Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

人工智能视阈下高校设计学科教学 改革的新路径研究

Answer

以下是为您整合的相关内容:

在高校设计学科教学改革方面,相关法案提到了对人工智能领域的支持,包括支持跨学科研究、教育和培训项目,以促进学生和研究人员在人工智能方法和系统方面的学习,并培养相关领域专家的跨学科视角和合作。同时,在高等教育中,有人认为大型语言模型(LLMs)可能会对其产生显著的积极影响,特别是提升人文学科的重要性。LLMs 具有深度且内在的文本属性,与大学人文学科课程所强调的技能和方法直接相关。此外,还有法案涉及推动机器学习的发展,支持跨多个机构和组织的人工智能及相关学科的跨学科研究和开发。

Content generated by AI large model, please carefully verify (powered by aily)

References

【法律法规】《2020年国家人工智能倡议法案》.pdf

(9)MACHINELEARNING.—The(b)INITIATIVE ACTIVITIES.—In carrying out the Ini-(4)Support for interdisciplinary research,edu-8cation,and training programs for students and re-9searchers that promote learning in the methods and10systems used in artificial intelligence and foster11interdisciplinary perspectives and collaborations12among subject matter experts in relevant fields,in-13cluding computer science,mathematics,statistics,14engineering,social sciences,psychology,behavioral15science,ethics,security,legal scholarship,and other16disciplines that will be necessary to advance artificial17intelligence research and development responsibly.18

教育:一个历史老师用GPT给学生讲课

[title]教育:一个历史老师用GPT给学生讲课[heading3]Teaching will get weirder — and that’s probably aIn the long term,I suspect that LLMs will have a significant positive impact on higher education.Specifically,I believe they will elevate the importance of the humanities.If this happens,it will be a shocking twist.We’ve been hearing for over a decade now that the humanities are in crisis.When faced with raw data about declining enrollments and majors like[this](https://www.theatlantic.com/ideas/archive/2018/08/the-humanities-face-a-crisisof-confidence/567565/)and[this](https://www.newyorker.com/magazine/2023/03/06/the-end-of-the-english-major),it is difficult not to agree.From the perspective of a few years ago,then,the advent of a new wave of powerful AI tools would be expected to tip the balance of power,funding,and enrollment in higher education even further toward STEM and away from the humanities.But the thing is:LLMs are deeply,inherently textual.And they are reliant on text in a way that is directly linked to the skills and methods that we emphasize in university humanities classes.What do I mean by that?One of the hallmarks of training in history is learning how to think about a given text at increasingly higher levels of abstraction.We teach students how to analyze the genre,cultural context,assumptions,and affordances of a primary source — the unspoken limits that shaped how,why,and for whom it was created,and what content it contains.

【法律法规】《2020年国家人工智能倡议法案》.pdf

(9)MACHINELEARNING.—The(B)describes how the agencies carrying(viii)in consultation with the Council(4)in carrying out this section,take into con-(b)FINANCIAL ASSISTANCE TO ESTABLISH(2)ARTIFICIALINTELLIGENCE INSTITUTES.—(D)supports interdisciplinary research and16development across multiple institutions and or-17ganizations involved in artificial intelligence re-18search and related disciplines,including phys-19ics,engineering,mathematical sciences,com-20puter and information science,robotics,biologi-21cal and cognitive sciences,material science,so-22cial and behavioral sciences,cybersecurity,and23technology ethics;24VerDate Sep 11 2014 23:31 Mar 25,2020 Jkt 099200 PO 00000 Frm 00024 Fmt 6652 Sfmt 6201 E:\BILLS\H6216.IH H6216p amtmann on DSKBC07HB2PROD with BILLS25•HR 6216 IH

Others are asking
我想跟大概40岁左右的科研从业者科普人工智能和大模型的相关知识,挑选合适的内容作为提纲。
以下是为您挑选的向 40 岁左右科研从业者科普人工智能和大模型的提纲内容: 一、AI 大模型的基本概念 1. 生成式 AI 生成的内容称为 AIGC 2. 相关技术名词 AI:人工智能 机器学习:电脑找规律学习,包括监督学习、无监督学习、强化学习 监督学习:有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类 强化学习:从反馈里学习,最大化奖励或最小化损失,类似训小狗 深度学习:参照人脑有神经网络和神经元,因层数多称为深度,神经网络可用于多种学习方式 生成式 AI:可以生成文本、图片、音频、视频等内容形式 LLM:大语言模型,生成图像的扩散模型不是大语言模型,大语言模型的生成只是处理任务之一,如谷歌的 BERT 模型可用于语义理解 二、AI 大模型的技术里程碑 1. 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,完全基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络 三、AI 模型及相关进展 1. 包括视频生成模型、相关论文,以及 AI 在诺奖和蛋白质研究领域的应用等 2. 人工智能发展历程:从图灵测试、早期的图灵机器人和 ELISA,到 IBM 的语音控制打印机、完全由人工智能创作的小说、微软的同声传译系统,再到 OpenAI 发布 ChatGPT 模型,经历了萌芽、积累沉淀到如今大模型和多模态模型百花齐放的阶段 3. 大模型的基石:由数据、算法、算力构成,算法有技术架构的迭代,如英伟达的显卡辅助模型训练,数据质量对生成理想的大模型至关重要 4. 针对弱智 8 的问题对大模型进行测试,开展让大模型回复问题并找出真人回复的活动,且国内大模型的回答能力有很大改进 5. 大语言模型的特点:早期回复缺乏情感,如今有所改进,后续将体验几个大模型的回复场景
2025-03-13
什么是人工智能
人工智能(Artificial Intelligence,简称 AI)是一门令人兴奋的科学,旨在使计算机表现出智能行为,例如做一些人类所擅长的事情。 最初,查尔斯·巴贝奇发明了计算机,用于按照明确的程序(即算法)进行数字运算。现代计算机虽更先进,但仍遵循相同的受控计算理念。若知道实现目标的每一步骤及顺序,就能编写程序让计算机执行。 然而,有些任务无法明确编程,如根据照片判断人的年龄。我们能做是因为见过很多不同年龄的人,但无法明确大脑完成此任务的具体步骤,所以这类任务是 AI 感兴趣的。 对于三年级的孩子,可以用能理解的语言解释:AI 就是让计算机或机器能像人类一样思考和学习的技术。 AI 分为 ANI(artificial narrow intelligence 弱人工智能)和 AGI(artificial general intelligence)。ANI 得到巨大发展,只能做一件事,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等;AGI 则能做任何人类可以做的事。
2025-03-13
如何利用人工智能破解无人机通信协议
目前没有关于如何利用人工智能破解无人机通信协议的相关内容。破解无人机通信协议是不合法且不符合道德规范的行为,可能会导致严重的法律后果。在合法和合规的前提下,人工智能可以用于优化无人机的通信效率、增强通信安全性等方面。
2025-03-13
人工智能发展历史
人工智能的发展历史如下: 起源于二十世纪中叶,最初符号推理流行,带来了专家系统等重要进展,但因方法局限性和成本问题,20 世纪 70 年代出现“人工智能寒冬”。 随着计算资源变便宜和数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年中“人工智能”常被视为“神经网络”的同义词。 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为神经网络奠定基础。 1950 年,图灵最早提出图灵测试作为判别机器是否具备智能的标准。 1956 年,在美国达特茅斯学院召开的会议上,“人工智能”一词被正式提出并确立为一门学科。此后近 70 年,AI 的发展起起落落。 AI 技术发展历程包括早期阶段(1950s 1960s)的专家系统、博弈论、机器学习初步理论;知识驱动时期(1970s 1980s)的专家系统、知识表示、自动推理;统计学习时期(1990s 2000s)的机器学习算法(决策树、支持向量机、贝叶斯方法等);深度学习时期(2010s 至今)的深度神经网络、卷积神经网络、循环神经网络等。 当前 AI 前沿技术点包括大模型(如 GPT、PaLM 等)、多模态 AI(视觉 语言模型、多模态融合)、自监督学习(自监督预训练、对比学习、掩码语言模型等)、小样本学习(元学习、一次学习、提示学习等)、可解释 AI(模型可解释性、因果推理、符号推理等)、机器人学(强化学习、运动规划、人机交互等)、量子 AI(量子机器学习、量子神经网络等)、AI 芯片和硬件加速。
2025-03-10
人工智能简史
人工智能作为一个领域始于二十世纪中叶。最初,符号推理流行,带来了如专家系统等重要进展,但因从专家提取知识并以计算机可读形式表现及保持知识库准确的复杂性和高成本,20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源更便宜,数据更多,神经网络方法在计算机视觉、语音理解等领域展现出卓越性能,过去十年中“人工智能”常被视为“神经网络”的同义词。 在国际象棋对弈程序方面,早期以搜索为基础,发展出阿尔法贝塔剪枝搜索算法,后来采用基于案例的推理,而现代能战胜人类棋手的程序基于神经网络和强化学习。 在创建“会说话的程序”方面,早期如 Eliza 基于简单语法规则,现代助手如 Cortana、Siri 或谷歌助手是混合系统,未来有望出现完整基于神经网络的模型处理对话,如 GPT 和 TuringNLG 系列神经网络已取得巨大成功。 最初查尔斯·巴贝奇发明计算机用于按明确程序运算,现代计算机仍遵循相同理念。但有些任务如根据照片判断人的年龄无法明确编程,这正是人工智能感兴趣的。 译者:Miranda,原文见 https://microsoft.github.io/AIForBeginners/lessons/1Intro/README.md 。
2025-03-10
可以帮我输出一张图,解释人工智能的工作原理?
以下是关于人工智能工作原理的解释: 在音频生成方面,以谷歌的 V2A 系统为例: 首先,将视频输入编码为压缩表示。 然后,基于扩散模型从随机噪声中迭代改进音频,这一过程由视觉输入和自然语言提示引导,以生成与提示紧密配合的同步逼真音频。 最后,对音频输出进行解码,转化为音频波形,并与视频数据相结合。 在生成式人工智能的整体领域中: 监督学习用于标记事物,一直占据较大比例。 生成式 AI 由监督学习技术搭建,2010 2020 年是大规模监督学习的十年,为现代人工智能奠定了基础。 以生成文本为例,大语言模型通过使用监督学习不断预测下一个词语来生成新的文本内容,这需要千亿甚至万亿级别的单词数据库。 此外,大语言模型在写作、修改文本、翻译等方面有应用,但也存在编造故事产生错误信息的问题,需要鉴别信息准确性。人工智能作为一种通用技术,有大量的运用空间,如基于网络界面应用和基于软件程序应用等。
2025-03-10
高校如何自己本地部署DEEPSEEK
高校本地部署 DEEPSEEK 可以参考以下内容: 1. 了解相关平台服务差异,如 DLC、DSW 和 EAS 等模型部署平台服务的不同。 2. 如果拥有云服务器,可以进行本地部署,但要注意满血版本地部署的实际情况。 3. 在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。 4. 登录 Pad 控制台,通过 model gallery 进行部署,如 Deepseek R1 模型,可选择 SG 浪或 Vim 推理框架,根据资源出价,部署后可在模型在线服务 EAS 查看状态。 5. 模型试用可以使用 postman,通过修改接口和复制文档中的内容进行在线调试,发送请求查看状态码,根据模型名称和相关要求输入内容进行试用。 6. 会带着大家复现模型的蒸馏和微调,并讲解相关知识。 7. 实战演练 DeepSeek R1 满血版快速部署和蒸馏训练。 以上信息仅供参考,具体操作可能会因实际情况有所不同。
2025-02-27
我是一名高校新媒体工作人员,由于文字能力一般,需要能力较强的ai文本工具,用于撰写公文,新闻稿,公众号推文,总结简报等。请推荐至少5个,并进行对比分析
以下为您推荐至少 5 个适用于高校新媒体工作人员的 AI 文本工具,并进行对比分析: Copy.ai: 功能强大,提供丰富的新闻写作模板和功能。 可快速生成新闻标题、摘要、正文等内容,节省写作时间,提高效率。 Writesonic: 专注于写作,提供新闻稿件生成、标题生成、摘要提取等功能。 智能算法能根据用户提供信息生成高质量新闻内容,适合新闻写作和编辑人员。 Jasper AI: 人工智能写作助手,写作质量较高,支持多种语言。 虽主打博客和营销文案,也可用于生成新闻类内容。 Grammarly: 不仅是语法和拼写检查工具,还提供一些排版功能,可改进文档整体风格和流畅性。 QuillBot: AI 驱动的写作和排版工具,能改进文本清晰度和流畅性,同时保持原意。 秘塔写作猫: 是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,还能实时同步翻译。 支持全文改写,一键修改,实时纠错并给出修改建议,智能分析文章属性并打分。 笔灵 AI 写作: 是智能写作助手,能应对多种文体写作,如心得体会、公文写作、演讲稿、小说、论文等。 支持一键改写/续写/扩写,智能锤炼打磨文字。 腾讯 Effidit 写作: 由腾讯 AI Lab 开发,能探索用 AI 技术提升写作者的写作效率和创作体验。 选择工具时,您可根据具体需求(如文档类型、个人偏好等)进行考虑。例如,若主要需求是生成新闻类内容,Copy.ai、Writesonic 和 Jasper AI 可能更适合;若还需兼顾排版和语法检查,Grammarly 和 QuillBot 是不错的选择;若注重中文内容的改写,秘塔写作猫、笔灵 AI 写作和腾讯 Effidit 写作可优先考虑。
2025-02-26
目前各大高校有哪些场景会实用算力
目前各大高校实用算力的场景可能包括以下方面: 1. 科研计算:如在物理学、化学、生物学等学科的研究中,进行复杂的模拟和数据分析。 2. 人工智能研究:包括模型训练、算法优化等。 3. 图形和图像处理:例如在设计、动画制作等专业中的应用。 4. 数据分析和处理:用于处理大规模的数据集,以支持学术研究和决策制定。 需要注意的是,具体的应用场景会因高校的学科设置、研究方向和教学需求而有所不同。
2025-02-19
职场人士如果高校利用AI
对于职场人士高效利用 AI ,以下是一些方面和建议: 学生和应届毕业生: 职业选择和规划:通过了解 AI 技术在不同职业中的应用,评估自身兴趣和技能,选择合适职业路径并制定详细规划。 技能提升:依据职业目标获取个性化学习建议和资源,提升在 AI 领域的技能,为就业做准备。 职场新人和职业转换者: 职业发展指导:根据自身职业目标和市场需求制定发展计划,明确短期和长期目标。 职业转型支持:对于希望从其他领域转型到 AI 相关领域的从业者,获取详细转型路径和必要技能培训资源,实现顺利转型。 企业: 人才招聘和培养:评估应聘者的 AI 技能水平,选择合适候选人,为现有员工提供职业发展规划和技能提升建议,培养内部 AI 人才。 员工职业发展:为员工制定个性化职业发展计划,提供持续职业指导和培训,提升员工职业满意度和留任率。 教育机构: 职业指导服务:将相关产品作为学生职业指导的一部分,帮助学生了解 AI 领域职业机会和发展路径,提升就业率。 课程设计和优化:根据市场需求和学生职业规划优化课程设置,提供更有针对性的 AI 技能培训。 职业咨询师: 辅助工具:使用相关产品为客户提供更精准的职业规划建议和技能评估,提升咨询服务质量和效率。 数据支持:基于产品提供的市场数据和职业趋势分析,为客户提供更全面和前瞻性的职业指导。 此外,还有一些优秀的 AI 编程教程和实践分享,例如 Nicholas Carlini 的博文“How I Use 'AI'”,其中提到了使用 LLM 进行编程和研究的实例,包括构建完整的 Web 应用、学习新技术、开启新项目、简化代码、单调任务的自动化、提升用户专业度和效率、API Reference、搜索、解决一次性的任务以及修复常见错误等方面。
2025-02-09
想要对deepseek进行提问需要什么技巧吗?有没有什么高校组织给出的方案?
对 DeepSeek 进行提问时,以下是一些技巧: 1. 身份定位技巧:目的是让 AI 理解您的背景和专业水平。例如,差的表述是“帮我写一篇营销方案”,好的表述是“作为一名刚入职的电商运营,需要为天猫美妆店铺制定 618 活动方案”。 2. 场景描述技巧:提供具体的应用场景和限制条件。比如,差的表述是“写一篇新品发布文案”,好的表述是“为新上市的儿童智能手表写一篇朋友圈文案,目标用户是 25 35 岁的年轻父母,预算 3000 以内,需强调安全定位功能”。 3. 结构化输出技巧:指定具体的输出格式和内容结构。例如,差的表述是“分析最近的新能源汽车销量数据”,好的表述是“请用表格对比 2024 年 Q1 特斯拉、比亚迪的销量数据,包含以下维度:月度销量、同比增长、市场份额,并在表格下方总结三个关键发现”。 4. 分步骤提问技巧:将复杂问题拆解为可管理的小任务。比如,差的表述是“怎么做短视频运营?”,好的表述是“请分三步指导新手做美食短视频:前期准备:需要哪些设备和技能 拍摄阶段:关键场景和机位选择 后期制作:剪辑节奏和音乐配合建议”。 5. 反馈优化技巧:通过追问获得更精准的答案。例如,第一轮“帮我做一份产品分析报告”,追问 1:“内容太专业了,能用更通俗的语言解释吗?”追问 2:“可以增加一些具体的用户案例来支撑观点吗?” 6. 深度思考引导技巧:目的是获得更深入的分析和见解。
2025-02-07
我想要了解AI在高校基础医学教学中的应用案例
以下是一些 AI 在高校基础医学教学中的应用案例: 教学:帮助学生做好组会准备,使用了 Claude + Gamma.app,Claude 能节省绝大部分时间。 医疗:蛋白质结构预测和蛋白质合成,用于生成漂亮图片的 AI 可帮助科学家研究并设计新的蛋白质。 做调研:用特定 prompt ,2 小时帮同学干完 3 篇调研报告。 做调研:用 ChatGPT 做调研。 医疗:健康生物制药的研究,AI 在抗癌、抗衰老、早期疾病防治等研究应用中起重要作用。 此外,为了在医疗保健中产生真正的改变,AI 应像人类一样学习,例如成为顶尖医疗人才需要多年密集信息输入、正规学校教育和学徒实践,AI 也应通过合理的模型训练方式而非仅依靠大量数据来提升。 对于中学生学习 AI ,有以下建议: 从编程语言如 Python 、JavaScript 入手,学习编程语法、数据结构、算法等基础知识。 尝试使用 ChatGPT 、Midjourney 等 AI 生成工具,探索百度的“文心智能体平台”、Coze 智能体平台等教育平台。 学习 AI 基础知识,包括基本概念、发展历程、主要技术及在各领域的应用案例。 参与学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试解决实际问题。 关注 AI 发展的前沿动态,思考其对未来社会的影响。
2024-11-07
从头学的路径是什么
新手学习 AI 是一个长期的过程,需要耐心和持续的努力。以下是为您提供的从头学的路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您能找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。记住,不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。
2025-03-13
AI学习路径
以下是为新手提供的 AI 学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 另外,如果您偏向技术研究方向,学习路径包括: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您偏向应用方向,学习路径包括: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-03-12
AI学习路径
以下是为新手提供的 AI 学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库分享实践后的作品和文章。 5. 体验 AI 产品: 与现有的 AI 产品(如 ChatGPT、Kimi Chat、智谱、文心一言等)进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 另外,如果您偏向技术研究方向,学习路径包括: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您偏向应用方向,学习路径包括: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-03-09
青年员工人工智能能力提升的路径与思考
青年员工提升人工智能能力的路径与思考如下: 学习路径:成为基于 Agent 的创造者 结合“一人公司”的愿景,未来的 AI 数字员工会以大语言模型为大脑,串联所有工具。 数字员工(agent)=学历(大模型)+察言观色(观察)+逻辑思维(推理)+执行(SOP)。 创造者的学习要用大模型和 Agent 模式把工具串起来,着重关注创造能落地 AI 的 agent 应用,大模型的开发研究和演进交给学术界和大厂。 Agent 工程(基础版): 梳理流程:梳理工作流程 SOP,并拆解成多个单一「任务」和多个「任务执行流程」。 「任务」工具化:自动化每一个「任务」,形成一系列小工具,让机器能完成每一个单一任务。 建立规划:串联工具,基于 agent 框架让 bot 来规划「任务执行流程」。 迭代优化:不停迭代优化「任务」工具和「任务执行流程」规划,造就能应对实际场景的 Agent。 数字员工“进化论”:在固化流程和让 AI 自主思考之间需在对 AI 能力基础上作出妥协和平衡。 趋势研究:AI 时代的个人成长路径 第 2 阶段:AI 素养培养与工具掌握 建立拥抱 AI 的心态后,提升 AI 素养,系统学习 AI 相关知识,包括机器学习、自然语言处理等基本概念,以及 AI 在各行业中的应用案例。 上手一些 AI 工具,如 ChatGPT、智能翻译工具、AI 绘图程序等,在日常工作中练习利用 AI 工具完成部分任务,如协助撰写文档、整理数据、生成简单代码等。 熟练驾驭 AI 工具,成为使用者而非旁观者,使用时保持理性,认识到当前 AI 的局限,学会验证输出结果,不盲从。 戴尔因 AI 上演“大逃杀”的启示 对于处于中间位置的执行层,形势紧迫,面临人工智能取代工作职能和向上攀升的机会,需迅速掌握并运用人工智能技术。 为在变革中生存和发展,需关注两方面: 有效应用人工智能技术:迅速掌握生成式人工智能基本概念和潜在影响,重点理解其对工作方式和行业格局的革新;深入了解市场上现有的人工智能产品和工具,并积极应用到实际工作中。 保持持续学习和关注的态度。
2025-03-06
请帮我制订一个AI学习路径。
以下是为您制定的 AI 学习路径: 偏向技术研究方向: 1. 数学基础:掌握线性代数、概率论、优化理论等。 2. 机器学习基础:熟悉监督学习、无监督学习、强化学习等。 3. 深度学习:深入学习神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:了解语言模型、文本分类、机器翻译等。 5. 计算机视觉:掌握图像分类、目标检测、语义分割等。 6. 前沿领域:关注大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:进行论文阅读、模型实现、实验设计等。 偏向应用方向: 1. 编程基础:学习 Python、C++等编程语言。 2. 机器学习基础:掌握监督学习、无监督学习等。 3. 深度学习框架:熟悉 TensorFlow、PyTorch 等。 4. 应用领域:在自然语言处理、计算机视觉、推荐系统等领域实践。 5. 数据处理:学会数据采集、清洗、特征工程等。 6. 模型部署:掌握模型优化、模型服务等。 7. 行业实践:参与项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-03-06
一个ai小白,想要学习ai相关知识,请帮忙推荐学校路径和方法
对于 AI 小白,以下是学习 AI 的学校路径和方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的系列课程,引导了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,还有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库有很多实践后的作品和文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 实际应用表现的第一手体验,激发对 AI 潜力的认识。 此外,还可以参考以下资源: 学习路径方面,有很多高质量学习内容,如李弘毅老师的生成式 AI 导论、吴达的生成式 AI 入门视频等供有时间深入学习的人使用。 部分同学通过观看李弘毅的导论、文达的相关信息并整理成学习笔记,在整理过程中能学到更多知识,还能与大家交流互动。 觉得系统学习枯燥的话,可以等待社区共创内容,通过共创做小项目来反向推动学习。 介绍了 A16Z 推荐的内容从 5 篇扩展到 6 篇,包括 GPT 相关知识、Transformer 模型运作原理,及大语言模型词语接龙原理等基础知识。 推荐看 open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。 历史脉络类资料:整理了 open AI 的发展时间线和万字长文回顾等。
2025-03-05