Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

控制在智能制造中的应用

Answer

以下是关于控制在智能制造中的应用的相关信息:

在智能制造领域,控制技术有着广泛的应用:

  1. 预测性维护:利用人工智能预测机器故障,帮助工厂避免停机,提高生产效率。
  2. 质量控制:通过人工智能检测产品缺陷,提升产品质量。
  3. 供应链管理:借助人工智能优化供应链,提高效率并降低成本。
  4. 机器人自动化:运用人工智能控制工业机器人,进一步提高生产效率。

此外,ControlNet 是一种由斯坦福大学张吕敏发布的神经网络模型,它能与预训练的图像扩散模型(如 Stable Diffusion)结合,通过引入额外条件输入来控制 AI 绘画的生成过程。其工作原理是将 Stable Diffusion 模型的权重复制到 ControlNet 的可训练副本中,并使用外部条件向量训练副本,具有训练过程的鲁棒性、避免过度拟合、可在小规模设备训练以及架构兼容性和迁移能力强等优点,不仅用于 AI 绘画,还可用于图像编辑、风格迁移、图像超分辨率等多种计算机视觉任务。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:ControlNet 是什么?

[title]问:ControlNet是什么?ControlNet是一种神经网络模型,由斯坦福大学张吕敏发布,它与预训练的图像扩散模型(例如Stable Diffusion)结合使用,通过引入额外的条件输入来控制AI绘画的生成过程。ControlNet模型通过在Stable Diffusion模型中添加辅助模块,实现对生成图像的精细控制。这些条件输入可以是多种类型的图像,例如涂鸦、边缘图、姿势关键点、深度图、分割图、法线图等,它们作为条件输入来指导生成图像的内容。ControlNet的工作原理涉及将Stable Diffusion模型的权重复制到ControlNet的可训练副本中,并使用外部条件向量来训练这个副本。这样做的好处是,可以在不破坏Stable Diffusion模型原本能力的前提下,通过小批量数据集对ControlNet进行训练,从而实现对特定条件的学习。ControlNet的设计思想提供了训练过程中的鲁棒性,避免了模型过度拟合,并允许在小规模甚至个人设备上进行训练。此外,ControlNet的架构具有强大的兼容性与迁移能力,可以用于其他扩散模型中,增强了图像生成的多样性和可控性。ControlNet的应用不仅限于AI绘画,它还可以用于图像编辑、风格迁移、图像超分辨率等多种计算机视觉任务,展现了在AI生成内容(AIGC)领域的广泛应用潜力。内容由AI大模型生成,请仔细甄别类似问题:Transformer是什么?

问:请问 AI 有哪些应用场景?

[title]问:请问AI有哪些应用场景?人工智能(AI)已经渗透到各行各业,并以各种形式改变着我们的生活。以下是一些人工智能的主要应用场景:1.医疗保健:医学影像分析:AI可以用于分析医学图像,例如X射线、CT扫描和MRI,以辅助诊断疾病。药物研发:AI可以用于加速药物研发过程,例如识别潜在的药物候选物和设计新的治疗方法。个性化医疗:AI可以用于分析患者数据,为每个患者提供个性化的治疗方案。机器人辅助手术:AI可以用于控制手术机器人,提高手术的精度和安全性。2.金融服务:风控和反欺诈:AI可以用于识别和阻止欺诈行为,降低金融机构的风险。信用评估:AI可以用于评估借款人的信用风险,帮助金融机构做出更好的贷款决策。投资分析:AI可以用于分析市场数据,帮助投资者做出更明智的投资决策。客户服务:AI可以用于提供24/7的客户服务,并回答客户的常见问题。3.零售和电子商务:产品推荐:AI可以用于分析客户数据,向每个客户推荐他们可能感兴趣的产品。搜索和个性化:AI可以用于改善搜索结果并为每个客户提供个性化的购物体验。动态定价:AI可以用于根据市场需求动态调整产品价格。聊天机器人:AI可以用于提供聊天机器人服务,回答客户的问题并解决他们的问题。4.制造业:预测性维护:AI可以用于预测机器故障,帮助工厂避免停机。质量控制:AI可以用于检测产品缺陷,提高产品质量。供应链管理:AI可以用于优化供应链,提高效率和降低成本。机器人自动化:AI可以用于控制工业机器人,提高生产效率。5.交通运输:

黄仁勋在AI界超级碗GTC2024的主旨演讲: 精华及全文(附视频)

[title]黄仁勋在AI界超级碗GTC2024的主旨演讲:精华及全文(附视频)您问我是否知道,我感谢您的提问。这是一个误解。然后我们向他们展示,这就是CTL,没有问题。所以这就是NVIDIA的CTL,以及您可以看到的CTL。您知道,CTL代表计算跟踪库,这让您知道我们一直在跟踪计算周期。它写了“程序真是太棒了”。这样,我们的芯片设计人员的生产力就可以提高。这就是您可以使用NIM做的第一件事。您可以使用它进行定制。我们有一项名为NEMO微服务的服务,可以帮助您管理数据,准备数据,以便您可以进行教学在这个人工智能上。您可以对它们进行微调,然后您可以对其进行防护,您可以评估答案,根据其他示例评估其性能,这就是所谓的NEMO。现在出现的微服务是三个要素,我们正在做的事情的三个支柱。第一个支柱当然是发明技术。AI模型和运行AI模型,然后再为您打包。是创建工具来帮助您修改它,其次是拥有人工智能技术,第二是帮助您修改它,第三是供您微调它的基础设施。如果您喜欢部署它,您可以将其部署在我们称为DGX云的基础设施上,或者您可以使用它,将其部署在本地,您可以将其部署在任何您喜欢的地方。一旦您开发了它,您就可以把它带到任何地方。所以我们是一家有效的人工智能代工厂。我们将为您和人工智能行业做的事情,就像台积电为我们制造芯片所做的那样。因此,我们带着我们的伟大想法去台积电,他们制造,我们随身携带。所以这里完全相同的事情,人工智能铸造厂和三大支柱是NEMS,NEMO微服务和DGX云。您可以做的另一件事是教导NEM要做的就是了解您的专有信息。请记住,在我们公司内部,我们的绝大多数数据并不在云中,而是在我们公司内部。您知道它一直坐在那里,并且一直在使用。天哪,我们想要获取的数据基本上是NVIDIA的智能。了解其含义,就像我们了解了我们刚刚谈到的几乎所有其他内容的含义一样,然后将这些知识重新索引到一种称为矢量数据库的新型数据库中。

Others are asking
AI提示词的意思是指训练自己的AI智能体吗
AI 提示词并非仅仅指训练自己的 AI 智能体。 智能体大多建立在大模型之上,其发展从基于符号推理的专家系统逐步演进而来。基于大模型的智能体具有强大的学习能力、灵活性和泛化能力。智能体的核心在于有效控制和利用大型模型以达到设定目标,这通常涉及精确的提示词设计,提示词的设计直接影响智能体的表现和输出结果。 设计提示词本质上是对模型进行“编程”,通常通过提供指令或示例完成。与多数其他 NLP 服务不同,补全和聊天补全几乎可用于任何任务,包括内容或代码生成、摘要、扩展、对话、创意写作、风格转换等。 我们的模型通过将文本分解为标记来理解和处理文本,在给定的 API 请求中处理的标记数量取决于输入和输出长度。对于英文文本,1 个标记大约相当于 4 个字符或 0.75 个单词,文本提示词和生成的补全合起来不能超过模型的最大上下文长度。
2024-12-25
有没有关于健身的人工智能,可以提供适合自己的锻炼计划
以下是一些关于健身的人工智能产品和案例,可为您提供适合自己的锻炼计划: 1. AI 健身是指利用人工智能技术来辅助或改善健身训练和健康管理。它能根据用户的健康状况、身体指标、运动目标和偏好,提供定制化的训练计划和建议。 2. 健身的 AI 工具: Keep:中国最大的健身平台,提供全面的健身解决方案。网址:https://keep.com/ Fiture:由核心 AI 技术打造,集硬件、丰富课程内容、明星教练和社区于一体。网址:https://www.fiture.com/ Fitness AI:利用人工智能进行锻炼,增强力量和速度。网址:https://www.fitnessai.com/ Planfit:健身房家庭训练与 AI 健身计划,AI 教练使用 800 多万条文本数据和 ChatGPT 实时提供指导。网址:https://planfit.ai/ 3. 案例: 马多克斯先生利用 ChatGPT 制定锻炼计划,例如让其总结锻炼笔记并提出建议。 森博斯基女士让 ChatGPT 写无麸质饮食计划。 此外,还有一些其他专门为协助特定任务而设计的 AI 驱动工具,如可提升沟通能力。
2024-12-24
有没有这些生成式人工智能的url
以下是一些与生成式人工智能相关的 URL: 生成式人工智能简介的视频学习地址: https://youtu.be/G2fqAlgmoPo 中文版本推荐: 生成式人工智能如何改变创意工作相关的框架:NVIDIA 的 2024 年人工智能现状报告链接: 英文解读链接:
2024-12-24
现在市面上面有什么好用的生成式人工智能吗?
目前市面上有许多好用的生成式人工智能,以下为您列举部分: 在文本和图像生成方面,有 OpenAI 的 GPT3(用于文本)、DALLE2(用于图像)、Whisper(用于语音),以及 Midjourney(在艺术竞赛中表现出色)等。 在创建可信角色方面,有 Charisma.ai、Convai.com、Inworld.ai 等,它们旨在为具有情感和自主权的 3D 角色提供动力,并提供工具以便创作者给角色设定目标。 一体化平台方面,Runwayml.com 较为成功,它在一个单一的软件包中汇集了一系列广泛的创作者工具。 在企业应用方面,Menlo Ventures 投资组合公司中的 Sana(企业搜索)、Eve(法律研究副驾驶)和 Typeface(内容生成 AI)等都是早期突破性的代表。 此外,还有 Google 的 BERT 和 LaMDA、Facebook 的 OPT175B 和 BlenderBot 等。同时,有数百公司正在构建通用聊天机器人,如 Replika 和 Anima 等。但需要注意的是,这些模型的训练通常需要大量数据和计算能力,大多数公司难以从头开始训练自己的此类模型。
2024-12-24
生成式人工智能或者专门的书籍教程是什么意思?这种人工智能有什么用?现在市面上有免费的吗?要是没有免费的我去翻外网也可以
生成式人工智能是一种能够创建新内容的人工智能技术。以下是关于生成式人工智能的一些详细信息: 课程方面: 台湾大学李宏毅教授的生成式 AI 课程,主要介绍了其基本概念、发展历程、技术架构和应用场景等内容。课程共 12 讲,每讲约 2 小时。通过学习该课程,可掌握基本概念和常见技术,能使用相关框架搭建简单模型,了解发展现状和未来趋势。学习内容包括: 1. 什么是生成式 AI:定义和分类,与判别式 AI 的区别,应用领域。 2. 生成式模型:基本结构和训练方法,评估指标,常见模型及其优缺点。 3. 生成式对话:基本概念和应用场景,系统架构和关键技术,基于模型的对话生成方法。 4. 预训练语言模型:发展历程和关键技术,优缺点,在生成式 AI 中的应用。 5. 生成式 AI 的挑战与展望:面临的挑战和解决方法,未来发展趋势和研究方向。 改变创意工作方面: 生成式人工智能在创意工作中发挥着重要作用。例如,生成模型经过训练后,可针对特定内容领域进行“微调”,催生了用于生物医学、法律、法语等的专用模型,以及适用于不同目的的 GPT3 等。NVIDIA 的 BioNeMo 是用于在超级计算规模上训练、构建和部署大型语言模型的框架,适用于生成化学、蛋白质组学和 DNA/RNA 等内容。但使用生成式人工智能仍需人工参与,人类要输入提示让其创建内容,创造性的提示会产生创造性的输出,“即时工程师”可能成为新职业。该领域已出现 DALLE 2 图像提示书和提示市场。 学习资源: 1. 教材:《生成式 AI 导论 2024》,李宏毅。 2. 参考书籍:《深度学习》,伊恩·古德费洛等。 3. 在线课程:李宏毅的生成式 AI 课程。 4. 开源项目:OpenAI GPT3、字节跳动的云雀等。 学习方法:根据课程内容和资源,制定适合自己的学习计划,多实践、多思考。 目前市面上有部分免费的生成式人工智能资源,但也有收费的。需要注意的是,未经许可翻外网可能存在法律风险,请您谨慎选择。
2024-12-24
如何学习创建智能体
学习创建智能体可以参考以下内容: 1. 了解智能体的基本概念: 智能体大多建立在大模型之上,从基于符号推理的专家系统逐步演进而来。 基于大模型的智能体具有强大的学习能力、灵活性和泛化能力。 智能体的核心在于有效控制和利用大型模型,提示词设计直接影响其表现和输出结果。 2. 实践操作: 基于公开的大模型应用产品(如Chat GLM、Chat GPT、Kimi等)尝试开发。 例如,在相关平台上: 点击“浏览GPTs”按钮。 点击“Create”按钮创建自己的智能体。 使用自然语言对话或手工设置进行具体操作。 调试并发布智能体。 3. 利用特定平台: 如智谱BigModel: 注册智谱Tokens智谱AI开放平台:https://bigmodel.cn/ 。 获取资源包,如新注册用户送2000万Tokens,或通过充值、购买多种模型的低价福利资源包,或共学营报名赠送资源包。 进入智能体中心我的智能体开始创建智能体。 如字节的扣子: 扣子官网:https://www.coze.cn/ 。 通过简单3步创建智能体,包括起名称、写介绍、使用AI创建头像。
2024-12-24
chatgpt最快达到1亿用户应用
ChatGPT 是最快达到 1 亿用户的应用程序,在短短 6 周内就自然实现了这一成就。相比之下,Instagram 花了 2.5 年,WhatsApp 花了 3.5 年,YouTube 和 Facebook 花了 4 年才达到相同的用户需求水平。ChatGPT 并非孤立现象,Character AI 的参与深度(平均每次会话 2 小时)、Github Copilot 的生产力益处(效率提高 55%)以及 Midjourney 的商业化路径(数亿美元的收入)都表明第一批杀手级应用已经到来。OpenAI 对 ChatGPT 的反响感到震惊,尽管其内部的兴奋点更多集中在 GPT4 上,但 ChatGPT 让公众意识到必须应对 AI 这一现实,它成为了历史上增长最快的消费者应用,据说已积累 1 亿用户(OpenAI 不愿证实这一点,只说它拥有数百万用户)。
2024-12-25
如何做面向高中生,专注于AI应用的培养项目
以下是一些面向高中生专注于 AI 应用的培养项目的建议: 1. 课程开发:包括 K12、本科和社区学院的人工智能相关领域的课程开发,以及技术伦理方面的课程开发。 2. 支持非正式教育活动:为 K12 学生提供参与人工智能系统的非正式教育活动支持。 3. 实现教育公平:努力为传统上在人工智能领域代表性不足的人群和地理区域提供公平的 K12 人工智能教育。 4. 教师培训:为 K12 教师提供人工智能及相关领域的培训和专业发展项目。 5. 提高研究人员留存率:努力提高专注于人工智能系统的研究人员在高等院校和其他非营利研究机构的留存率。 6. 公众教育:开展普及人工智能用途及其社会影响的宣传项目。 7. 评估活动:对开展的相关活动进行评估。 在教学中,要注意以下几点: 1. 对于写作等方面,如果让学生使用 AI,要先让他们了解什么是好的写作,找到自己的创造性声音。 2. 决定使用 AI 时,要根据学习任务来考虑,以学习目标驱动 AI 的使用,而非相反。 3. 例如在编程教学中,可能先让学生手动编码,掌握语言后再将 AI 生成的代码作为节省时间的工具;而在健康课程中,重点可能在于帮助学生设计健康活动,对使用生成式 AI 编写代码的限制可能不同。
2024-12-25
ai技术商业应用典型案例
以下是一些 AI 技术商业应用的典型案例: 企业运营: 日常办公文档材料撰写整理。 营销对话机器人,进行市场分析和提供销售策略咨询。 法律文书起草、案例分析以及法律条文梳理。 人力资源方面的简历筛选、预招聘和员工培训。 教育: 协助评估学生学习情况,为职业规划提供建议。 针对学生情况以及兴趣定制化学习内容。 论文初稿搭建及论文审核。 帮助低收入国家/家庭通过 GPT 获得平等的教育资源。 游戏/媒体: 定制化游戏,动态生成 NPC 互动,自定义剧情和开放式结局。 出海文案内容生成,语言翻译及辅助广告投放和运营。 数字虚拟人直播。 游戏平台代码重构。 AI 自动生成副本。 零售/电商: 舆情、投诉、突发事件监测及分析。 品牌营销内容撰写及投放。 自动化库存管理。 自动生成或完成 SKU 类别选择、数量和价格分配。 客户购物趋势分析及洞察。 金融/保险: 个人金融理财顾问。 贷款信息摘要及初始批复。 识别并检测欺诈活动风险。 客服中心分析及内容洞察。 保险理赔处理及分析。 投资者报告/研究报告总结。 制造业/汽车: 生产计划、供应链计划状态查询。 产线预测性维保辅助。 产品质量分析与溯源。 自动驾驶全场景模拟训练及虚拟汽车助手。 线上购车品牌、配置对比分析。 生命科学: 研发阶段靶点发现及产品成药性。 医学文献内容检索,重点摘要提取,相关法规整理。 医药代表培训及知识库建立。 分诊导诊助理、诊疗助理、术后护理及复建辅助。 此外,还有以下具体案例: 京东物流仓储管理系统:利用数据分析、机器学习等技术优化物流仓储管理,提高运营效率。例如通过智能算法优化货物存储位置,减少拣货时间。 BOSS 直聘简历筛选功能:利用自然语言处理、机器学习技术快速筛选简历,提高招聘效率。根据企业的招聘要求,提取关键信息,为企业推荐符合条件的候选人。 贝壳找房租赁管理功能:利用数据分析、自然语言处理技术管理房地产租赁业务,提高效率。根据租客的需求和偏好,自动推荐合适的房源。 腾讯游戏社交平台:利用数据分析、机器学习技术为玩家提供社交功能,增强游戏体验。根据玩家的游戏历史和兴趣爱好,推荐可能成为好友的玩家。
2024-12-25
能够录制屏幕,并且转为脚本的应用是什么
目前市面上有多种能够录制屏幕并转为脚本的应用,常见的有 Camtasia、OBS Studio 等。Camtasia 功能丰富,操作相对简单,适合大多数用户使用;OBS Studio 则是一款免费开源的软件,具有较强的自定义性。您可以根据自己的需求选择适合的应用。
2024-12-25
目前国内最多人用的ai软件是什么,大家具体的应用场景是什么。
目前国内较多人使用的 AI 软件及应用场景如下: 医疗保健领域: 医学影像分析:辅助诊断疾病。 药物研发:加速药物研发过程。 个性化医疗:提供个性化治疗方案。 机器人辅助手术:提高手术精度和安全性。 金融服务领域: 风控和反欺诈:降低金融机构风险。 信用评估:帮助做出贷款决策。 投资分析:辅助投资者决策。 客户服务:提供 24/7 服务并回答常见问题。 零售和电子商务领域: 产品推荐:向客户推荐可能感兴趣的产品。 搜索和个性化:提供个性化购物体验。 动态定价:根据市场需求调整产品价格。 聊天机器人:回答客户问题并解决问题。 制造业领域: 预测性维护:避免机器故障停机。 质量控制:检测产品缺陷。 供应链管理:优化供应链提高效率和降低成本。 机器人自动化:提高生产效率。 此外,还有一些具体的应用产品,如: 游戏领域:腾讯游戏助手的 AI 游戏角色生成器,为游戏开发者生成独特角色。 招聘领域:智联招聘 APP 的 AI 招聘筛选工具,帮助企业快速筛选简历。 房地产领域:贝壳找房 APP 的 AI 房地产评估系统,准确评估房地产价值。 天气领域:墨迹天气 APP 的 AI 天气预报助手,提供精准天气预报和气象预警。 需要注意的是,关于国内使用人数最多的 AI 软件,没有确切的权威统计数据,其使用情况可能因行业、用户需求和地域等因素而有所不同。
2024-12-24
主流的AI应用开发平台有哪些
以下是一些主流的 AI 应用开发平台: 1. 图虫网:这是一个 AI 摄影作品销售平台,运用图像识别、数据分析技术,市场规模达数亿美元。它为摄影爱好者提供作品销售渠道,利用 AI 技术对摄影作品进行分类和推荐。 2. 网易云音乐音乐人平台:作为 AI 音乐作品发布平台,采用音频处理、数据分析技术,市场规模达数亿美元。为音乐创作者提供作品发布、推广、版权管理等服务。 3. 好好住 APP:这是一个 AI 家居用品推荐平台,使用数据分析、自然语言处理技术,市场规模达数亿美元。能根据用户需求推荐家居用品。 4. 东方财富网投资分析工具:作为 AI 金融投资分析平台,运用数据分析、机器学习技术,市场规模达数十亿美元。分析金融市场,为投资者提供投资建议和决策支持。 5. 500px 摄影社区:这是一个 AI 摄影比赛平台,利用图像识别、数据分析技术,市场规模达数亿美元。举办摄影比赛,展示优秀摄影作品。 6. Logic Pro X 教学软件:作为 AI 音乐制作教学平台,采用机器学习、音频处理技术,市场规模达数亿美元。为用户提供个性化的音乐制作教学服务。 7. 鲁班到家 APP:这是一个 AI 家居维修服务平台,运用数据分析、自然语言处理技术,市场规模达数亿美元。为用户提供家居维修服务。 8. 雪球财经 APP:作为 AI 金融投资教育平台,使用数据分析、自然语言处理技术,市场规模达数亿美元。为用户提供个性化的金融投资教育服务。 9. 美团外卖配送系统:这是一个 AI 物流配送优化系统,运用数据分析、机器学习技术,市场规模达数十亿美元。优化物流配送路线,提高配送效率。 10. 猎聘 APP:作为 AI 招聘求职平台,采用数据分析、自然语言处理技术,市场规模达数十亿美元。连接求职者和招聘企业,促进就业。 11. 链家 APP:这是一个 AI 房地产交易平台,运用数据分析、自然语言处理技术,市场规模达数十亿美元。为买卖双方提供房地产交易平台。 12. 游戏开发工具 Unity:作为 AI 游戏关卡生成器,使用图像生成、机器学习技术,市场规模达数亿美元。为游戏开发者自动生成游戏关卡。
2024-12-24
我是一名传统制造业的产品经理,一名ai小白,想在ai方面进行创业,有哪些方向建议
以下是为您提供的在 AI 方面创业的方向建议: 对于技术爱好者: 1. 从小项目开始,如搭建简单博客或自动化脚本,熟悉 AI 能力和局限性。 2. 探索 AI 编程工具,如 GitHub Copilot 或 Cursor,从生成注释或简单函数逐步过渡到复杂任务。 3. 参与 AI 社区,如 Stack Overflow 的 AI 板块或 Reddit 的 r/artificial 子版块,与开发者交流,了解最新趋势。 4. 构建 AI 驱动的项目,如开发简单的聊天机器人或图像识别应用,深入理解实际应用过程。 对于内容创作者: 1. 利用 AI 辅助头脑风暴,针对主题生成创意方向。 2. 建立 AI 写作流程,从生成大纲开始,逐步扩展到段落生成和数据支持。 3. 探索多语言内容,借助 AI 辅助翻译和本地化内容以拓展国际市场。 4. 利用 AI 工具优化 SEO,根据建议调整标题、元描述和关键词使用。 从行业观点来看: 1. 可能成功的 AI 公司应打造自身的数据飞轮,尤其在 ToC 场景中寻求突破,因为 C 端的数据飞轮效应可能是早期决胜关键。 2. 有专业壁垒的垂直模型可能是机会所在,如高价值、特定领域依赖丰富的专有数据集。 3. 大模型产品可朝个性化(装上“记忆”成为工作助理或陪伴者)和场景化(装上“手”和“眼睛”)方向发展。 从 AI 创业者的情况来看: 1. 如天涯,具备软件开发经验和连续创业经历,可在 AI 领域发挥优势。 2. 像 Eureka 这样的 Fintech 产品经理,可在 AI 金融领域应用方面探索。 3. Zima 在编程和 AI 教育探索方面有基础,可关注 AI+教育和 AI4Science 方向。 4. Mr.water🐳 可凭借与高校教授的联系,考虑科研方向转化。 总之,AI 创业要注重技术驱动和产品定义,用好市面上的 AI 工具,从效率和变革角度组织公司架构。同时,把握好融资节奏,在实践中有效迭代。
2024-12-06
AI在制造业的应用
在制造业领域,AI 有以下应用: 1. 产品设计和开发:利用 AI 生成工具如 Adobe Firefly、Midjourney 等,可根据文字描述快速生成产品的 3D 模型、渲染图、插图等设计元素,大幅提高产品设计效率。 2. 工艺规划和优化:结合大语言模型的自然语言处理能力,能自动生成制造工艺流程、设备选型、质量控制等方案,优化生产过程。 3. 设备维护和故障诊断:利用 AI 模型分析设备运行数据,可预测设备故障,并自动生成维修建议,提高设备可靠性。 4. 供应链管理:AI 可根据历史数据和市场变化,自动生成采购计划、库存预测、物流优化等内容,提高供应链管理效率。 5. 客户服务:基于对话模型的 AI 客服机器人,能自动生成个性化的客户回复,提升客户体验。 此外,AI 在制造业还包括以下方面的应用: 1. 预测性维护:可预测机器故障,帮助工厂避免停机。 2. 质量控制:能够检测产品缺陷,提高产品质量。 3. 供应链管理:优化供应链,提高效率和降低成本。 4. 机器人自动化:用于控制工业机器人,提高生产效率。
2024-11-22
具身智能在制造行业的落地方向有哪些?
具身智能在制造行业的落地方向主要包括以下几个方面: 1. 预测性维护:利用具身智能技术预测机器故障,帮助工厂避免停机,提高生产效率。 2. 质量控制:检测产品缺陷,提升产品质量。 3. 供应链管理:优化供应链,实现效率提升和成本降低。 4. 机器人自动化:控制工业机器人,进一步提高生产效率。 具身智能是人工智能领域的一个子领域,强调智能体通过与物理世界或虚拟环境的直接交互来发展和展现智能。它的核心在于智能体的“身体”或“形态”,这些身体可以是物理形态,也可以是虚拟形态。具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注如何设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发算法使智能体理解和解释视觉信息,进行有效的空间导航和物体识别。 作为一个系统性的工程,具身智能涉及算法层、不同技术流派、数据、模拟器、传感器、视觉方案、力学结构等多个维度,并整体向着更鲁棒性、各层级之间过渡更加平滑的方向发展。但也存在一些问题,比如力矩控制、电流控制做到哪一步才算端到端,机器人的 foundation model 或者 GPT 时刻会是什么样,触觉等感知信号以什么样的形式进入模型当中等。
2024-10-26
具身智能在制造行业的应用场景有哪些
具身智能在制造行业的应用场景主要包括以下方面: 1. 预测性维护:通过具身智能,能够预测机器故障,避免工厂停机,保障生产的连续性。 2. 质量控制:检测产品缺陷,提升产品质量,减少次品率。 3. 供应链管理:优化供应链,提高效率,降低成本。 4. 机器人自动化:控制工业机器人,提高生产效率。 具身智能是人工智能领域的一个子领域,强调智能体通过与物理世界或虚拟环境的直接交互来发展和展现智能。它的核心在于智能体的“身体”或“形态”,这些身体可以是物理形态,如机器人的机械结构,也可以是虚拟形态。具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。 在机器人发展历程中,第一代机器人是示教再现型,没有感知和思考能力,按预设程序重复动作,目前仍常见于汽车制造业等工业生产线。之后出现了有感觉的机器人,能获取周围环境和相关对象的信息。例如,日本早稻田大学研发的人形智能机器人 WABOT1 包含肢体控制系统、视觉系统和对话系统,后续还有不断的更新和发展。
2024-10-22
具身智能在制造行业的应用场景有哪些?
具身智能在制造行业有以下应用场景: 1. 预测性维护:利用具身智能预测机器故障,避免工厂停机,提高生产效率。 2. 质量控制:检测产品缺陷,提升产品质量。 3. 供应链管理:优化供应链,增强效率并降低成本。 4. 机器人自动化:控制工业机器人,提高生产效率。 具身智能是人工智能领域的一个子领域,强调智能体通过与物理世界或虚拟环境的直接交互来发展和展现智能。它认为智能不仅是处理信息的能力,还包括感知环境、自主导航、操作物体、学习和适应环境的能力。其核心在于智能体的“身体”或“形态”,这些身体可以是物理形态如机器人的机械结构,也可以是虚拟形态如在模拟环境中的虚拟角色。具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。 在机器人发展历程中,第一代机器人是技术探索阶段的示教再现型机器人,没有感知和思考能力,按预设程序重复动作,目前仍常见于汽车制造业等工业生产线。1970 年至 1997 年出现了有感觉的机器人,能获取周围环境和相关对象的信息。例如日本早稻田大学研发的 WABOT1 包含肢体控制系统、视觉系统和对话系统,后续还有更新版本。本田公司也开发了多种行走机器人。
2024-10-15
AI目前在制造业和零售领域有什么案例吗?
在制造业领域,AI 的应用案例包括: 预测性维护:可用于预测机器故障,避免工厂停机。 质量控制:能够检测产品缺陷,提升产品质量。 供应链管理:有助于优化供应链,提高效率并降低成本。 机器人自动化:用于控制工业机器人,提高生产效率。 生产计划、供应链计划状态查询。 产线预测性维保辅助。 产品质量分析与溯源。 自动驾驶全场景模拟训练及虚拟汽车助手。 在零售领域,AI 的应用案例包括: 舆情、投诉、突发事件监测及分析。 品牌营销内容撰写及投放。 自动化库存管理。 自动生成或完成 SKU 类别选择、数量和价格分配。 客户购物趋势分析及洞察。
2024-08-29
我想找一个能够实现运动控制逻辑的编程助手
目前在 AI 领域中,有一些编程助手可以帮助您实现运动控制逻辑。例如,您可以考虑使用 Python 中的相关库,如 `numpy`、`matplotlib` 等,结合数学和物理知识来构建运动控制模型。另外,一些专门的机器人编程框架和工具,如 ROS(Robot Operating System)也能为您提供支持。但具体选择哪种工具,还需要根据您的具体需求和技术背景来决定。
2024-11-20
ai控制骨骼动画
以下是关于 AI 控制骨骼动画的相关信息: 在 Stable Diffusion 中,使用 ControlNet 插件进行姿态约束时,对于国风 3 模型,点击生成可能得到相应姿势,但 AI 识别可能不准确,会出现骨骼错位等问题,需要耐心刷图和调整参数。作者还收集了不同 pose 的骨架图,可在公众号【白马与少年】回复【SD】获取以作人物动作参考。 Tripo AI 的模型详情页提供丰富工具和选项,可对模型进行编辑和下载等操作。模型工具包括收藏、分享、动态旋转或暂停、删除等按钮,在模型区域按住鼠标并拖动可自由旋转模型。编辑工具中的 Auto Rigging 可自动绑定骨骼,后续可在 Blender 里做动画。风格化选项有原始、乐高、像素化、沃罗诺伊图等,Custom 设置可根据特定软件或用途进行定制,Retopologize 提供不同精度的拓扑网格选项,Format 提供多种模型文件格式,选择“Download”可下载模型,使用“Refine”可进一步精修。 晨然在其 AI 作品《Devices》的创作中,工作流是使用 Blender 制作白模动画,导出深度图、线框图帧序列,使用 ComfyUI 进行风格迥异的渲染。他认为 AI 视频与传统工作流制作视频各有优缺点,不是替代关系。AI 内容生成速度快、成本低但不可控、画面粗糙;传统工作流可控性强但慢、成本高。应让 AI 与传统工作流结合,在随机性中寻找可控性,平衡两者以创造新的艺术创作流程。
2024-10-10
过程控制系统是指DCS吗
过程控制系统并不完全等同于 DCS(分布式控制系统)。 过程控制系统是一种用于工业生产过程中对工艺参数进行自动控制的系统,旨在确保生产过程的稳定性、提高产品质量和生产效率。 DCS 是过程控制系统的一种常见类型,具有分布式控制、集中管理等特点。然而,除了 DCS 之外,过程控制系统还可能包括其他形式,例如 PLC(可编程逻辑控制器)控制系统等。 总之,DCS 是过程控制系统中的一种,但过程控制系统的范畴更广,包含多种不同的控制形式和技术。
2024-10-08
Midjurnery绘画如何控制风格
要控制 Midjourney 绘画的风格,可以通过以下参数和功能实现: 1. 模型版本切换:使用 `style <4a,4b or 4c>` 可在 Midjourney 模型版本 4 的不同版本间切换。 2. 风格强度调整:`stylize <number>, or s <number>` 参数影响 Midjourney 默认美学风格应用于任务的强度。 3. 人物一致性:通过 `cref URL` 在提示词后添加人物参考图像的 URL,并使用 `cw` 修改参考强度(从 0 到 100),强度为 100(`cw 100`)时使用人物的脸、头发和衣服,强度为 0(`cw 0`)时仅关注脸部(适用于改变服装/发型等)。还可以使用多个 URL 来融合多个图像中的信息/人物,如 `cref URL1 URL2` 。 此外,还有一些其他基本参数会对生成结果产生影响: 1. 宽高比:`aspect,or ar` 可改变生成图像的宽高比。 2. 混沌值:`chaos <number 0–100>` 改变结果的多样性,值越高越不寻常和意外。 3. 负向提示:`no` 用于尝试从图像中去除某些元素。 4. 质量:`quality <.25,.5,1,or 2>, or q <.25,.5,1,or 2>` 决定渲染质量和花费时间。 5. 种子:`seed <integer between 0–4294967295>` 用于指定生成初始图像网格的随机种子数。 6. 停止:`stop <integer between 10–100>` 可在生成过程中途停止作业。 需要注意的是,模型版本 5 的默认值和范围如下:宽高比默认 1:1,混沌值默认 0,质量默认 1,种子随机,停止默认 100,风格化默认 100。宽高比大于 2:1 处于实验阶段,可能产生不可预测的结果。
2024-10-07
运用ai程序控制电脑游戏帮忙搬砖
使用 AI 程序控制电脑游戏进行搬砖的行为是违反游戏规则和道德准则的,可能会导致账号封禁等不良后果,因此不建议您这样做。AI 技术应当被用于合法、有益和符合道德规范的用途。
2024-08-20
能够用ai控制电脑打游戏
AI 在游戏中的应用已经有了很大的发展。生成式 AI 是一种机器学习类别,计算机能根据用户提示生成新内容,目前在文本和图像领域应用较成熟,在其他创意领域如动画、音效、音乐、虚拟角色等也有进展。 在游戏中,早期如雅达利的 Pong 就有计算机控制的对手,但它们只是简单脚本程序,不能学习,能力取决于程序员。如今,由于更快的微处理器和云技术,有了更多计算能力,能构建大型神经网络,在复杂领域识别模式和表示。 在游戏音频方面,生成式 AI 带来了实时生成对话,角色能说任何话并完全响应玩家行为;有助于玩家扮演幻想角色,维持幻觉;能控制声音细微差别;还能实现本地化,将对话翻译成任何语言并以相同声音发音,像 Deepdub 这样的公司专注于此领域。
2024-08-20