直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

新手怎么学习人工智能

回答

对于新手学习人工智能,以下是一些建议:

  1. 了解 AI 基本概念:
    • 阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:
    • 在「入门:AI 学习路径」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。
  3. 选择感兴趣的模块深入学习:
    • AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。
    • 掌握提示词的技巧,它上手容易且很有用。
  4. 实践和尝试:
    • 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。
    • 在知识库中有很多实践后的作品、文章分享,欢迎实践后进行分享。
  5. 体验 AI 产品:
    • 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。
  6. 持续学习和跟进:
    • AI 是快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。
    • 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。

记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」知识库首页的布鲁姆分类法,设计自己的学习路径。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:新手如何学习 AI?

[title]问:新手如何学习AI?了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

问:新手如何学习 AI?

[title]问:新手如何学习AI?记住,学习AI是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,你将逐渐建立起自己的AI知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往AGI之路」[知识库首页](https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e)的布鲁姆分类法,设计自己的学习路径。类似问题:我是新人,怎么学习AI?新手学习AI学习AI,我应该从哪里开始如何从头开始学习AI?

问:新手如何学习 AI?

[title]问:新手如何学习AI?持续学习和跟进:AI是一个快速发展的领域,新的研究成果和技术不断涌现。关注AI领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入AI相关的社群和组织,参加研讨会、工作坊和会议,与其他AI爱好者和专业人士交流。

其他人在问
作为新手,我该如何学习AI技术
作为新手学习 AI 技术,可以从以下两个方向入手: 偏向技术研究方向: 数学基础:包括线性代数、概率论、优化理论等。 机器学习基础:如监督学习、无监督学习、强化学习等。 深度学习:涵盖神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:涉及语言模型、文本分类、机器翻译等。 计算机视觉:包含图像分类、目标检测、语义分割等。 前沿领域:例如大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:进行论文阅读、模型实现、实验设计等。 偏向应用方向: 编程基础:掌握 Python、C++等。 机器学习基础:如监督学习、无监督学习等。 深度学习框架:熟悉 TensorFlow、PyTorch 等。 应用领域:包括自然语言处理、计算机视觉、推荐系统等。 数据处理:做好数据采集、清洗、特征工程等。 模型部署:关注模型优化、模型服务等。 行业实践:参与项目实战、案例分析等。 同时,数学和编程基础是必不可少的。还需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 以下是一些关于 AI 技术原理的基础知识: 概念:生成式 AI 生成的内容称为 AIGC。 相关技术名词: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习参照人脑有神经网络和神经元,因层数多称为深度,神经网络可用于多种学习方式。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2024-10-25
怎样快速的从新手变为一个AI方面的资深从业者?
要从新手快速成长为 AI 方面的资深从业者,可以按照以下步骤进行: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支如机器学习、深度学习、自然语言处理等以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人进行互动,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,【野菩萨的 AIGC 资深课】由工信部下属单位【人民邮电出版社】开设,是市面上为数不多的值得推荐的 AI 课程之一,也是全网技术更新最快的课程!课程内容涵盖 AI 绘画、视听语言和 ChatGPT 等多个体系的知识。无论您是 AI 初学者还是进阶者,这门课程都能满足您的学习需求。您可以扫码添加菩萨老师助理,了解更多信息。
2024-10-13
推荐一本适合纯新手小白看的ai书籍
以下是为纯新手小白推荐的 AI 相关书籍: 在 Python 方面: 《Python 学习手册》:名声在外。 《Python 编程》:对新手友好。 在 AI 方面: 《人类简史》:其中“认知革命”的相关章节令人获益匪浅。 《深度学习实战》:按脉络梳理了 ChatGPT 爆发前的 AI 信息与实践。 此外,还有以下相关资源: 课程:推荐 B 站 up 主“PAPAYA 电脑教室”的 Python 入门课,完全免费。 地址:https://space.bilibili.com/402780815/channel/seriesdetail?sid=2762019 对于大模型,Andrej Karpathy 的讲解很不错,其相关地址: 油管:https://www.youtube.com/watch?v=zjkBMFhNj_g B 站:https://www.bilibili.com/video/BV1AU421o7ob 资料库:推荐 AJ 和众多小伙伴们共创的“🌈通往 AGI 之路(一个飞书文档)”,这是当下最全的中文 AI 资料库,免费、开源、共创,包含了几乎所有有价值的文档、文章、资料、资讯,并永远是第一时间更新。 地址:https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e 另外,还有“陈财猫:推荐书单了解各个领域的知识,并在恰当的时候调用它们”中提到的相关书籍: 计算机方面: file:智慧的疆界从图灵机到人工智能.epub file:白话机器学习的数学(图灵图书).epub 课程:【李宏毅 2021/2022 春机器学习课程哔哩哔哩】https://b23.tv/KhwgLna 【【授权】李宏毅 2023 春机器学习课程哔哩哔哩】https://b23.tv/2ocUNn0 https://www.lanqiao.cn/mobile/courses/1330 人工智能方面: file:人工智能(第 4 版)现代方法.epub
2024-09-30
新手怎么学习AI
新手学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 4. 掌握提示词的技巧:提示词上手容易且很有用。 5. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 6. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 7. 持续学习和跟进: AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 需要记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-09-28
新手小白如何学习ai
对于新手小白学习 AI,以下是一份详细的指南: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 4. 掌握提示词技巧: 提示词上手容易且很有用。 5. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 6. 体验 AI 产品: 尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 7. 持续学习和跟进: AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 需要记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。 如果您想学习 AI 绘画,可以体验《AI 绘画助手》,他是一位专业且贴心的导师。他能够将复杂的知识用通俗易懂的语言解释清楚,介绍流行的绘画工具及使用步骤,擅长风格迁移技术等领域,拥有丰富的实战案例经验,能为您答疑解惑并规划学习路径,帮助您在 AI 绘画之旅上不断突破,充分释放创意与想象。
2024-09-19
新手小白怎么入门ai
新手小白入门 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 4. 掌握提示词的技巧:提示词上手容易且很有用。 5. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 6. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 7. 持续学习和跟进: AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 入门工具推荐:Kimi 智能助手 Chatgpt 的国产平替,实际上手体验最好,推荐新手用 Kimi 入门学习和体验 AI。 不用科学🕸️、不用付费、支持实时联网。 是国内最早支持 20 万字无损上下文的 AI,也是目前对长文理解做的最好的 Ai 产品。 能一次搜索几十个数据来源,无广告,能定向指定搜索源。 点我去下载 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。
2024-09-19
人工智能发展历史
人工智能的发展历史如下: 起源阶段: 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。 1950 年,图灵最早提出图灵测试,作为判别机器是否具备智能的标准。 1956 年,在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开达特茅斯会议,“人工智能”一词被正式提出,并确立为一门学科。 发展历程: 二十世纪中叶,符号推理流行,带来专家系统等重要进展,但因方法局限性,20 世纪 70 年代出现“人工智能寒冬”。 随着时间推移,计算资源变便宜,数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年中,“人工智能”常被视为“神经网络”的同义词。 早期阶段(1950s 1960s):有专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理。 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等。 前沿技术点: 大模型:如 GPT、PaLM 等。 多模态 AI:视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。
2024-10-30
怎么学习人工智能并应用到赚钱
学习人工智能并应用到赚钱可以从以下几个方面入手: 1. 掌握基础知识:学习人工智能的基本概念、原理和技术,包括机器学习、深度学习、自然语言处理等。 2. 提升技能:通过相关课程和实践,提高自己在数据处理、模型训练和优化等方面的能力。 3. 学习商业应用:了解人工智能在金融、医疗、制造业等行业的应用案例,例如学习微软的《面向商业用户的人工智能学习》《人工智能商学院》等课程。 4. 深入研究经典机器学习:可参考《机器学习入门课程》。 5. 掌握特定技术:如使用 Azure 认知服务(Azure Cognitive Services)来创建实用的人工智能应用,包括《视觉》《自然语言处理》《使用 Azure OpenAI 服务的生成式人工智能》等课程。 6. 持续学习和实践:人工智能领域发展迅速,需要不断更新知识和技能,并将其应用到实际项目中。 然而,需要注意的是,学了人工智能有可能赚钱,但不一定保证每个人都能赚到钱。人工智能领域确实有很多高薪工作,比如数据科学家、机器学习工程师等,但能否赚钱还取决于很多因素,比如个人的学习能力、实际应用能力、对市场和商业的理解等等。仅仅学会一些基础知识可能还不足以在竞争激烈的市场中脱颖而出。大型语言模型主要基于语言理解和生成,并非专门设计用于数学计算,在处理数学问题时可能出错。同时,关于 GPTs/GLMs 能否帮助创作者赚钱,答案是能,但大多数人不能,具体原因会在相关文章中详细阐述。
2024-10-30
人工智能的核心技术是什么
人工智能的核心技术主要包括以下几个方面: 1. 架构:当前市场上许多令人惊叹的 AI 技术成就可追溯到两个核心架构——Transformer 和 Diffusion。Transformer 代表了数据转换的能力,Diffusion 代表了数据向图像转换的能力,它们构成了当前 AI 技术的基石。 2. 算力:自 2010 年以来,GPU 等计算资源的快速发展使算力得到了空前的爆发,为 AI 技术的进步提供了强大的支持。 3. 人才网络:AI 领域的关键人才网络起到了不可忽视的作用,特别是 Google 在加拿大多伦多和蒙特利尔成立的两个实验室,以及其收购的英国公司 DeepMind 培养了一批杰出的领军人物,这些人才的流动和合作推动了 AI 技术的快速进步。 此外,人工智能的“智能”特质体现在以下几个方面: 1. 定义和特点:涵盖了机器的学习、推理、适应和自我改进的能力,表现为能从经验中学习、理解复杂概念、处理和分析大量数据以及执行复杂任务,具有算法驱动的决策过程、对大数据的处理能力以及在特定任务中的高效性和准确性等关键特点。 2. 行为模式: 信息处理:通过先进的算法和计算模型处理信息,从大量数据输入中学习规律、做出预测并决策。 环境互动:能够适应操作环境,在特定环境中高效工作并对新情况做出适应。 能量聚焦:执行设计任务时展现出极高效率,持续工作不受疲劳影响。 深度与专注:采用深度学习技术的 AI 系统能对特定领域数据进行深入分析,识别复杂模式和关系。
2024-10-29
基于三本认识人工智能的教材,做教材分析,为我写一个引言,从课程标准和背景等方面来写,字数尽量多。
以下是为您生成的基于三本认识人工智能教材的教材分析引言: 在当今科技飞速发展的时代,人工智能已成为引领社会变革的重要力量。课程标准对于培养具备人工智能素养的人才提出了明确要求,旨在使学习者能够深入理解人工智能的原理、应用和发展趋势。 这三本教材为我们探索人工智能的奥秘提供了坚实的基础。首先,《认知神经学科:关于心智的生物学》由 Michael S. Gazzaniga、Richard B. Lvry 和 George R. Mangun 所著,作为世界权威的认知神经科学教材,它系统地涵盖了认知神经科学的各个方面,包括发展历史、细胞机制与认知、神经解剖与发展、研究方法,以及感觉知觉、物体识别、运动控制、学习与记忆、情绪、语言、大脑半球特异化、注意与意识、认知控制、社会认知和进化的观点等。通过这本书,我们能够从生物学的角度深入理解心智的形成和运作机制,为理解人工智能中的认知模型提供了生物学基础。 其次,《神经科学原理》由 Eric R. Kandel 和 James H. Schwartz 编写,让我们系统地了解神经元的细胞和分子生物学、突触传递、认知的神经基础、感觉、运动、神经信息的加工、发育及行为的出现、语言、思想、感动与学习。它强调了神经网络的联结主义,让我们认识到知识并非孤立存在,而是相互关联的,这对于构建人工智能中的知识表示和推理模型具有重要的启示。 最后,《神经生物学:从神经元到脑》由 John G. Nicholls 等著,是神经生物学领域内的世界级名著,涵盖了神经科学的方方面面,系统介绍了神经生物学的基本概念、神经系统的功能及细胞和分子机制。将这本书与前两本结合起来阅读,能够更全面地理解人脑的构造和运作,为设计更智能、更接近人类思维的人工智能系统提供宝贵的思路。 综上所述,这三本教材从不同角度为我们揭示了神经科学与人工智能之间的紧密联系,为我们深入学习和研究人工智能提供了丰富的知识和深刻的见解。
2024-10-29
人工智能视阈下高校设计学科教学 改革的新路径研究
以下是为您整合的相关内容: 在高校设计学科教学改革方面,相关法案提到了对人工智能领域的支持,包括支持跨学科研究、教育和培训项目,以促进学生和研究人员在人工智能方法和系统方面的学习,并培养相关领域专家的跨学科视角和合作。同时,在高等教育中,有人认为大型语言模型(LLMs)可能会对其产生显著的积极影响,特别是提升人文学科的重要性。LLMs 具有深度且内在的文本属性,与大学人文学科课程所强调的技能和方法直接相关。此外,还有法案涉及推动机器学习的发展,支持跨多个机构和组织的人工智能及相关学科的跨学科研究和开发。
2024-10-28
系统学习人工智能的路径
系统学习人工智能的路径如下: 1. 加入“通往 AGI 之路”社区:这是一个致力于人工智能学习的中文知识库和社区平台,由开发者、学者和 AI 爱好者共同参与建设,提供丰富的学习资源,包括文章、教程、工具推荐以及最新的 AI 行业资讯等,还会定期组织活动,如视频挑战赛、模型创作大赛等,鼓励成员在实践中学习,促进交流与合作。 2. 从编程语言入手:可以选择 Python、JavaScript 等编程语言开始学习,掌握编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 3. 尝试使用 AI 工具和平台:例如使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。也可以探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 4. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等,学习 AI 在教育、医疗、金融等领域的应用案例。 5. 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 6. 关注 AI 发展的前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,全面系统地学习 AI 知识和技能,可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,为未来在 AI 领域的发展做好准备。
2024-10-28
学习AI
以下是为新手提供的学习 AI 的全面指导: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 2. 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 六、持续学习和跟进 AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 对于中学生学习 AI,还有以下建议: 1. 从编程语言入手学习 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2024-10-31
aigc提示工程师应该学习哪些课程
以下是 AIGC 提示工程师应该学习的一些课程: 1. 针对开发者的 AIGPT 提示工程课程:由 OpenAI 技术团队成员授课,涵盖软件开发最佳实践的提示,常见用例如总结、推理、转换和扩展,以及使用 LLM 构建聊天机器人等内容。 2. 范德堡大学的提示工程课程:教您成为生成 AI 工具的专家用户,展示利用生成式人工智能工具的示例,提高日常工作效率,并深入了解其工作原理。 3. 了解大型语言模型背后的理论:深入探讨自然语言处理中基本模型的细节,学习创新技术,涉及基于 Transformer 的模型,以及少量学习和知识蒸馏等转移学习技术,聚焦新的 LLM 发展方向。 4. 提示词培训课——Part4:包括提词工程的基础概念和实用技巧,如利用地规构建思考链条、探讨提示词的敏感性问题、解释'token'概念及相关操作,深入讲解提示词的进阶技术,如增强推理能力、运用元提示和任务分解技巧,探讨 AIAgent 和 AIAgentic 的概念和差别,学习多智能体设计模式,梳理提词落地流程。
2024-10-31
AI 可以帮助我学习并理解统计学的相关概念和公式吗
AI 可以帮助您学习并理解统计学的相关概念和公式。以下是一些相关方面: 数学基础中的统计学基础部分,您可以熟悉均值、中位数、方差等统计概念。 在算法和模型方面,监督学习、无监督学习和强化学习等领域的知识也可能涉及到统计学的应用。 对于模型的评估和调优,例如了解如何评估模型性能,包括交叉验证、精确度、召回率等,也与统计学有一定的关联。 通过学习这些内容,能够为您理解统计学的相关概念和公式提供帮助。
2024-10-31
学习AI
以下是为新手提供的学习 AI 的全面指导: 一、了解 AI 基本概念 1. 建议阅读「」部分,熟悉 AI 的术语和基础概念,了解人工智能及其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,您可以按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 2. 体验 AI 产品,与现有的 AI 产品(如 ChatGPT、Kimi Chat、智谱、文心一言等)进行互动,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 五、持续学习和跟进 AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 对于中学生学习 AI,还有以下建议: 1. 从编程语言入手学习,可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识,了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等,学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目,可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态,关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2024-10-30
在WaytoAGI如何从0开始学习AI
对于在 WaytoAGI 中从 0 开始学习 AI,以下是一些建议: 1. 学习 AI 是一个长期的过程,需要耐心和持续的努力,不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。 2. 完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。 3. 为您推荐【野菩萨的 AIGC 资深课】,这门课程由工信部下属单位【人民邮电出版社】开设,是市面上为数不多的值得推荐的 AI 课程之一,也是全网技术更新最快的课程。课程内容涵盖 AI 绘画、视听语言和 ChatGPT 等多个体系的知识,无论您是 AI 初学者还是进阶者,都能满足您的学习需求。您可以扫码添加菩萨老师助理,了解更多信息。 需要注意的是,开源社区资源丰富,适合自律的自主学习者,而知识付费课程能提供系统结构、专业指导、针对性计划和互动反馈,是一种高效的学习途径,您可以根据自身情况选择适合自己的学习方式。
2024-10-30
如何学习ai
以下是关于新手学习 AI 的全面指导: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 2. 体验 AI 产品,与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 五、持续学习和跟进 1. AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 2. 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 对于中学生学习 AI,还有以下建议: 1. 从编程语言入手学习,如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等体验 AI 的应用场景,也可以探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识,了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等,学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目,参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态,关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,无论是新手还是中学生,都可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2024-10-30