Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我想找一个能够实现运动控制逻辑的编程助手

Answer

目前在 AI 领域中,有一些编程助手可以帮助您实现运动控制逻辑。例如,您可以考虑使用 Python 中的相关库,如 numpymatplotlib 等,结合数学和物理知识来构建运动控制模型。另外,一些专门的机器人编程框架和工具,如 ROS(Robot Operating System)也能为您提供支持。但具体选择哪种工具,还需要根据您的具体需求和技术背景来决定。

Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
有哪些免费的没有限制的编程助手
以下是一些免费且没有限制的编程助手: 1. JanitorAI(http://janitorai.com/) 2. Spicychat(http://spicychat.ai/) 3. CrushOn(http://crushon.ai/) 4. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,可快速生成代码,提升开发效率。 此外,还有以下可以帮助编程、生成代码、debug 的 AI 工具: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议。 2. 通义灵码:阿里巴巴团队推出,提供多种编程辅助能力。 3. CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,为开发人员实时提供代码建议。 4. Cody:代码搜索平台 Sourcegraph 推出,借助强大的代码语义索引和分析能力,了解开发者的整个代码库。 5. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手。 6. Codeium:由 AI 驱动,通过提供代码建议、重构提示和代码解释来帮助软件开发人员提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能不同,您可以根据自身需求选择最适合的工具。
2025-01-10
ai编程
以下是关于 AI 编程的相关内容: 1. 借助 AI 学习编程的关键:打通学习与反馈循环。从“Hello World”起点开始,验证环境、建立信心、理解基本概念,形成“理解→实践→问题解决→加深理解”的学习循环。学习建议包括使用流行语言和框架(如 React、Next.js、TailwindCSS),先运行再优化,小步迭代,一次解决一个小功能,借助 AI 生成代码后请求注释或解释以帮助理解代码,遇到问题时采取复现、精确描述、回滚的步骤。同时要明确,AI 是强大的工具,但仍需人工主导,掌握每次可运行的小成果才能实现持续提升。原文链接: 2. 麦橘 0 基础跨界 AI 编程共学活动:麦橘是哲学专业模型师,此次跨界教学。活动从上星期开始策划未预告。麦橘展示用 AI 做小游戏,认为机制对简单小游戏很重要,还分享了自己尝试做 horror game 等的想法。使用 Poe 制作小游戏,因其性价比高且多种模型可用,支持写代码后的预览,还能教大家分享游戏。以小鸟过管道游戏为例,不懂代码也能让 AI 做游戏,通过告诉 AI 想要的效果让其调整,如降低难度等,最终做出游戏再搭排行榜成为洗脑小游戏。麦橘还介绍了增量游戏、肉鸽游戏的制作以及与 AI 交互的情况。 3. 软件 2.0 编程:在可以低成本反复评估、并且算法难以显式设计的领域,软件 2.0 日益流行。考虑整个开发生态以及如何适配这种新的编程范式时,会有很多令人兴奋的机会。长远来看,这种编程范式拥有光明的未来,因为当开发通用人工智能(AGI)时,很可能会使用软件 2.0。
2025-01-09
ai编程工具
以下是一些常见的 AI 编程工具: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议,帮助更快、更少地编写代码。 2. 通义灵码:阿里巴巴团队推出,基于通义大模型,提供行级/函数级实时续写、自然语言生成代码等多种能力。 3. CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,可快速生成代码提升开发效率。 5. Cody:代码搜索平台 Sourcegraph 推出,借助强大的代码语义索引和分析能力,了解开发者的整个代码库。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供的免费 AI 代码助手,基于自研的基础大模型微调。 7. Codeium:由 AI 驱动,通过提供代码建议、重构提示和代码解释帮助软件开发人员提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能不同,您可以根据自身需求选择最适合的工具。 2024 年,AI 编程工具领域迎来两个划时代的产品:年末爆火的编辑器 Cursor 和横空出世的 AI 工程师 Devin。Cursor 允许开发者用自然语言描述需求,能够理解整个项目的结构和依赖关系,进行跨文件的语义分析,还能提供智能的代码重构建议、自动诊断和修复常见错误,甚至基于代码自动生成文档,让开发者的注意力从语法细节转移到业务逻辑本身。 如果您要安装通义灵码 AI 编程助手,在配置 AI 插件之前,需要先安装 python 的运行环境,具体操作是:点击左上角的 FileSettingsPluginsMarketplace。安装完成插件会提示您登录,按要求注册登录即可。使用上和 Fitten 差不多。
2025-01-07
ai编程
以下是关于 AI 编程的相关内容: 1. 借助 AI 学习编程的关键:打通学习与反馈循环。从“Hello World”起点开始,验证环境、建立信心、理解基本概念,形成“理解→实践→问题解决→加深理解”的学习循环。学习建议包括使用流行语言和框架(如 React、Next.js、TailwindCSS),先运行再优化,小步迭代,一次解决一个小功能,借助 AI 生成代码后请求注释或解释以帮助理解代码,遇到问题时采取复现、精确描述、回滚的步骤。同时要明确 AI 是强大的工具,但仍需人工主导,掌握每次可运行的小成果才能实现持续提升。原文链接: 2. 麦橘 0 基础跨界 AI 编程共学活动:麦橘是哲学专业模型师,此次跨界教学。活动从上星期开始策划未预告。麦橘展示用 AI 做小游戏,认为机制对简单小游戏很重要,还分享了自己尝试做 horror game 等的想法。使用 Poe 制作小游戏,因其性价比高且多种模型可用,支持写代码后的预览,还能教大家分享游戏。以小鸟过管道游戏为例,不懂代码也能让 AI 做游戏,通过告诉 AI 想要的效果让其调整,如降低难度等,最终做出游戏再搭排行榜成为洗脑小游戏。麦橘还介绍了增量游戏、肉鸽游戏的制作以及与 AI 交互的情况。 3. 软件 2.0 编程:在可以低成本反复评估、并且算法难以显式设计的领域,软件 2.0 日益流行。考虑整个开发生态以及如何适配这种新的编程范式时,会发现很多令人兴奋的机会。长远来看,这种编程范式拥有光明的未来,因为当开发通用人工智能(AGI)时,一定是使用软件 2.0。
2025-01-07
哪个编程ai最好
以下是一些在编程方面表现出色的 AI 工具: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议,助其更高效、更轻松地编写代码。 2. 通义灵码:阿里巴巴团队推出,基于通义大模型,具备行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成、代码解释、研发智能问答、异常报错排查等能力。 3. CodeWhisperer:亚马逊 AWS 团队推出,由机器学习技术驱动,可为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,能快速生成代码,提升开发效率。 5. Cody:代码搜索平台 Sourcegraph 推出的 AI 代码编写助手,借助 Sourcegraph 强大的代码语义索引和分析能力,可了解开发者的整个代码库,而非仅代码片段。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供智能研发服务的免费 AI 代码助手,基于蚂蚁集团自研的基础大模型微调的代码大模型。 7. Codeium:AI 驱动的编程助手工具,通过提供代码建议、重构提示和代码解释帮助软件开发人员,提高编程效率和准确性。 更多辅助编程 AI 产品,还可以查看这里:https://www.waytoagi.com/category/65 。每个工具的功能和适用场景可能不同,您可以根据自身需求选择最适合的工具。
2025-01-07
没有编程基础可以学习ai吗
没有编程基础也可以学习 AI,但会面临一定的挑战。以下是一些建议: 1. 学习基础知识: 数学基础:包括线性代数、概率论、优化理论等。 了解 AI 的基本概念、发展历程、主要技术分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 选择学习路径: 偏向技术研究方向:学习监督学习、无监督学习、强化学习等机器学习基础,以及神经网络、卷积网络、递归网络、注意力机制等深度学习知识。 偏向应用方向:掌握 Python、C++等编程基础,学习监督学习、无监督学习等机器学习基础,熟悉 TensorFlow、PyTorch 等深度学习框架。 3. 工具和平台: 可以从 Python、JavaScript 等编程语言开始学习。 尝试使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向初学者的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 4. 学习方式: 阅读入门文章和相关书籍。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程按照自己的节奏学习。 特别推荐李宏毅老师的课程。 5. 实践和尝试: 掌握提示词的技巧,上手容易且很有用。 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 体验如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 需要注意的是,无论是技术研究还是应用实践,数学基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-01-04
用于训练销售助手类型业务的私有模型
以下是关于训练销售助手类型业务私有模型的相关信息: 1. 提示词方面:设计了一套模拟江南皮革厂销售的拟人化提示词模板,并将其应用于国内的豆包角色扮演模型,生成吸引人的广告词。若与语音技术结合用于宣传,能创造出有趣且有效的销售助手,吸引顾客注意。拟人化提示词母体可通过关注作者微信领取。 2. 增加私有知识方面:通过前面步骤拥有可与客户对话的 AI 助手后,若想让其像公司员工一样精准专业回答商品相关问题,需为大模型应用配置知识库。例如在售卖智能手机的公司,网站上有很多相关信息,不同机型的详细配置清单可参考相关文档。
2025-01-07
AI智能数据库查询助手
以下是关于您提出的“AI 智能数据库查询助手”的相关信息: 能联网检索的 AI: 存在能联网检索的 AI,它们通过连接互联网实时搜索、筛选并整合所需数据,为用户提供更精准和个性化的信息。例如: ChatGPT Plus 用户现在可以开启 web browsing 功能,实现联网功能。 Perplexity 结合了 ChatGPT 式的问答和普通搜索引擎的功能,允许用户指定希望聊天机器人在制定响应时搜索的源类型。 Bing Copilot 作为 AI 助手,旨在简化您的在线查询和浏览活动。 还有如 You.com 和 Neeva AI 等搜索引擎,提供基于人工智能的定制搜索体验,并保持用户数据的私密性。 AI 新产品|网站精选推荐: AIHelperBot 自动生成 SQL Queries,支持数据库一键链接或导入。当前收费$5 每月,可免费试用 7 天。链接:https://skybox.blockadelabs.com/ ChartGPT by CadLabs 由 CadLabs 开发工具,基于 GPT3.5,可以根据数据生成图表并回答问题。链接:https://chartgpt.cadlabs.org/ Embedding Store 功能如其名,是一站式 Embedding Marketplace,支持公开、私有及第三方数据,用于发现、评估和访问相关的嵌入(embeddings),产品还未上线。链接:https://www.embedding.store/ AI 在医疗药品零售领域的应用: AI 在医疗药品零售领域有着多方面的应用前景: 药品推荐系统:利用机器学习算法分析用户购买记录、症状描述等数据,为用户推荐合适的非处方药品和保健品,提升销售转化率。 药品库存管理:通过分析历史销售数据、天气、疫情等因素,AI 系统可以预测未来某段时间内的药品需求量,优化药店的库存管理策略,降低成本。 药品识别与查询:借助计算机视觉技术,用户可以用手机拍摄药品图像,AI 系统自动识别药名并提供说明、用法、禁忌等信息查询服务。 客户服务智能助手:基于自然语言处理技术,AI 虚拟助手可以回答顾客关于购药、用药、保健等常见问题,减轻人工客服的工作压力。 药店运营分析:AI 可以分析药店的销售、顾客流量、库存等大数据,发现潜在的运营问题和优化空间,为决策提供参考。 药品质量监控:通过机器视觉、图像识别等技术,AI 能够自动检测药品的包装、标签、颜色等是否合格,及时发现问题。 药品防伪追溯:利用区块链等技术,AI 可以实现全流程的药品溯源,确保药品供应链的安全性和真实可信度。 总之,AI 技术在药品零售领域可以提升购药体验、优化库存管理、降低运营成本、保障药品质量安全,是一个值得重视的发展方向。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-07
开发简单的 Agent 助手
开发简单的 Agent 助手可以参考以下内容: 基于结构化数据来 RAG 实战:以餐饮生活助手为例,它是基于结构化数据 RAG 方法的应用,能从大规模餐饮数据集中检索合适餐厅并提供信息服务。实现餐饮生活助手 RAG 的 Langchain 代码实战需完成以下步骤:定义餐饮数据源,将其转化为 Langchain 可识别和操作的形式并注册;定义 LLM 的代理,通过 Langchain 的代理根据用户问题提取信息、形成查询语句、检索数据源并生成答案。 从基础案例入门: 三分钟捏 Bot: 登录控制台:登录扣子控制台(coze.cn),使用手机号或抖音注册/登录。 在我的空间创建 Agent:在扣子主页左上角点击“创建 Bot”,选择空间名称为“个人空间”、Bot 名称为“第一个 Bot”并确认。 编写 Prompt:填写 Prompt,即 Bot 功能说明,第一次可用简短词语作为提示词。 优化 Prompt:点击“优化”进行优化。 设置开场白及其他环节。 发布到多平台&使用。 进阶之路: 15 分钟:查看其他 Bot 获取灵感。 1 小时:找到与兴趣、工作方向结合的 Bot 深入沟通,阅读相关文章。 一周:了解基础组件,寻找不错的扣子借鉴复制,加入 Agent 共学小组,尝试在群里问第一个问题。 一个月:合理安排时间,参与 WaytoAGI Agent 共学计划,创建 Agent 并分享经历心得。 《执笔者》:基于多 Agent 模式的全能写手: 操作步骤: 多 agent 模式切换:在 bot 编排页面点选多 agent 模式,页面自动切换,相比单 agent 多了中间的 agent 连接区。 添加合适节点:有两种方式选择,用已发布的 bot 或创建新的 agent,按需选取并连接在默认总管 agent 后面,无结束节点。 添加合适的 prompt:为每个 agent 填写合适 prompt,外围人设填写主要功能,内部 bot 填写应用场景。 调试与美化:经过以上三步基本搭建完成,后续需调试,调整提示词优化交互。
2025-01-07
一个好玩的车载语音助手应该是什么样子的?
一个好玩的车载语音助手可以有以下特点和形式: Glowby Basic:能够让用户搭建一个拥有自己声音的 AI 语音助手,您可以通过 🔗https://github.com/glowbom/glowby 了解更多。 Dreamkeeper:在 AI 的帮助下记录并了解梦境。它使用多个 Gen AI 模型,具体流程为:由 ChatGPT 驱动的助手向用户提问以记住用户的梦,并根据回答调整内容;通过 Stable Diffusion 模型提取 ChatGPT 生成的关于用户梦境的摘要描述中的关键词来生成图像;将图像传输至图生视频模型创建基于用户梦境的动画;用 GPT 进行嵌入处理,将用户想要保留的梦保留在一个画廊中。您可以访问 🔗https://thedreamkeeper.co/ 进一步了解。 Andrej Karpathy 开发的 Awesome movies:这是一个电影搜索与推荐平台,搭建该网站共分三步,包括抓取自 1970 年以来的所有 11,768 部电影,从维基百科上抓取每部电影的简介和情节,并使用 OpenAI API(ada002)进行嵌入处理,最后将所有信息整合成一个电影搜索/推荐引擎网站。您可以通过 🔗https://awesomemovies.life/ 查看。
2025-01-06
如何搭建一个本地的ai助手,通过学习本地文档进行训练
搭建一个本地的 AI 助手并通过学习本地文档进行训练,可参考以下步骤: 1. 设计 AI 机器人: 编写【prompt】提示词,设定 Bot 的身份和目标。 2. 创建知识库: 整理“关键字”与“AI 相关资料链接”的对应关系,并将信息存储起来。 创建知识库路径:个人空间 知识库 创建知识库。 知识库文档类型支持本地文档、在线数据、飞书文档、Notion 等,本次使用【本地文档】。 按照操作指引上传文档、分段设置、确认数据处理。 小技巧:在内容中加上特殊分割符“”,以便于自动切分数据。分段标识符号选择“自定义”,内容填“”。 同一颜色代表同一个数据段,如果内容有误需要编辑,可以点击具体内容,鼠标右键会看到“编辑”和“删除”按钮,可以编辑或删除。 3. 创建工作流: 告诉 AI 机器人应该按什么流程处理信息。 创建工作流路径:个人空间 工作流 创建工作流。 工作流设计好后,先点击右上角“试运行”,测试工作流无误后,就可以点击发布。 如果任务和逻辑复杂,可以结合左边“节点”工具来实现。比如:可以在工作流中再次调用【大模型】,总结分析知识库内容;可以调用【数据库】存储用户输入的信息;可以调用【代码】来处理复杂逻辑等。 个人建议:工作流不必复杂,能实现目的即可,所以在设计 Bot 前“确定目的”和“确定功能范围”很重要。 另外,您还可以参考以下 10 分钟在网站上增加一个 AI 助手的方法: 1. 搭建示例网站: 点击打开提供的函数计算应用模板,参考下图选择直接部署、并填写前面获取到的百炼应用 ID 以及 APIKEY。 其他表单项保持默认,点击页面左下角的创建并部署默认环境,等待项目部署完成(预计耗时 1 分钟)。 2. 为网站增加 AI 助手: 增加 AI 助手相关代码:回到应用详情页,在环境详情的最底部找到函数资源,点击函数名称,进入函数详情页。在代码视图中找到 public/index.html 文件,然后取消③所在位置的代码注释即可。最后点击部署代码,等待部署完成。 验证网站上的 AI 助手:重新访问示例网站页面以查看最新效果。此时您会发现网站的右下角出现了 AI 助手图标,点击即可唤起 AI 助手。
2025-01-06
如何优化ai对话脚本和逻辑(多轮对话测试提升ai上下文理解)
以下是优化 AI 对话脚本和逻辑(多轮对话测试提升 AI 上下文理解)的方法: 1. 样例驱动的渐进式引导法 评估样例,尝试提炼模板:独自产出高质量样例较难,可借助擅长扮演专家角色的 AI 改进初始正向样例,如使用 Claude 3.5 进行对话,输入初始指令,通过其回复侧面印证对样例的理解与建议。 多轮反馈,直至达到预期:AI 可能犯错输出要求外内容,需多轮对话引导,使其不断修正理解,直至达成共识。 用例测试,看看 AI 是否真正理解:找 13 个用例,让 AI 根据模板生成知识卡片,根据结果验证是否符合预期,不符合则继续探讨调整。用例测试和多轮反馈步骤灵活,可根据需要自由反馈调整。 2. Coze 全方位入门剖析 标准流程创建 AI Bot(进阶推荐) 为 Bot 添加技能:国内版暂时只支持使用“云雀大模型”作为对话引擎,可根据业务需求决定上下文轮数。在 Bot 编排页面的“技能”区域配置所需技能,可选择自动优化插件或自定义添加插件。还可根据需求配置知识库、数据库、工作流等操作,参考相关介绍和实战操作或官方文档学习。 测试 Bot:在“预览与调试”区域测试 Bot 是否按预期工作,可清除对话记录开始新测试,确保能理解用户输入并给出正确回应。
2024-12-29
目前最前沿的应用在游戏领域的AI技术点是什么,包括游戏开发过程中的成本降低、效率提升,包括游戏内容生成,包括游戏后期运营推广。介绍技术点的技术逻辑以及技术细节。
目前在游戏领域应用的前沿 AI 技术点主要包括以下几个方面: 1. 利用 AIGC 技术实现游戏产业的生产力革命: 降低开发成本:借助人工智能的内容创作工具,如生成新的游戏内容(地图、角色和场景)、驱动游戏中的非玩家角色(NPC)、改进游戏的图像和声音效果等,能够缩减游戏开发的成本。 缩短制作周期:例如通过程序化内容生成,包括利用人工智能生成文字、图像、音频、视频等来创作游戏剧本、人物、道具、场景、用户界面、配音、音效、配乐、动画和特效等,从而减少游戏开发时间。 提升游戏质量和带来新交互体验:AIGC 技术为游戏带来不同以往的新体验,甚至创造出新的游戏类型以及新的交互方式。 2. 游戏内容辅助生成: 生成文、生成图、生成 3D 以及生成音乐。应用场景包括游戏策划人和制作人、美术设计师等。 对于工业化的游戏公司,基于 Stable Difussion 的生成能够通过 2D 美术素材的辅助生成提高创业效率 50%,降低 20%80%的成本。 文生图:通过提示词加参数就可以形成 2D 的参考图,适配度高。 图生图:原画师或美术可以使用,用一个线稿或原画,在原画基础上加一些 Prompt 和参数,就可以形成一个效果图和二级的素材。 动画辅助渲染:用 Lora 对角色背景、关键帧进行风格渲染,例如将真人视频渲染成二次元风。 3. 游戏的智能运营: 智能 NPC 互动:保持长期记忆,保持人物个性和对话表现形式,同时满足成本平衡。 客服、攻略的问答、代码和脚本的生成。主要针对游戏的产品经理、运营经理和社区的运营经理。 游戏社区运营:如海外的 Discord,国内的 Fanbook,让更多玩家在游戏之外,在社群里面很好地互动,基于游戏的美术素材进行二创、查询攻略和使用智能客服。 这些技术的技术逻辑和技术细节如下: 1. AIGC 技术:基于大语言模型和扩散模型,通过机器学习、强化学习等先进技术进行训练,能够理解和生成各种游戏相关的内容。 2. 游戏内容辅助生成:利用深度学习算法对大量的游戏相关数据进行学习和分析,从而能够根据给定的提示或参数生成相应的游戏内容。 3. 智能运营方面:通过构建智能模型,对玩家的行为和需求进行分析和预测,从而提供个性化的服务和互动。
2024-12-22
如何利用GPT进行逻辑回归分析
利用 GPT 进行逻辑回归分析可以参考以下步骤: 1. 首先,在数据准备阶段,明确需要分析的数据内容,例如用户描述想分析的内容,或者上传相关文件并描述其数据、字段意义或作用等,以辅助 GPT 理解数据。 2. 对于 SQL 分析,后台连接数据库,附带表结构信息让 GPT 输出 SQL 语句,校验其是否为 SELECT 类型,其他操作如 UPDATE/DELETE 绝不能通过。校验通过后执行 SQL 返回结果数据,再将数据传给 GPT(附带上下文),让其学习并分析数据。 3. 在与 GPT 的交互过程中,不断输入真实的业务需求场景以及现存的问题,帮助 GPT 更好地理解需求,例如输入旧代码、需求和问题,让 GPT 给出针对性的优化建议。 4. 根据 GPT 给出的结果进行调试和优化,可能需要多轮的输入输出(类似讨论),不断强化 GPT 对真实需求的认知。 5. 例如在 SQL 优化方面,GPT 可能提出如每次更新 1 天而不是 30 天的数据、创建中间结果表存储非二次计算的数据、利用 CASE WHEN 合并查询约束条件基本相同的指标等建议。然后根据这些建议结合自身的能力进行代码优化和测试。 需要注意的是,整个过程可能比较繁琐,需要有一定的耐心,包括查资料、处理报错、纠正 GPT、不断补充需求细节等。
2024-12-13
当前国内逻辑推理能力最强的大模型是什么
目前国内逻辑推理能力较强的大模型有以下几种: 1. Baichuan213BChat(百川智能):是百川智能自主训练的开源大语言模型。在逻辑推理、知识百科、生成与创作、上下文对话等基础能力上排名 200 亿参数量级国内模型第一,其中逻辑推理能力超过 34B 参数量级的大模型,生成与创作能力超过 72B 参数量级的模型。可应用于小说/广告/公文写作等内容创作场景、智能客服/语音助手以及任务拆解规划等场景,还能部署在教育、医疗、金融等垂直行业中应用,同时可部署在低算力终端处理基础智能任务。 2. 智谱清言(清华&智谱 AI):是智谱 AI 和清华大学推出的大模型产品,基础模型为 ChatGLM 大模型。在工具使用排名国内第一,在计算、逻辑推理、传统安全能力上排名国内前三。可应用于 AI 智能体方面相关的应用,包括任务规划、工具使用及一些长文本记忆相关的场景,在较复杂推理应用上的效果也不错,广告文案、文学写作方面也是很好的选择。 3. 文心一言 4.0API(百度):在计算、逻辑推理、生成与创作、传统安全这 4 大基础能力上排名国内第一。另外在代码、知识与百科、语言理解与抽取、工具使用能力上排名国内前三。能力栈较为广泛,可应用于查询搜索知识应用、任务拆解规划 Agent、文案写作以及代码编写及纠错等方面,在科学研究、教育、工业方面的落地能力也值得关注。
2024-12-08
不确定逻辑增长模型
对于逻辑增长模型的相关问题,以下是为您提供的信息: 张俊林在相关研究中指出,对于简单或中等难度的逻辑推理问题,通过 inferencetime 增加算力,比如树搜索等方式,比增强模型“预训练”阶段的逻辑推理能力效果更明显。这一结论来自于文献“Scaling LLM TestTime Compute Optimally can be More Effective than Scaling Model Parameters”及“Are More LM Calls All You Need?Towards the Scaling Properties of Compound AI Systems”。 其原因在于,对于简单或中等难度的问题,模型在 inference 时很可能给出答案中的大部分步骤是对的(或多次采样中多数是对的),只有个别步骤错误,通过如 BestofN Sampling 这种简单树搜索方法增加输出的多样性,加上靠谱的 Verifier 筛选,较容易修正小错误。但对于高难度的逻辑问题,模型输出内容中大部分步骤可能都是错的(或多次采样中大多数都是错的),此时仅靠 inferencetime 增加算力难以解决。 此外,OpenAI o1 的基座模型,在 Pretraining 还是 Posttraining 阶段,大概率极大增强了基座模型的复杂逻辑推理能力,这是它能在后续 inferencetime 增加算力解决复杂问题的根基。所以,只靠 inferencetime 增加算力,仅对容易和中等难度的逻辑问题有用,想要不断提升模型的复杂推理能力,还需要继续在 PreTrain 和 PostTraining 阶段下功夫。
2024-12-05
哪款AI工具写小说逻辑性更好
以下是一些在写小说逻辑性方面表现较好的 AI 工具: ChatGPT:擅长构思。 Claude:文笔好于 ChatGPT。 使用 AI 写小说时存在一些固有问题,如上下文长度限制、易忘记要求、文笔简略、一致性难以保证、对叙述方式敏感等。但人类可以通过一些技巧来利用 AI 辅助创作,例如让 AI 以表格形式输出细节描述等。同时要记住,AI 只是辅助创作,最后仍需人类进行加工和修改以满足读者要求。
2024-11-25
AI 哪些功能可以用于运动人群
以下是 AI 在运动人群方面的相关功能和应用: 1. AI 健身:利用人工智能技术辅助或改善健身训练和健康管理。通过算法和数据分析为用户个性化地指导锻炼、提供健康建议、监测运动进度和反馈。应用于健身应用程序、智能健身设备和在线健身培训等领域,为用户提供更智能、更个性化的健身体验。 2. 健身的 AI 工具: Keep:中国最大的健身平台,提供全面的健身解决方案。网址:https://keep.com/ Fiture:由核心 AI 技术打造,集硬件、丰富课程内容、明星教练和社区于一体。网址:https://www.fiture.com/ Fitness AI:利用人工智能进行锻炼,增强力量和速度。网址:https://www.fitnessai.com/ Planfit:健身房家庭训练与 AI 健身计划,AI 教练是专门针对健身的生成式人工智能,使用 800 多万条文本数据和 ChatGPT 实时提供指导。网址:https://planfit.ai/ 此外,还有一些与运动相关的 AI 技术,如 Inworld AI 开发的角色引擎,可将游戏中的 NPC 进行 AI 化,使 NPC 能够自我学习和适应,具有情绪智能,能通过模拟人类的全方位沟通方式表达个性,其功能包括目标和行动、长期记忆、个性、情绪等。但需要注意的是,内容由 AI 大模型生成,请仔细甄别。
2024-12-26
帮孩子定早教计划的ai工具 根据月龄来制定,包括大运动、早教游戏、社交游戏、英语启蒙、数学启蒙、音乐启蒙
以下是一些可以帮助孩子制定早教计划(包括大运动、早教游戏、社交游戏、英语启蒙、数学启蒙、音乐启蒙等,并能根据月龄来制定)的 AI 工具: 1. LingoDeer(https://www.lingodeer.com/):这是一款通过游戏和互动活动教孩子英语的应用程序。它提供丰富的课程,从字母、数字到更高级的语法和词汇均有涵盖。此外,还有家长仪表板,方便家长跟踪孩子进度并设置学习目标。 2. Busuu(https://www.busuu.com/):这是另一个受欢迎的语言学习应用程序,提供英语及其他多种语言的课程。它运用多种教学方法,如音频课程、视频课程和互动练习。同时,其社区功能能让孩子与世界各地的孩子练习英语口语。 3. Memrise(https://www.memrise.com/):此应用程序借助抽认卡和游戏教孩子英语,课程多样,从基本词汇到高级会话技巧均有。而且具有社交功能,方便孩子与朋友和家人一起学习。 4. Rosetta Stone(https://www.rosettastone.com/):这是一种语言学习程序,采用沉浸式方法教孩子英语,让孩子在自然环境中使用英语,而非通过语法规则和词汇表学习。它还具备语音识别功能,有助于孩子练习发音。
2024-08-11