Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

基于三本认识人工智能的教材,做教材分析,为我写一个引言,从课程标准和背景等方面来写,字数尽量多。

Answer

以下是为您生成的基于三本认识人工智能教材的教材分析引言:

在当今科技飞速发展的时代,人工智能已成为引领社会变革的重要力量。课程标准对于培养具备人工智能素养的人才提出了明确要求,旨在使学习者能够深入理解人工智能的原理、应用和发展趋势。

这三本教材为我们探索人工智能的奥秘提供了坚实的基础。首先,《认知神经学科:关于心智的生物学》由 Michael S. Gazzaniga、Richard B. Lvry 和 George R. Mangun 所著,作为世界权威的认知神经科学教材,它系统地涵盖了认知神经科学的各个方面,包括发展历史、细胞机制与认知、神经解剖与发展、研究方法,以及感觉知觉、物体识别、运动控制、学习与记忆、情绪、语言、大脑半球特异化、注意与意识、认知控制、社会认知和进化的观点等。通过这本书,我们能够从生物学的角度深入理解心智的形成和运作机制,为理解人工智能中的认知模型提供了生物学基础。

其次,《神经科学原理》由 Eric R. Kandel 和 James H. Schwartz 编写,让我们系统地了解神经元的细胞和分子生物学、突触传递、认知的神经基础、感觉、运动、神经信息的加工、发育及行为的出现、语言、思想、感动与学习。它强调了神经网络的联结主义,让我们认识到知识并非孤立存在,而是相互关联的,这对于构建人工智能中的知识表示和推理模型具有重要的启示。

最后,《神经生物学:从神经元到脑》由 John G. Nicholls 等著,是神经生物学领域内的世界级名著,涵盖了神经科学的方方面面,系统介绍了神经生物学的基本概念、神经系统的功能及细胞和分子机制。将这本书与前两本结合起来阅读,能够更全面地理解人脑的构造和运作,为设计更智能、更接近人类思维的人工智能系统提供宝贵的思路。

综上所述,这三本教材从不同角度为我们揭示了神经科学与人工智能之间的紧密联系,为我们深入学习和研究人工智能提供了丰富的知识和深刻的见解。

Content generated by AI large model, please carefully verify (powered by aily)

References

书籍推荐:三本神经科学书籍

[title]书籍推荐:三本神经科学书籍可能你需要的3本基础学科书籍📖 AI是多学科交叉的产物,在学习和运用具体的能力时,比如学习他人的prompt模板或设计prompt,与AI协作(对话沟通)等等,有一些基础学科作为基底,或许能打开AI的新天地:1.《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga; Richard B.Lvry; George R.Mangun):世界权威的认知神经科学教材,认知神经科学之父经典力作,系统了解认知神经科学的发展历史、细胞机制与认知、神经解剖与发展、研究方法、感觉知觉、物体识别、运动控制、学习与记忆、情绪、语言、大脑半球特异化、注意与意识、认知控制、社会认知和进化的观点等。CyberDaily:想象AI像人一样思考与决策,而不是让AI像计算机输入输出。2.《神经科学原理》(作者:Eric R.Kandel; James H.Schwartz)这本书,让你系统神经元的细胞和分子生物学、突触传递、认知的神经基础、感觉、运动、神经信息的加工、发育及行为的出现、语言、思想、感动与学习。CyberDaily:得益于神经网络的联结主义,知识并非存在于某个文档或者知识库或者在记忆区里,而是存在于知识与知识之间,这是一场流动的盛宴,而非躲藏在某个区域的金库。3.《神经生物学:从神经元到脑》(作者:John G.Nicholls等著)神经生物学领域内的一本世界级名著,涵盖了神经科学的方方面面,系统介绍了神经生物徐的基本概念、神经系统的功能及细胞和分子机制。CyberDaily:将以上两本一起食用,效果更佳,造物主设计的人脑值得细细研究和理解。

1. 生成式人工智能简介

[title]1.生成式人工智能简介The future of generative AI is niche,not generalized:https://www.technologyreview.com/2023/04/27/1072102/the-future-of-generative-ai-is- niche-not-generalized/Here are the assembled readings on large language models:NLP's ImageNet moment has arrived:https://thegradient.pub/nlp-imagenet/Google Cloud supercharges NLP with large language models:https://cloud.google.com/blog/products/ai-machine-learning/google-cloud-supercharges-nlp-with-large-language-modelsLaMDA:our breakthrough conversation technology:https://blog.google/technology/ai/lamda/Language Models are Few-Shot Learners:https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a- Paper.pdfPaLM-E:An embodied multimodal language model:https://ai.googleblog.com/2023/03/palm-e-embodied-multimodal-language.htmlPathways Language Model(PaLM):Scaling to 540 Billion Parameters for Breakthrough Performance:https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.htmlPaLM API & MakerSuite:an approachable way to start prototyping and building generative AI applications:https://developers.googleblog.com/2023/03/announcing-palm-api-and-makersuite.htmlThe Power of Scale for Parameter-Efficient Prompt Tuning:https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a- Paper.pdf

Others are asking
作为一名中学教师,怎么通过Ai工具将教材内容生成教案和ppt
以下是为您提供的通过 AI 工具将教材内容生成教案和 PPT 的方法: 1. 使用 COZE 应用 访问地址:https://www.coze.cn/s/iDsBwYLF/ 首页说明:启动页面有相关介绍。 生成教案:进入设计教案页面,等待执行完成后即可获得教案,教案是其他功能的基础。 趣味课堂:根据课文内容设计课堂问答卡和教学活动,采用寓教于乐的方式激发孩子学习兴趣。 课后作业:基于教学大纲和课本重点内容设计题目,包括生字词运用、阅读理解、写作等。 教案 PPT:PPT 内容基于生成的教学大纲,可能需要手动进行少许内容修正。若对大纲内容不满意,可重新生成大纲和 PPT。首先复制大纲内容,打开 kimi,选择 PPT;然后复制教案,在对话框粘贴,KIMI 会优化大纲,点击进去后选择喜欢的模版生成。但需注意,PPT 预览与下载可能需要充值。 2. 参考教师使用 AI 小技巧 减轻排版工作的压力。 生成打底的内容,减轻人写内容的工作。 文章生成 PPT 时,让 AI 帮忙摘要内容,生成大纲列表;主题生成 PPT 时,让 AI 根据主题扩充成大纲列表乃至具体内容。 在特定场景下可直接使用,如学生快速为小组展示配 PPT。 一些 PPT 生成工具(网站): https://wenku.baidu.com :百度文库,付费,质量好。 https://zhiwen.xfyun.cn/ :讯飞智文,免费,引导好。 http://Chatppt.com :付费,自动化程度高。 http://Mindshow.fun :支持 Markdown 导入。 http://Gamma.app :支持 Markdown 导入。 http://Tome.app :AI 配图效果好。 剪映:图文成片,只需提供文案,自动配图配音。
2025-02-06
大学教材数据大模型
以下是关于大学教材数据大模型的相关知识: 大模型通俗来讲,是输入大量语料,让计算机获得类似人类的“思考”能力,能够理解自然语言,进行文本生成、推理问答、对话、文档摘要等工作。 大模型的训练和使用过程可以类比为上学参加工作: 1. 找学校:训练大模型需要大量计算,GPU更合适,只有购买得起大量GPU的才有资本训练自己的大模型。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型更好理解Token之间的关系。 4. 就业指导:为了让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,正式干活,比如进行翻译、问答等,在大模型里称之为推导(infer)。 在LLM中,Token被视为模型处理和生成的文本单位,可以代表单个字符、单词、子单词,甚至更大语言单位,具体取决于所使用的分词方法(Tokenization)。Token是原始文本数据与LLM可以使用的数字表示之间的桥梁,在将输入进行分词时,会对其进行数字化,形成一个词汇表。 数字化便于计算机处理,为让计算机理解Token之间的联系,还需把Token表示成稠密矩阵向量,这个过程称为embedding,常见算法有: 基于统计:Word2Vec通过上下文统计信息学习词向量;GloVe基于词共现统计信息学习词向量。 基于深度网络:CNN使用卷积网络获得图像或文本向量;RNN/LSTM利用序列模型获得文本向量。 基于神经网络:BERT基于Transformer和掩码语言建模(Masked LM)进行词向量预训练;Doc2Vec使用神经网络获得文本序列的向量。 以Transform为代表的大模型采用自注意力(Selfattention)机制来学习不同token之间的依赖关系,生成高质量embedding。大模型的“大”指用于表达token之间关系的参数多,主要是模型中的权重(weight)与偏置(bias),例如GPT3拥有1750亿参数,其中权重数量达到这一量级,而词汇表token数只有5万左右。 常用的模型网站有: 下载模型后需要将之放置在指定的目录下,不同类型的模型放置目录不同。模型的类型可以通过检测。 大模型(Ckpt):放入models\\Stablediffusion VAE模型:一些大模型需要配合vae使用,对应的vae同样放置在models\\Stablediffusion或models\\VAE目录,然后在webui的设置栏目选择。 Lora/LoHA/LoCon模型:放入extensions\\sdwebuiadditionalnetworks\\models\\lora,也可以在models/Lora目录 Embedding模型:放入embeddings目录
2024-12-27
我想用coze搭建一个智能体,关于自然语言课程的期末复习指南,要将我的教材导入扣子作为知识库,智能体支持用户提问,搜索知识点,结合知识库和互联网搜索的内容给出问答,需要使用多智能体或工作流,使用卡片功能进行显示,请给出我搭建这个智能体的步骤
以下是使用 Coze 搭建一个关于自然语言课程期末复习指南智能体的步骤: 1. 访问 Coze 官网(https://www.coze.cn),注册并登录。 2. 点击页面左上角的⊕,通过【标准创建】填入智能体的基本信息。 3. 了解 Bot 开发调试界面: 人设与回复逻辑(左侧区域):设定智能体的对话风格、专业领域定位,配置回复的逻辑规则和限制条件,调整回复的语气和专业程度。 功能模块(中间区域): 技能配置: 插件:扩展智能体的专业能力,如计算器、日历等工具。 工作流:设置固定的处理流程和业务逻辑。 图像流:处理和生成图像的相关功能。 触发器:设置自动化响应条件。 知识库管理: 文本:存储文字类知识材料。 表格:结构化数据的存储和调用。 照片:图像素材库。 记忆系统: 变量:存储对话过程中的临时信息。 数据库:管理持久化的结构化数据。 长期记忆:保存重要的历史对话信息。 文件盒子:管理各类文档资料。 交互优化(底部区域): 开场白:设置初次对话的问候语。 用户问题建议:配置智能推荐的后续问题。 快捷指令:设置常用功能的快速访问。 背景图片:自定义对话界面的视觉效果。 预览与调试(右侧区域):实时测试智能体的各项功能,调试响应效果,优化交互体验。 4. 设定智能体的人设与回复逻辑后,为智能体配置对应的技能,以保证其可以按照预期完成目标任务。例如,以获取 AI 新闻的智能体为例,需要为它添加一个搜索新闻的接口来获取相关新闻。具体操作如下: 在智能体编排页面的技能区域,单击插件功能对应的+图标。 在添加插件页面,选择相关功能,然后单击新增。 修改人设与回复逻辑,指示智能体使用相应插件来搜索所需内容。 (可选)为智能体添加开场白,让用户更好地了解智能体的功能。开场白功能目前支持豆包、微信公众号(服务号)。 5. 配置好智能体后,在预览与调试区域中测试智能体是否符合预期。可单击清除图标清除对话记录。 6. 完成测试后,将智能体发布到社交渠道中使用。具体操作如下: 在智能体的编排页面右上角,单击发布。 在发布页面输入发布记录,并勾选发布渠道。 单击发布。 更多内容,请访问 Coze 官方文档: 英文版:https://www.coze.com/docs/welcome.html 中文版:https://www.coze.cn/docs/guides/welcome
2024-12-20
目前我在帮助出版社改教材,以下是步骤:1.将pdf转为word 2.将公式图片转为公式编辑器中可编辑的公式 3.将相关带29章的文本统一改成23章。哪一步可以借助ai更简便
在您所描述的这三个步骤中,将公式图片转为公式编辑器中可编辑的公式这一步骤可以借助 AI 来更简便地完成。目前有一些 AI 工具和技术能够对图片中的公式进行识别和转换,提高工作效率。但需要注意的是,AI 转换可能存在一定的误差,仍需要人工进行检查和修正。
2024-12-05
Ai教材
以下是为您推荐的与 AI 相关的教材和学习资料: 1. 神经科学方面: 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga; Richard B.Lvry; George R.Mangun):世界权威的认知神经科学教材,涵盖认知神经科学的诸多方面,包括发展历史、细胞机制与认知、神经解剖与发展等。 《神经科学原理》(作者:Eric R.Kandel; James H.Schwartz):能让您系统了解神经元的细胞和分子生物学、突触传递、认知的神经基础等内容。 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著):神经生物学领域的世界级名著,涵盖神经科学的各个方面,介绍了其基本概念、功能及细胞和分子机制。 2. 学习路径方面:如果您是新手,学习人工智能(AI)可以遵循一份详细的学习路径指南,从基础概念到实际应用,逐步建立起 AI 知识体系。 3. 综合知识方面:在 AI 时代,您需要像博物学家一样,了解各个领域的知识,并在恰当的时候调用它们。例如心理学、人工智能、经济学、社会学、生态学、哲学、设计学等 13 个学科。相关书单权威、准确,有框架、成体系且好读,适合初学者。
2024-12-03
有没有处理职业教育教材很强大的AI
目前在处理职业教育教材方面,以下是一些相关的 AI 信息: 在医疗保健领域,为使 AI 产生真正改变,应创建像优秀医生和药物开发者那样学习的模型生态系统。顶尖人才的培养通常从多年密集信息输入和正规学校教育开始,再通过学徒实践从出色实践者处学习,获得处理复杂情况的直觉。对于 AI 而言,应改变当前学习方式,如通过堆叠模型训练,而非仅依靠大量数据和生成模型。 对于处理文档和数据,特别是 PDF 文本,Claude 2 表现出色。可以将整本书粘贴到 Claude 的前一版本中获取良好结果,新模型更强大。但需注意这些系统仍会产生幻觉,若要确保准确性需检查结果。 如果您有医学课题需要 AI 给出修改意见,以下是一些专业工具推荐: Scite.ai:为研究人员等打造的创新平台,提供引用声明搜索等工具,可简化学术工作。 Scholarcy:能提取文档结构化数据,生成文章概要,包含多个分析板块。 ChatGPT:强大的自然语言处理模型,可提供医学课题修改意见。 但需注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-30
根据我的论文主题撰写一段引言:《通用人工智能时代的博弈论应用:数据科学与决策价值》
在当今科技飞速发展的时代,通用人工智能(AGI)的崛起正以前所未有的态势改变着我们的生活和社会。随着数据量的爆炸式增长以及决策环境的日益复杂,博弈论作为一门研究决策主体相互作用时的策略选择及均衡问题的学科,在通用人工智能时代展现出了独特的应用价值。 在数据科学领域,海量的数据为我们提供了丰富的信息,但如何从这些数据中提取有价值的知识并做出明智的决策,成为了一个关键挑战。博弈论的引入为解决这一问题提供了新的思路和方法。它帮助我们理解不同数据主体之间的竞争与合作关系,从而优化数据的采集、处理和分析过程。 在决策价值方面,通用人工智能系统需要在复杂多变的环境中做出最优决策。博弈论通过对不同策略的收益和风险进行分析,为决策提供了理论依据和数学模型,使得决策更加科学、合理和高效。 综上所述,研究通用人工智能时代的博弈论应用,对于推动数据科学的发展以及提升决策的价值具有重要的理论和实践意义。
2024-09-28
根据我的论文题目撰写一段引言,要求达到人文社科的极高水准:《通用人工智能时代的博弈论应用:数据科学与决策价值》
在当今科技飞速发展的时代,通用人工智能正以前所未有的态势重塑着我们的生活和社会格局。在这一宏大背景下,博弈论的应用成为了一个引人瞩目的焦点。数据科学的崛起为我们提供了海量且复杂的数据资源,而如何从这些数据中挖掘出有价值的信息,并将其转化为明智的决策,成为了摆在我们面前的关键问题。博弈论,作为一门研究决策主体相互作用时的策略选择和均衡结果的学科,为我们在通用人工智能时代的决策过程提供了深刻的理论基础和实用的分析工具。它不仅能够帮助我们理解个体和群体在复杂环境中的行为模式,还能够预测和优化决策结果,从而实现决策价值的最大化。因此,深入探讨通用人工智能时代中博弈论在数据科学与决策价值方面的应用,具有极其重要的理论意义和现实价值。
2024-09-28