a few years ago,then,the advent of a new wave of powerful AI tools would be expected to tip the balance of power,funding,and enrollment in higher education even further toward STEM and away from the humanities.But the thing is:LLMs are deeply,inherently textual.And they are reliant on text in a way that is directly linked to the skills and methods that we emphasize in university humanities classes.What do I mean by that?One of the hallmarks of training in history is learning how to think about a given text at increasingly higher levels of abstraction.We teach students how to analyze the genre,cultural context,assumptions,and affordances of a primary source — the unspoken limits that shaped how,why,and for whom it was created,and what content it contains.

【法律法规】《2020年国家人工智能倡议法案》.pdf

(9)MACHINELEARNING.—The(B)describes how the agencies carrying(viii)in consultation with the Council(4)in carrying out this section,take into con-(b)FINANCIAL ASSISTANCE TO ESTABLISH(2)ARTIFICIALINTELLIGENCE INSTITUTES.—(D)supports interdisciplinary research and16development across multiple institutions and or-17ganizations involved in artificial intelligence re-18search and related disciplines,including phys-19ics,engineering,mathematical sciences,com-20puter and information science,robotics,biologi-21cal and cognitive sciences,material science,so-22cial and behavioral sciences,cybersecurity,and23technology ethics;24VerDate Sep 11 2014 23:31 Mar 25,2020 Jkt 099200 PO 00000 Frm 00024 Fmt 6652 Sfmt 6201 E:\BILLS\H6216.IH H6216p amtmann on DSKBC07HB2PROD with BILLS25•HR 6216 IH

其他人在问
人工智能和机器学习的区别
人工智能和机器学习的区别主要体现在以下几个方面: 1. 范畴:机器学习是人工智能的一个子领域。 2. 学习方式:机器学习通过输入数据训练模型,使计算机在没有明确编程的情况下学习。模型可以是监督的(使用标记的数据从过去的例子中学习并预测未来的值),也可以是无监督的(专注于发现原始数据中的模式)。 3. 复杂程度:深度学习是机器学习的一个子集,使用人工神经网络处理更复杂的模式,可使用标记和未标记的数据进行半监督学习。 4. 应用目的:人工智能是一个更广泛的目标,旨在让机器展现智慧;机器学习则是实现这一目标的一种手段,让机器自动从资料中找到公式。 5. 技术手段:生成式人工智能是人工智能的一个子集,试图学习数据和标签之间的关系以生成新内容;而机器学习主要通过训练模型来实现学习和预测。
2024-11-21
什么是人工智能?
人工智能(Artificial Intelligence)是一门令人兴奋的科学,旨在使计算机表现出智能行为,例如完成人类擅长的任务。 最初,查尔斯·巴贝奇发明计算机用于按明确程序运算。现代计算机虽更先进,但仍遵循受控计算理念。然而,有些任务如根据照片判断人的年龄,无法明确编程,因为我们不清楚大脑完成此任务的具体步骤,这类任务正是人工智能感兴趣的。 人工智能分为 ANI(artificial narrow intelligence 弱人工智能)和 AGI(artificial general intelligence)。ANI 只能做一件事,如智能音箱、网站搜索、自动驾驶等;AGI 则能做任何人类能做的事。 机械学习是让电脑在不被编程的情况下自己学习的研究领域,是学习输入输出的从 A 到 B 的映射。 数据科学是分析数据集以获取结论和提示,输出通常是幻灯片、结论、PPT 等。 神经网络/深度学习有输入层、输出层和中间层(隐藏层)。
2024-11-21
人工智能诈骗成功多个案例
以下是为您整合的相关内容: 拜登签署的 AI 行政命令要求最强大的 AI 系统开发者与美国政府分享安全测试结果等关键信息。依照《国防生产法》,开发对国家安全、经济安全、公共卫生和安全构成严重风险的基础模型的公司,在训练模型时必须通知联邦政府,并分享所有红队安全测试的结果。国家标准与技术研究所将制定严格的标准进行广泛的红队测试,国土安全部将把这些标准应用于关键基础设施部门并建立 AI 安全与保障委员会,能源部和国土安全部也将处理 AI 系统对关键基础设施以及化学、生物、放射性、核和网络安全风险的威胁。同时,商务部将制定内容认证和水印的指导,以明确标记 AI 生成的内容,联邦机构将使用这些工具让美国人容易知道从政府收到的通信是真实的,并为私营部门和世界各地的政府树立榜样。 关于 AI 带来的风险,包括:AI 生成和传播的虚假信息可能破坏获取可靠信息的途径以及对民主机构和进程的信任;AI 工具可能被用于自动化、加速和放大高度针对性的网络攻击,增加恶意行为者的威胁严重性。 大型语言模型等技术进步带来了变革性发展,在经济和社会领域有诸多应用,例如能自动化写代码、用于交通应用、支持基因医学等,但也存在隐私风险等问题。
2024-11-20
人工智能诈骗
以下是关于人工智能诈骗的相关信息: 拜登签署的 AI 行政命令中提到,要保护美国人免受人工智能带来的诈骗和欺骗,商务部将为内容认证和水印制定指导方针,以清晰标注人工智能生成的内容。联邦机构将使用这些工具,让美国人容易知晓从政府收到的通信是真实的,并为全球的私营部门和政府树立榜样。 欧洲议会和欧盟理事会规定,特定旨在与自然人互动或生成内容的人工智能系统,无论是否符合高风险条件,都可能带来假冒或欺骗的具体风险。在特定情况下,这些系统的使用应遵守具体的透明度义务,自然人应被告知正在与人工智能系统互动,除非从自然人角度看这一点显而易见。若系统通过处理生物数据能识别或推断自然人的情绪、意图或归类,也应通知自然人。对于因年龄或残疾属于弱势群体的个人,应考虑其特点,相关信息和通知应以无障碍格式提供给残疾人。
2024-11-20
人工智能诈骗
以下是关于人工智能诈骗的相关信息: 拜登签署的 AI 行政命令中提到,要保护美国人免受人工智能带来的诈骗和欺骗,商务部将制定内容认证和水印的指导方针,以清晰标注人工智能生成的内容。联邦机构将使用这些工具,让美国人容易知晓从政府收到的通信是真实的,并为全球的私营部门和政府树立榜样。 欧洲议会和欧盟理事会规定,特定旨在与自然人互动或生成内容的人工智能系统,无论是否符合高风险条件,都可能带来假冒或欺骗的具体风险。在特定情况下,这些系统的使用应遵守具体的透明度义务,自然人应被告知正在与人工智能系统互动,除非从自然人角度看这一点显而易见。若系统通过处理生物数据能识别或推断自然人的情绪、意图或归类,也应通知自然人。对于因年龄或残疾属于弱势群体的个人,应考虑其特点,相关信息和通知应以无障碍格式提供给残疾人。
2024-11-20
人工智能诈骗技术
以下是关于人工智能诈骗技术的相关内容: 欧洲议会和欧盟理事会规定,某些人工智能系统采用潜意识成分或其他操纵欺骗技术,以人们无法意识到的方式颠覆或损害人的自主、决策或自由选择,可能造成重大伤害,特别是对身体、心理健康或经济利益产生不利影响,此类系统应被禁止。例如脑机界面或虚拟现实可能促进这种情况发生。同时,若人工智能系统利用个人或特定群体的特殊状况实质性扭曲个人行为并造成重大危害也应被禁止。若扭曲行为由系统之外且不在提供者或部署者控制范围内的因素造成,则可能无法推定有扭曲行为的意图。 拜登签署的 AI 行政命令要求最强大的人工智能系统开发者与美国政府分享安全测试结果等关键信息。依照《国防生产法》,开发对国家安全、经济安全或公共卫生和安全构成严重风险的基础模型的公司,在训练模型时必须通知联邦政府,并分享所有红队安全测试的结果。商务部将为内容认证和水印制定指导方针,以明确标记人工智能生成的内容,联邦机构将使用这些工具让美国人容易知晓从政府收到的通信是真实的,并为私营部门和世界各国政府树立榜样。 关于人工智能相关危害的可争议性或补救途径的评估中,提到了一系列高水平风险,如人工智能生成和传播的虚假信息可能破坏获取可靠信息的途径以及对民主机构和进程的信任。人工智能工具可被用于自动化、加速和放大有针对性的网络攻击,增加恶意行为者的威胁严重性。
2024-11-20
我想要了解AI在高校基础医学教学中的应用案例
以下是一些 AI 在高校基础医学教学中的应用案例: 教学:帮助学生做好组会准备,使用了 Claude + Gamma.app,Claude 能节省绝大部分时间。 医疗:蛋白质结构预测和蛋白质合成,用于生成漂亮图片的 AI 可帮助科学家研究并设计新的蛋白质。 做调研:用特定 prompt ,2 小时帮同学干完 3 篇调研报告。 做调研:用 ChatGPT 做调研。 医疗:健康生物制药的研究,AI 在抗癌、抗衰老、早期疾病防治等研究应用中起重要作用。 此外,为了在医疗保健中产生真正的改变,AI 应像人类一样学习,例如成为顶尖医疗人才需要多年密集信息输入、正规学校教育和学徒实践,AI 也应通过合理的模型训练方式而非仅依靠大量数据来提升。 对于中学生学习 AI ,有以下建议: 从编程语言如 Python 、JavaScript 入手,学习编程语法、数据结构、算法等基础知识。 尝试使用 ChatGPT 、Midjourney 等 AI 生成工具,探索百度的“文心智能体平台”、Coze 智能体平台等教育平台。 学习 AI 基础知识,包括基本概念、发展历程、主要技术及在各领域的应用案例。 参与学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试解决实际问题。 关注 AI 发展的前沿动态,思考其对未来社会的影响。
2024-11-07
AI对高校学生的影响
AI 对高校学生的影响主要体现在以下几个方面: 教育方面: 技术与政策的脱节导致教师培训和招聘存在问题。多数教师未接受过相关培训,不仅要掌握 AI 工具操作,还需懂得将其与教学目标结合,但当前教师培训和专业发展项目在数量和质量上都无法满足需求。 现有评估和认证机制可能阻碍教育体系的快速变革,创新教育实践难以得到认可,影响学生就业前景和生活质量,加剧社会经济不平等,也可能损害教育机构的声誉和经济状况,影响国家竞争力和社会创新能力。 思维方面: 若过度依赖 AI 进行思考,可能导致认知萎缩(Cognitive atrophy)。例如在导航时完全依赖精确指令,而不主动思考方向,会变得缺乏思考的主动性。 留学方面: 留学顾问可利用多种 AI 技术和工具,如虚拟导览和校园参观的虚拟现实(VR)技术,来提高服务质量、提供个性化规划和建议,以及提供更好的学生体验,帮助学生提高申请成功率和留学体验。但需注意内容可能由 AI 大模型生成,要仔细甄别。
2024-09-21
有哪些可供高校教师使用的AI助力教育的工具
以下是一些可供高校教师使用的 AI 助力教育的工具: 1. 写作辅助工具:如 Grammarly、,帮助学生克服写作难题,提升写作水平。 2. 演示文稿创建工具:例如。 此外,还可以通过以下方式利用 AI 助力教育: 1. 要求人工智能解释概念,获取知识。例如,。但要注意,因为人工智能可能会产生幻觉,所以对于关键数据要根据其他来源仔细检查。 2. 将 AI 融入教育体系,如利用 AI 个性化学习计划、追踪学生学习进度并给出辅导建议。教师需要在教育工作中加入 AI 的使用,学生也要学会与 AI 互动,例如使用 AI 辅助工具探索复杂的学术概念。学校应与技术公司合作,定期更新硬件设施和软件平台,并加大对教师的 AI 培训力度。 同时,教育政策也应进行改革,重新审视教育目标,培养学生的创新思维、问题解决能力和终身学习能力。政府应设立教育科技发展基金,鼓励和支持校企合作,开发适应未来需求的教学内容和技术,建立多学科交叉课程。
2024-08-12
学习大模型的路径
学习大模型的路径主要包括以下几个步骤: 1. 收集海量数据:就像教孩子成为博学多才的人需要让其阅读大量书籍、观看纪录片、与人交谈一样,对于大模型,要收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。 2. 预处理数据:如同为孩子整理学习资料,AI 研究人员需要清理和组织收集到的数据,包括删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段。 3. 设计模型架构:如同为孩子设计学习计划,研究人员要设计大模型的“大脑”结构,通常是一个复杂的神经网络,例如 Transformer 架构,这种架构擅长处理序列数据如文本。 4. 训练模型:如同孩子开始阅读和学习,大模型开始“阅读”提供的数据,通过反复尝试预测句子中的下一个词,不断重复这个过程,逐渐学会理解和生成人类语言。 此外,关于大模型的底层原理,计算机科学家/工程师以大脑神经元细胞结构为灵感,在计算机上利用概览模型实现对人脑结构的模仿,不过计算机的神经元节点更为简单,本质上只是进行一些加法和乘法运算而后输出。大模型内部如同人类大脑是一个混沌系统,即使是 OpenAI 的科学家也无法解释其微观细节。
2024-11-22
推荐学习AI的路径
以下是为您推荐的学习 AI 的路径: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。建议掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 2. 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 六、中学生学习 AI 的特别建议 1. 从编程语言入手学习,比如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识,包括了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等,以及学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目,参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态,关注权威媒体和学者,思考 AI 技术对未来社会的影响,培养思考和判断能力。 七、AI 与宠物结合的相关内容 1. AI 宠物助手:基于自然语言处理和计算机视觉的 AI 宠物助手,可自动识别宠物情绪、提供饮食建议、监测健康状况等。 2. AI 宠物互动玩具:利用 AI 技术开发的智能互动玩具,增强宠物娱乐体验。 3. AI 宠物图像生成:使用生成式 AI 模型,根据文字描述生成宠物形象图像。 4. AI 宠物医疗诊断:利用计算机视觉和机器学习技术,开发 AI 辅助的宠物医疗诊断系统。 5. AI 宠物行为分析:基于传感器数据和计算机视觉,分析宠物行为模式。 学习路径建议: 1. 掌握基础的机器学习、计算机视觉、自然语言处理等 AI 技术。 2. 了解宠物行为学、宠物医疗等相关领域知识。 3. 关注业内先进的 AI+宠物应用案例,学习其技术实现。 4. 尝试开发简单的 AI 宠物应用原型,并不断迭代优化。
2024-11-19
完善数字经济的发展路径
以下是关于完善数字经济发展路径的相关内容: 在过去的十年中,数字技术已经改变了经济和社会,影响了所有活动领域和日常生活。数据处于这种转变的中心,数据驱动的创新将为联盟公民和经济带来巨大利益,例如改善和个性化医疗、提供新的移动性,并有助于 2019 年 12 月 11 日委员会关于欧洲绿色协议的沟通。为了使数据驱动的经济对所有联盟公民具有包容性,必须特别关注减少数字鸿沟,促进妇女参与数据经济,并培养技术领域的前沿欧洲专业知识。数据经济的构建方式应使企业,特别是委员会建议 2003/361/EC 中定义的微型、小型和中型企业(SMEs)以及初创企业能够蓬勃发展,确保数据访问的中立性、数据的可移植性和互操作性,并避免锁定效应。在 2020 年 2 月 19 日关于欧洲数据战略(“欧洲数据战略”)的沟通中,委员会描述了一个共同的欧洲数据空间的愿景,即一个内部数据市场,在符合适用法律的情况下,数据可以不受其在联盟中的物理存储位置的影响而被使用,这尤其可能对人工智能技术的快速发展至关重要。 数据是数字经济的核心组成部分,也是确保绿色和数字转型的重要资源。近年来,人类和机器生成的数据量呈指数级增长。然而,大多数数据未被使用,或者其价值集中在相对较少的大型公司手中。低信任度、相互冲突的经济激励和技术障碍阻碍了数据驱动创新潜力的充分实现。因此,通过为数据的再利用提供机会,并消除符合欧洲规则和充分尊重欧洲价值观的欧洲数据经济发展的障碍,以及按照减少数字鸿沟的使命,使每个人都受益,从而释放这种潜力至关重要。 这些发展需要在联盟中建立一个强大且更一致的数据保护框架,并得到强有力的执行,鉴于建立信任对于数字经济在整个内部市场发展的重要性。自然人应该对自己的个人数据有控制权。应加强自然人、经济运营商和公共当局的法律和实际确定性。
2024-11-19
小白学Ai的学习路径
以下是为小白提供的学习 AI 的路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-11
AI大模型的历史路径
AI 大模型的发展历史路径大致如下: 1. 早期阶段(1950s 1960s):出现专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理得到发展。 3. 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等兴起。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等技术不断发展。 自 2022 年 11 月 30 日 ChatGPT 发布以来,AI 大模型在全球范围内掀起了大规模的人工智能浪潮。国内学术和产业界在过去一年也有了实质性突破,大致分为三个阶段: 1. 准备期:ChatGPT 发布后,国内产学研迅速形成大模型共识。 2. 成长期:国内大模型数量和质量开始逐渐增长。 3. 爆发期:各行各业开源闭源大模型层出不穷,形成百模大战的竞争态势。 随着大模型技术的愈发成熟和规模增大,为 AI Agent 提供了强大能力,有望构建具备自主思考、决策和执行能力的智能体,广泛应用于多个行业和领域。当前 AI 前沿技术点包括大模型(如 GPT、PaLM 等)、多模态 AI、自监督学习、小样本学习、可解释 AI、机器人学、量子 AI 以及 AI 芯片和硬件加速等。
2024-11-05
AI 打造个性化学习路径
以下是关于 AI 打造个性化学习路径的相关内容: 在教育领域,AI 的应用带来了颠覆性的改变。个性化学习平台通过集成算法和大数据分析,能实时跟踪学生学习进度、诊断学习难点并提供个性化建议和资源。例如 Knewton 平台,通过对数百万学生行为模式的分析,精准预测学习难点并提前给出解决方案,大幅提升学习效率。 AI 在自动评估方面也有显著进展,如利用自然语言处理技术的 Pearson 的 Intelligent Essay Assessor 能自动批改作文和开放性答案题,减轻教师批改负担,提高评估效率和一致性。 智能辅助教学工具使课堂教学更丰富互动,如 AI 教师能引导对话学习、解答疑问并提供即时反馈。Google 的 AI 教育工具 AutoML 可创建定制学习内容。 在虚拟现实和增强现实方面,AI 技术不断推动边界。如 Labster 的虚拟实验室平台提供高科技实验室场景,让学生安全进行实验操作并得到即时反馈。 生成式人工智能在教学中的应用包括: 个性化学习计划:分析学生表现,根据知识差距和个人学习风格创建定制学习路径。 课程开发/学习沉浸:生成图像、文本和视频,转化为补充教育材料、作业和练习题。 社会互动/沟通:与新的 AI 工具结合,为学生提供更好的准备工具。 使用 AI 进行英语学习和数学学习的方法和建议: 英语学习: 利用智能辅助工具如 Grammarly 进行写作和语法纠错。 使用语音识别应用如 Call Annie 进行口语练习和发音纠正。 借助自适应学习平台如 Duolingo 获得量身定制的学习计划和内容。 利用智能对话机器人如 ChatGPT 进行会话练习和对话模拟。 数学学习: 使用自适应学习系统如 Khan Academy 获取个性化学习路径和练习题。 借助智能题库和作业辅助工具如 Photomath 获得问题解答和解题步骤。 使用虚拟教学助手如 Socratic 解答问题、获取教学视频和答疑服务。 参与交互式学习平台如 Wolfram Alpha 的课程和实践项目进行数学建模和问题求解。 通过结合 AI 技术和传统学习方法,能更高效、个性化地进行学习并取得更好效果。但需注意,部分内容由 AI 大模型生成,请仔细甄别。
2024-10-29