Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

大模型在数据分析上的应用

Answer

大模型在数据分析上有广泛的应用。

首先,了解一下大模型的基本概念。数字化便于计算机处理,为让计算机理解 Token 之间的联系,需将 Token 表示成稠密矩阵向量,即 embedding,常见算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。以 Transform 为代表的大模型采用自注意力机制来学习不同 token 之间的依赖关系,生成高质量 embedding。大模型的“大”在于用于表达 token 之间关系的参数多,如 GPT-3 拥有 1750 亿参数。

大模型因其强大能力,在多个领域有热门应用场景:

  1. 文本生成和内容创作:撰写文章、生成新闻报道、创作诗歌和故事等。
  2. 聊天机器人和虚拟助手:进行自然对话,提供客户服务、日常任务提醒和信息咨询等。
  3. 编程和代码辅助:自动补全、修复 bug 和解释代码,提高编程效率。
  4. 翻译和跨语言通信:理解和翻译多种语言,促进不同语言背景用户的沟通和信息共享。
  5. 情感分析和意见挖掘:分析社交媒体等中的文本,为市场研究和产品改进提供支持。
  6. 教育和学习辅助:创建个性化学习材料、回答学生问题和提供语言学习支持。
  7. 图像和视频生成:如 DALL-E 等模型可根据文本描述生成相应图像,未来可能扩展到视频。
  8. 游戏开发和互动体验:创建游戏角色对话、生成故事情节和增强玩家沉浸式体验。
  9. 医疗和健康咨询:回答医疗相关问题,提供初步健康建议和医疗信息查询服务。
  10. 法律和合规咨询:解读法律文件,提供合规建议,降低法律服务门槛。

大型模型主要分为两类:大型语言模型专注于处理和生成文本信息;大型多模态模型能处理包括文本、图片、音频等多种类型信息。二者在处理信息类型、应用场景和数据需求方面有所不同。大型语言模型主要用于自然语言处理任务,依赖大量文本数据训练;大型多模态模型能处理多种信息类型,应用更广泛,需要多种类型数据训练。

相对大模型,也有所谓的“小模型”,它们通常是为完成特定任务而设计。

Content generated by AI large model, please carefully verify (powered by aily)

References

大模型入门指南

数字化的好处是便于计算机处理。但为了让计算机理解Token之间的联系,还需要把Token表示成稠密矩阵向量,这个过程称之为embedding([3]),常见的算法有:基于统计Word2Vec,通过上下文统计信息学习词向量GloVe,基于词共现统计信息学习词向量基于深度网络CNN,使用卷积网络获得图像或文本向量RNN/LSTM,利用序列模型获得文本向量基于神经网络BERT,基于Transformer和掩码语言建模(Masked LM)进行词向量预训练Doc2Vec,使用神经网络获得文本序列的向量以Transform为代表的大模型采用自注意力(Self-attention)机制来学习不同token之间的依赖关系,生成高质量embedding。大模型的“大”,指的是用于表达token之间关系的参数多,主要是指模型中的权重(weight)与偏置(bias),例如GPT-3拥有1750亿参数,其中权重数量达到了这一量级,而词汇表token数只有5万左右。参考:[How does an LLM"parameter"relate to a"weight"in a neural network?](https://datascience.stackexchange.com/questions/120764/how-does-an-llm-parameter-relate-to-a-weight-in-a-neural-network"How does an LLM"parameter"relate to a"weight"in a neural network?")

问:现在大模型有什么比较火的应用场景

大模型因其强大的语言理解和生成能力,在多个领域和应用场景中表现出色,成为当前AI领域的热点。以下是一些大模型比较火的应用场景:文本生成和内容创作:大模型可以生成连贯、有逻辑的文本,应用于撰写文章、生成新闻报道、创作诗歌和故事等。聊天机器人和虚拟助手:利用大模型的自然语言处理能力,开发能够与人类进行自然对话的聊天机器人,提供客户服务、日常任务提醒和信息咨询等服务。编程和代码辅助:大模型可以用于代码自动补全、bug修复和代码解释,帮助开发者提高编程效率。翻译和跨语言通信:大模型能够理解和翻译多种语言,促进不同语言背景的用户之间的沟通和信息共享。情感分析和意见挖掘:通过分析社交媒体、评论和反馈中的文本,大模型可以识别用户情感和观点,为市场研究和产品改进提供数据支持。教育和学习辅助:大模型可以用于创建个性化的学习材料、自动回答学生问题和提供语言学习支持。图像和视频生成:如DALL-E等模型可以根据文本描述生成相应的图像,甚至在未来可能扩展到视频内容的生成。游戏开发和互动体验:大模型可以用于创建游戏中的角色对话、故事情节生成和增强玩家的沉浸式体验。医疗和健康咨询:大模型能够理解和回答医疗相关的问题,提供初步的健康建议和医疗信息查询服务。法律和合规咨询:大模型可以帮助解读法律文件,提供合规建议,降低法律服务的门槛。这些应用场景只是大模型潜力的一部分体现,随着技术的进步和模型的优化,大模型在未来可能会拓展到更多的领域和场景中。同时,随着大模型的普及,也需要注意其在隐私、安全和伦理方面的挑战。内容由AI大模型生成,请仔细甄别。

十七问解读生成式人工智能

大型模型主要分为两类:一是大型语言模型,专注于处理和生成文本信息;二是大型多模态模型,这类模型能够处理包括文本、图片、音频等多种类型的信息。[heading1]问题八、大型多模态模型与大型语言模型有何不同?[content]1.二者处理的信息类型不同。大型语言模型专注于处理和生成文本信息,通过分析大量的文本数据来理解和生成自然语言。而大型多模态模型不仅能处理文本信息,还能理解和生成图片、音频等多种类型的信息,这使得它们能够在更多样化的任务中应用。2.应用场景也有所不同。大型语言模型主要用于自然语言处理任务,如文本翻译、文本生成、情感分析等。而大型多模态模型由于能够处理多种信息类型,可以应用于更广泛的领域,例如图像识别与描述、视频分析、语音识别与生成等。3.在数据需求方面也有所不同。大型语言模型主要依赖于大量的文本数据进行训练,而大型多模态模型则需要多种类型的数据进行训练,包括文本、图片、音频等,以便在不同模态间建立关联。[heading1]问题九、有了大模型,是不是还有小模型?[content]当我们谈论所谓的“小模型”时,实际上是在相对地比较。与那些拥有海量参数和训练数据的大型模型相比,这些模型的规模显得更小一些。因此,在日常交流中,我们习惯将它们称作“小模型”。但如果要更精确地描述,这些模型其实是被设计来完成特定任务的,比如最初用于图像分类的模型,只能分辨是或不是某一个东西(比如猫🐱、狗🐶)。

Others are asking
怎么基于飞书表格数据分析
基于飞书表格进行数据分析可以参考以下步骤: 1. 应用的背景说明 解决的问题:使用 Coze、飞书多维表格、自定义 AI 字段捷径来实现数据的高效抓取与批量 AI 化处理。 技术场景:包括 Coze 定义智能体并发布到飞书多维表格字段捷径,多维表格中使用和配置自定义的 AI 字段捷径,Coze 应用采用交互式界面将数据导入到飞书多维表格并驱动其自动运行,以及多维表格仪表盘对数据的可视化。 期望达到的目的:更多是希望大家能了解“如何最高效率使用 AI”,并将方案泛化到自己的实际工作中,同时选择了最适合的技术路线(不懂代码即可完成)。 2. 动手实践 设计多维表格:进到飞书,新建一个多维表格,配置字段,新建一列,选择编辑列,完成相关设置。配置完后,打开自动更新,若 note_url 有赋值,模型分析会自动触发。 配置其它列:例如在第一列中设置提取标题,同理可新建列提取正文、点赞、转发、评论列表等数据,进行更多自动化处理,包括笔记内容分析、仿写、改写,封面分析、标题拆解、图文复刻、视频提取分析(逐帧解析)分析视频、音频和字幕等数据分析,基于评论列表的舆情分析、情绪分析、线索挖掘、需求挖掘等。 更多资源:关于多维表格相关教程,推荐复习。 3. 创建知识库并上传表格数据 上传方式:本地文档 操作步骤: 在表格格式页签下,选择本地文档,然后单击下一步。 将要上传的文档拖拽到上传区,或单击上传区域选择要上传的文档,然后单击下一步。目前支持上传.csv 和.xlsx 格式的文件内容,且表格内需要有列名和对应的数据。每个文件不得大于 20M。一次最多可上传 10 个文件。 配置数据表信息后,单击下一步。包括指定数据范围(通过选择数据表、表头、数据起始行指定数据范围)、确认表结构(系统已默认获取了表头的列名,可自定义修改列名,或删除某一列名)、指定语义匹配字段(选择哪个字段作为搜索匹配的语义字段。在响应用户查询时,会将用户查询内容与该字段内容的内容进行比较,根据相似度进行匹配)。 查看表结构和数据,确认无误后单击下一步。 完成上传后,单击确定。
2025-03-12
AI赋能办公,包含AI+对话、AI+写作与PPT、图片与视频生成和数据分析,还有面向HR、行政、财务、营销等岗位的AI赋能课
以下是关于 AI 赋能办公的相关内容: GPT 使用场景: 1. 内容生成:可以生成文章、故事、诗歌、歌词等内容。 演示:https://chat.openai.com/ 、https://bard.google.com/extensions 、https://claude.ai/ 2. 聊天机器人:作为聊天机器人后端,提供自然对话体验。 演示: 3. 问答系统:为用户提供准确答案。 4. 文本摘要:生成文本的摘要或概述。 5. 机器翻译:虽非专门设计,但有不错表现。 6. 群聊总结: 7. 代码生成:GPT3 及后续版本可生成代码片段,帮助解决编程问题。 8. 教育:用于教育领域,帮助学生解答问题或提供学习材料。 9. 浏览器插件:webpilot 10. PDF 对话:演示 www.chatpdf.com PPT 相关: 1. 2. AiPPT.cn:爱设计&AiPPT.cn 是一家 AIGC 数字科技企业,致力于打造“下一代个人与组织的 Ai 工作站”。旗下产品包括 AiPPT 等超过 10 余款应用 AI 能力的内容创作工具。23 年在 Ai+办公领域推出 AiPPT.cn/AiPPT.com,帮助用户“一分钟一键生成 PPT”,是国内 AiPPT 赛道创业公司第 1 的产品,全球第 4,国内所有 AIGC 产品 PC 端 Top10。目标市场主要是市场、运营、销售、人力、财务、行政、技术、产品、总助、公务员、学生、老师等基层及中高层管理岗位人员。 3. 在众多的 PPT 工具中,AI 带来便捷高效体验。深入了解了五大 AI PPT 工具:MindShow、爱设计、闪击、Process ON、WPS AI,它们各自有鲜明特色和擅长场景。选择合适工具要根据实际需求调整,试用和体验比盲目跟风更明智。 其他: 1. 音视频提取总结:https://bibigpt.co/r/AJ 2. 播客总结:https://podwise.xyz/dashboard/trending 3. 生成脑图:https://xmind.ai/editor/
2025-03-12
数据分析师常用的prompt
以下是数据分析师常用的 prompt 相关内容: 1. ChatGPT 助力数据分析: 第一个 user prompt:限定 SELECT SQL,不要用 SELECT查询全部列,仅回复一条 SELECT SQL 语句,至少查询两列(数据项、数据值),不能直接查询长类型字段(如 mediumtext/longtext),可用 count/substring 等函数查询。 system prompt 是表结构信息,如有难以理解的字段可告知 GPT 字段意义,多个表可分开描述。 需校验 GPT 生成的 SQL,不通过直接返回提示“抱歉,不支持此类请求”,通过再执行 SQL 查询数据。 数据分析的 user prompt:提示数据分析,限定返回的 JSON 格式(conclusion、keyMap、title),keyMap 用于数据 key 的映射,获取结果数据对应的维度、数据项、数据值的 key 值,用于映射数据渲染图表,根据结果数据 tableData 的维度选择对应的 prompt 传递给 GPT。 结果数据 tableData 跟随接口返回到前端,已通过 SQL 查询的数据,不能让 GPT 再次生成,否则耗时。 2. 数据:数据分析 prompt:https://notion.castordoc.com/gptprompts,castordoc 整理的适合数据团队日常使用的 prompt 案例。 3. 潘帅:手把手分享法律人如何用好 AI—Prompt 篇: 律师常用 Prompt 场景: 案例检索:最好使用法律行业垂类的 AI 产品,通用型 AI 存在问题。 Prompt 指令词示例: 请搜索近五年内关于商标侵权案件中“混淆可能性”标准的具体判例,并提供相似度最高的三个案例的关键要点摘要。 检索近三年内所有涉及软件算法专利侵权的案例,分析法院判决中关于技术特征对比和侵权判定的标准,为即将面临的专利侵权案件提供参考。 比对不同地区法院在处理劳动争议案件时对加班费计算标准的差异判决,总结对雇主有利的判决趋势,为客户提供合规操作指导。 研究环境法相关案例,特别是涉及工业废弃物处理的法律责任,为客户提供合规处理建议,以降低潜在的法律风险。 Promopt 结构提示:【案例领域或类型+明确需要查找的重点内容+查找案例的目的+其他希望 AI 做的事情】 类案检索:最好使用法律行业垂类的 AI 产品,通用型 AI 存在问题。
2025-03-11
在本地环境下要搭建一个医疗数据分析的BI智能体,应该怎么做
抱歉,您提供的内容中没有关于在本地环境下搭建医疗数据分析的 BI 智能体的相关有效信息。一般来说,要在本地环境搭建这样的智能体,您可以考虑以下步骤: 1. 明确需求和目标:确定您希望通过智能体实现的具体医疗数据分析功能和目标。 2. 选择合适的技术和工具:例如,选择适合数据分析的编程语言(如 Python)、数据库管理系统(如 MySQL、SQL Server 等)、数据分析库(如 Pandas、NumPy 等)。 3. 数据收集和预处理:获取相关的医疗数据,并进行数据清洗、转换和归一化等预处理操作,以确保数据的质量和可用性。 4. 模型选择和训练:根据需求选择合适的机器学习或深度学习模型,如分类模型、回归模型等,并使用预处理后的数据进行训练。 5. 智能体的开发和集成:使用所选的技术和工具,开发智能体的逻辑和功能,并将其与数据处理和模型预测部分进行集成。 6. 测试和优化:对搭建好的智能体进行测试,根据测试结果对其进行优化和改进。 7. 部署和维护:将智能体部署到本地环境中,并定期进行维护和更新,以适应新的数据和需求变化。
2025-03-11
有哪些可以进行科研数据分析的AI工具?
以下是一些可以进行科研数据分析的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,可提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,利于数据分析和可视化。 Knitro:用于数学建模和优化的软件,有助于进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 使用这些工具时,要结合自身写作风格和需求,选择最合适的辅助工具。同时需注意,AI 工具只是辅助,不能完全替代研究者的专业判断和创造性思维。
2025-03-10
ai数据分析
以下是关于 AI 数据分析的相关内容: ChatGPT 助力数据分析: 作者:krryguo,腾讯 IEG 前端开发工程师。 重点介绍了 AI 与数据分析结合的应用,通过实际案例与相关技巧,描述 ChatGPT 如何助力数据分析。 实现了两种方式支持多维数据分析: SQL 分析:分析平台自身的使用情况,输入一句话可分析用户配置图表相关的数据。 个性化分析:平台上支持上传数据,可提供数据信息(非必填),以此自定义分析用户自己上传的数据。 逻辑流程: SQL 分析:用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验是 SELECT 类型的 SQL 后执行返回结果数据,再将数据传给 GPT 附带上下文,让 AI 学习并分析数据,最后输出分析结论和建议,和结果数据一起返回给前端页面渲染图表、展示分析结论,目前已实现两张表关联查询。 个性化分析:用户上传文件,如有需要可以简单描述这是什么数据、字段意义或作用辅助分析。前端解析用户上传的文件,再传给 GPT 分析数据,后续步骤与 SQL 分析一致。 生成式 AI 季度数据报告 2024 月 1 3 月: 作者:郎瀚威 Will,张蔚 WeitoAGI,江志桐 Clara 于 2024.5.3 发布。 报告目录包括作者介绍及报告说明、总体流量概览、分类榜单、文字相关(个人生产力、营销、教育、社交)、创意相关(图像、视频)、音频大类、代码大类、Agent、B2B 垂类、附件(重要榜单)等。 作者介绍:郎瀚威 Will 为 AI 数据分析&出海社媒增长 GPTDAO 首席分析师,负责数据准备、分类标准图谱准备;张蔚 WeitoAGI 为 WaytoAGI 创作者、某头部 FA 的 AI 科技组;江志桐 Clara 为天际资本 VC,负责 AI 软硬件应用。 以上内容仅供参考,希望对您有所帮助。
2025-03-07
大模型怎么进行评测的
大模型的评测方式多种多样,以下为您介绍一些常见的评测方法和相关示例: 1. 斯坦福发布的大模型排行榜 AlpacaEval: 相对于人工标注,全自动化的 AlpacaEval 仅需花费约 1/22 的经济成本和 1/25 的时间成本。 从统计角度出发,检验什么评估数据可以最好地区分模型。 支持两种模式的模型评估方式: alpaca_eval:直接根据目标模型输出的响应来评估模型。 alpaca_eval evaluate_from_model:根据 HuggingFace 已注册模型或这 API 提供商来端到端评测模型。 评测过程分为以下 3 步: 选择一个评估集,并计算指定为 model_outputs 的输出。默认情况下,使用来自 AlpacaEval 的 805 个示例。 计算 golden 输出 reference_outputs。默认情况下,在 AlpacaEval 上使用 textdavinci003 的输出。 通过 annotators_config 选择指定的自动标注器,它将根据 model_outputs 和 reference_outputs 计算胜率。这里建议使用 alpaca_eval_gpt4 或 claude。根据不同的标注器,使用者还需要在环境配置中设定 API_KEY。 2. 小七姐的测评: 测评目标:测评三家国产大模型,以同组提示词下 ChatGPT 4.0 生成的内容做对标参照。 能力考量:包括复杂提示词理解和执行(结构化提示词)、推理能力(CoT 表现)、文本生成能力(写作要求执行)、提示词设计能力(让模型设计提示词)、长文本归纳总结能力(论文阅读)。 测评轮次:分为复杂提示词理解和执行、推理能力、文本生成能力、提示词设计能力、长文本归纳总结能力等多轮,每轮都有不同的任务和模型测试次数。 3. LLM 开源中文大语言模型及数据集集合中的评测: FlagEval(天秤)大模型评测体系及开放平台:旨在建立科学、公正、开放的评测基准、方法、工具集,协助研究人员全方位评估基础模型及训练算法的性能,同时探索利用 AI 方法实现对主观评测的辅助,大幅提升评测的效率和客观性。创新构建了“能力任务指标”三维评测框架,细粒度刻画基础模型的认知能力边界,可视化呈现评测结果。 CEval:构造了一个覆盖人文,社科,理工,其他专业四个大方向,52 个学科(微积分,线代…),从中学到大学研究生以及职业考试,一共 13948 道题目的中文知识和推理型测试集。此外还给出了当前主流中文 LLM 的评测结果。 SuperCLUElyb:中文通用大模型匿名对战评价基准,这是一个中文通用大模型对战评价基准,它以众包的方式提供匿名、随机的对战。他们发布了初步的结果和基于 Elo 评级系统的排行榜。
2025-03-13
什么是大模型
大模型通俗来讲,是输入大量语料,让计算机获得类似人类的“思考”能力,从而能够理解自然语言,并进行文本生成、推理问答、对话、文档摘要等工作。 可以用“上学参加工作”这件事来类比大模型的训练和使用过程: 1. 找学校:训练大模型需要大量计算,GPU更合适,只有购买得起大量GPU的才有资本训练。 2. 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 3. 找老师:即采用合适的算法讲述“书本”中的内容,让大模型更好理解Token之间的关系。 4. 就业指导:学完知识后,为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,正式干活,比如进行翻译、问答等,在大模型里称之为推导(infer)。 在大模型中,Token被视为模型处理和生成的文本单位,会被数字化形成词汇表,便于计算机处理。为让计算机理解Token之间的联系,还需把Token表示成稠密矩阵向量,这个过程称为embedding,常见算法有基于统计的Word2Vec、GloVe,基于深度网络的CNN、RNN/LSTM,基于神经网络的BERT、Doc2Vec等。以Transform为代表的大模型采用自注意力(Selfattention)机制来学习不同token之间的依赖关系,生成高质量embedding。 大模型的“大”指用于表达token之间关系的参数多,主要是模型中的权重(weight)与偏置(bias),例如GPT3拥有1750亿参数,而词汇表token数只有5万左右。 所谓的大模型,简而言之,就是拥有庞大参数数量的模型,通过处理和理解海量数据,能够胜任一系列复杂任务。大模型强大的原因在于庞大的参数数量和大量的数据训练。这些参数是模型在学习过程中不断调整的核心,帮助模型更深入地理解和生成数据。同时,大量的数据,无论是文本、图像还是音频数据,都是大模型学习的基础,使其能够掌握丰富的知识和技能。
2025-03-13
我想跟大概40岁左右的科研从业者科普人工智能和大模型的相关知识,挑选合适的内容作为提纲。
以下是为您挑选的向 40 岁左右科研从业者科普人工智能和大模型的提纲内容: 一、AI 大模型的基本概念 1. 生成式 AI 生成的内容称为 AIGC 2. 相关技术名词 AI:人工智能 机器学习:电脑找规律学习,包括监督学习、无监督学习、强化学习 监督学习:有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类 强化学习:从反馈里学习,最大化奖励或最小化损失,类似训小狗 深度学习:参照人脑有神经网络和神经元,因层数多称为深度,神经网络可用于多种学习方式 生成式 AI:可以生成文本、图片、音频、视频等内容形式 LLM:大语言模型,生成图像的扩散模型不是大语言模型,大语言模型的生成只是处理任务之一,如谷歌的 BERT 模型可用于语义理解 二、AI 大模型的技术里程碑 1. 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,完全基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络 三、AI 模型及相关进展 1. 包括视频生成模型、相关论文,以及 AI 在诺奖和蛋白质研究领域的应用等 2. 人工智能发展历程:从图灵测试、早期的图灵机器人和 ELISA,到 IBM 的语音控制打印机、完全由人工智能创作的小说、微软的同声传译系统,再到 OpenAI 发布 ChatGPT 模型,经历了萌芽、积累沉淀到如今大模型和多模态模型百花齐放的阶段 3. 大模型的基石:由数据、算法、算力构成,算法有技术架构的迭代,如英伟达的显卡辅助模型训练,数据质量对生成理想的大模型至关重要 4. 针对弱智 8 的问题对大模型进行测试,开展让大模型回复问题并找出真人回复的活动,且国内大模型的回答能力有很大改进 5. 大语言模型的特点:早期回复缺乏情感,如今有所改进,后续将体验几个大模型的回复场景
2025-03-13
AI、AIGC、大模型这三者之间有什么关系
AI(人工智能)是一种让机器展现智慧的目标。AIGC(人工智能生成内容)是利用人工智能技术生成包括文本、图像、音频和视频等内容的新型生产方式。大模型如大语言模型(LLM)是具有大量参数的“深度学习”模型。 生成式 AI 是一种让机器产生复杂有结构内容的目标。机器学习是让机器自动从资料中找公式的手段,深度学习是更厉害的类神经网络且有大量参数的手段。 AIGC 技术可用于多种应用,如自动撰写新闻文章、生成艺术画作等。ChatGPT 是 AIGC 技术在文本生成领域的一个应用实例,它是基于大型语言模型(LLM)的对话机器人,能根据用户输入生成连贯且相关的文本回复。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络(RNN)或卷积神经网络(CNN)。
2025-03-13
懂编程但是不了解大模型的工程师如何系统的学习深度学习?
对于懂编程但不了解大模型的工程师,系统学习深度学习可以参考以下路径: 1. 掌握深度学习和自然语言处理基础: 学习机器学习、深度学习、神经网络等基础理论。 掌握自然语言处理基础,如词向量、序列模型、注意力机制等。 相关课程推荐吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理: 熟悉 Transformer 模型架构及自注意力机制原理。 掌握 BERT 的预训练和微调方法。 阅读相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调: 进行大规模文本语料预处理。 熟悉 LLM 预训练框架,如 PyTorch、TensorFlow 等。 学会微调 LLM 模型进行特定任务迁移。 参考相关资源,如 HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署: 掌握模型压缩、蒸馏、并行等优化技术。 了解模型评估和可解释性。 熟悉模型服务化、在线推理、多语言支持等。 运用相关开源工具,如 ONNX、TVM、BentoML 等。 5. LLM 工程实践和案例学习: 结合行业场景,进行个性化的 LLM 训练。 分析和优化具体 LLM 工程案例。 研究 LLM 新模型、新方法的最新进展。 6. 持续跟踪前沿发展动态: 关注顶会最新论文、技术博客等资源。 此外,为了更好地理解相关技术原理和建立框架,还可以了解以下内容: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 概念与关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务包括聚类。 强化学习从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制来处理序列数据,而不需要依赖于循环神经网络或卷积神经网络。
2025-03-13
市面上主流的大模型有什么区别
市面上主流的大模型主要有以下区别: 1. 架构类型: Encoderonly:适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT。 Encoderdecoder:同时结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,用例包括翻译和摘要,代表是 Google 的 T5。 Decoderonly:更擅长自然语言生成任务,众多 AI 助手采用此结构,如 ChatGPT。 2. 处理信息类型: 大型语言模型:专注于处理和生成文本信息。 大型多模态模型:能够处理包括文本、图片、音频等多种类型的信息。 3. 应用场景: 大型语言模型:主要用于自然语言处理任务,如文本翻译、文本生成、情感分析等。 大型多模态模型:可应用于图像识别与描述、视频分析、语音识别与生成等更广泛的领域。 4. 数据需求: 大型语言模型:主要依赖大量的文本数据进行训练。 大型多模态模型:需要多种类型的数据进行训练,包括文本、图片、音频等。 5. 规模: 大模型的预训练数据非常大,往往来自互联网,包括论文、代码、公开网页等,一般用 TB 级别的数据进行预训练,参数也非常多,如 OpenAI 在 2020 年发布的 GPT3 就已达到 170B 的参数。 6. 优秀模型: GPT4(网页版)、GPT4(API)、智谱清言、通义千问 2.0、AndesGPT(OPPO)、文心一言 4.0(API)、MoonShot(KimiChat)、Claude2、360 智脑、Qwen72BChat、文心一言 4.0(网页版)等。 7. 性能表现:国内外大模型存在差距,如 GPT4 Turbo 总分 90.63 分遥遥领先,国内最好模型文心一言 4.0(API)总分 79.02 分,与 GPT4 Turbo 有一定差距。
2025-03-13
当前AI应用的内外部环境及趋势
当前 AI 应用的内外部环境及趋势如下: 技术创新方面:大模型创新架构优化加速涌现,融合迭代成为趋势;Scaling Law 泛化,推理能力成为关键,推动计算和数据变革;视频生成在 AGI 探索中表现突出,空间智能统一虚拟和现实。 应用格局方面:第一轮洗牌结束,聚焦 20 赛道 5 大场景;多领域竞速中运营大于技术,AI 助手竞争激烈;AI+X 赋能类产品发展迅速,原生 AI 爆款难求。 产品趋势方面:多模态上马,Agent 席卷一切,高度个性化需求凸显。 行业渗透方面:数据基础决定初速度,用户需求成为加速度。 创投方面:投融资马太效应明显,国家队出手频率提升。 在具体的行业动态中: AI 音频领域:效果和延迟问题取得突破,难以分辨语音是否由 AI 生成,语音生成延迟降低。 3D 世界生成领域:目前处于初级阶段,新产品未向大众开放,预计明年会有巨大进步。 应用领域:更新主要集中在 AI 搜索、AI 知识库、AI 编程,传统软件增加 AI 功能,未来可能不再有“AI 应用”的单独分类。 融资方面:能拿到钱的不再局限于模型公司,越来越多应用公司受资本青睐。 红杉资本观点认为: 人工智能在客户支持、法律服务和软件工程等行业展示了产品与市场的契合度。 生成式人工智能经历快速增长,但 AI 投资转化为可观回报存在问题。 2024 年将是真正的 AI 应用从“副驾驶”转变为“代理”的一年,未来将更有能力完成更高层次认知任务,计算平衡从预训练转向推理。 目前人工智能公司融资环境不均衡,关键挑战在于提高用户保留率和缩小期望与现实差距,产品与市场的契合度有待进一步提升。
2025-03-13
打造企业AI应用场景
以下是关于打造企业 AI 应用场景的相关内容: 阿里云百炼: 阿里云的大模型服务平台百炼是一站式的大模型开发及应用构建平台。开发者和业务人员都能参与大模型应用的设计和构建。通过简单的界面操作,能在 5 分钟内开发出大模型应用,或在几小时内训练出专属模型,从而将更多精力专注于应用创新。 使用场景示例: 法律合规改写:招聘平台可通过百炼工作流封装多个法律合规 Agent 判断企业端要求是否符合劳动法等,并自动改写,减少人力审核需求。 关键信息抽取&打标签:法催机构可通过百炼工作流构建并串联相关 Agent,减少律师数据整理、分析和归类工作。 智能助理&客服:教育机构可通过百炼工作流搭建首页智能助手,通过意图分类能力分发用户 Query 并回答。 AI 决策相关: 在制定企业 AI 战略时,要在提高效率、促进创新的同时规避潜在风险。企业不需要短期内进行全面伦理审查,但可优化实际操作流程,满足市场需求并保持长远发展。 明确 AI 的适用范围:企业要针对自身业务需求明确使用边界。不是所有决策都需由 AI 完成,在复杂决策场景中,AI 适合辅助角色。常见适用场景包括数据密集型工作(如市场分析、客户画像、生产优化等)、重复性任务(自动化流程、预测维护等)、有限范围内的创新(在已有数据基础上提供初步建议)。企业管理层可引入内部评估机制,每季度评估 AI 在不同业务线中的表现,并设定不同使用权限。AI 可部署在低风险、可标准化任务上,涉及品牌形象、用户隐私、产品战略等决策应由人类主导。
2025-03-13
大模型应用产品设计流程
构建大模型应用产品的设计流程包括以下关键步骤和要点: 1. 框架选择:根据项目需求选择合适的开发框架,这是非常关键的一步。 2. 了解业务需求:深入了解业务背后的深层次需求,确保模型能够解决实际问题,并据此设定流程环节。 3. 提示词设计:在每个环节中精心设计提示词,引导模型提供准确和有用的回复。提示词的设计直接影响模型的输出质量和应用的实际效果。 4. 遵守标准:确保应用在提供服务的同时,遵守安全和伦理标准。 5. 测试与迭代:通过不断的测试和迭代,优化模型性能和用户体验。 6. 部署与维护:成功部署应用后,还需要持续的维护和更新以适应不断变化的需求。 7. 工程化:不做工程化终究会让模型应用变得无法维护。 此外,在实际应用中落地大型模型时,永远是解决方案优先。大型模型通常位于基础层,应更注重模型之上构建的应用,切实解决服务对象面临的实际问题。基于大模型的产品虽然“简约但不简单”,人们会针对特定需求设定模型的功能,并进行有目标的开发。通过掌握这些关键点,可以确保构建的模型应用不仅技术先进,而且能真正解决用户问题,提供有价值的服务。
2025-03-13
deepseek 在飞书中的主要应用场景有哪些
DeepSeek 在飞书中的主要应用场景包括: 1. 自动翻译、改写、图片 OCR、AI 抓取等,关键流程为从 URL 抓取内容➝DeepSeek R1 翻译➝自动改写文章风格➝生成高质量文章,还包括文本翻译、图片翻译、AI 生成爆款标题。 2. 生成深度报告、信息检索、数据整理等。 3. 处理大规模代码,例如粘贴几千行代码并用 XML 包裹,或让 AI 编写代码、搜索相关代码库。 4. 与 Coze 智能体、飞书多维表格和字段捷径(Agent)组合,实现高效的数据抓取与批量 AI 处理,适用于社交媒体数据分析、AI 内容生成、情绪分析等。 5. 在专业场景提效、教育学术赋能、商业创新与生活服务等领域用途广泛,如辅助办公、教学设计、电商运营等。
2025-03-13
人力资源AI应用
以下是关于人力资源 AI 应用的相关信息: 在管理方面,要做到沟通明确,善于提供上下文,让 AI 更有效地执行任务;明晰 AI 能力边界,善于合理授权并监督检查;擅长任务拆解和整合,提升 AI 协作效率。 在医疗领域,湖南省医保局正式表态,明确禁止使用人工智能生成医疗处方。 在企业方面,Coinbase 全面推动 AI 应用,所有工程师均使用 Cursor AI 工具进行编程,显著提高效率,AI 技术广泛应用于欺诈预防、客户支持、风险评分、设计等领域,下一步将实现从 Jira 或 Linear 工单到 PR 代码的 AI 自动生成,助力需求自动化落地。 在游戏行业,网易推出的首款 AI 手游《逆水寒》将 AIGC 应用于美术开发,在 NPC 与玩家的交互上呈现独特的剧情体验,还内嵌了全自动“AI 作词机”。 在人力资源管理领域,AI 的应用覆盖了从招聘初期(如职位描述生成、简历分析、面试题设计)到员工绩效评估(分析员工工作表现,识别绩效趋势和提升点,为管理层提供数据支持的绩效反馈)再到员工培训与发展各个环节,显著提高了工作效率。 此外,智联招聘 APP 利用 AI 技术帮助企业快速筛选简历,提高招聘效率;贝壳找房 APP 通过 AI 技术准确评估房地产价值,为买卖双方提供参考。
2025-03-13
当前国内有哪些AIGC应用
当前国内的 AIGC 应用主要有以下一些: 语言文本生成类: “悟道・天鹰”(北京智源人工智能研究院):首个具备中英文双语知识、支持商用许可协议、国内数据合规需求的开源语言大模型。 文心一言(百度):大语言模型,可用以文学创作、商业文案创作、数理逻辑推算、中文理解、多模态生成。
2025-03-12