Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

最新ai应用于课堂

Answer

以下是 AI 应用于课堂的一些最新情况:

  1. 个性化学习平台:通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。例如 Knewton 平台,通过对数百万学生行为模式分析,精准预测学习难点并提前给出解决方案,大幅提升学习效率。
  2. 自动评估:利用自然语言处理技术(NLP)自动批改学生作文和开放性答案题。如 Pearson 的 Intelligent Essay Assessor,能够分析和理解写作内容,给出准确评分和反馈,减轻教师批改负担,提高评估效率和一致性。
  3. 智能辅助教学工具:如 AI 教师能够引导学生通过对话学习,解答疑问并提供即时反馈。Google 的 AI 教育工具 AutoML 用于创建定制学习内容,提高学习动机,加深知识掌握。
  4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟化学实验室进行安全实验操作,并得到 AI 系统反馈。例如 Labster 的虚拟实验室平台提供高科技实验室场景,让学生尝试复杂实验流程。
  5. 生成式 AI 实现个性化教育:不再存在教育科技在有效性和规模之间的权衡,可大规模部署个性化学习计划,为每个用户提供“口袋里的老师”。如 Speak、Quazel 和 Lingostar 等应用已在做实时交流并给予发音或措辞反馈。Photomath 和 Mathly 指导学生解决数学问题,PeopleAI 和 Historical Figures 通过模拟与杰出人物聊天教授历史。此外,Grammarly、Orchard 和 Lex 等工具帮助学生克服写作难题,提升写作水平。Tome 和 Beautiful.ai 协助创建演示文稿。
Content generated by AI large model, please carefully verify (powered by aily)

References

大聪明:未来教育的裂缝:如果教育跟不上AI

[title]大聪明:未来教育的裂缝:如果教育跟不上AI[heading1]AI在教育的应用人工智能在教育领域的融入正不断地从理论走向实际应用,为传统的教学模式带来颠覆性的改变。在这一进程中,具体案例能够清晰地揭示AI如何实际影响教学和学习方式。以个性化学习平台为例,通过集成算法和大数据分析,这些平台可以实时跟踪学生的学习进度,诊断学习难点,提供个性化的学习建议和资源。如知名的Knewton平台,它利用数据分析来构建个性化的学习路径,使学生能够根据自己的节奏学习。在这个平台上,一个具体的数据示例是,通过对数百万学生的行为模式进行分析,它可以精准预测学生在学习过程中可能遇到的难点,并提前给出解决方案,从而大幅提升学习效率。除了个性化教学外,AI在自动评估领域也取得了显著进展。例如,通过自然语言处理技术(NLP),机器可以自动批改学生的作文和开放性答案题。Pearson的Intelligent Essay Assessor便是这样的一个工具,它能够分析和理解学生的写作内容,给出准确的评分和反馈。这项技术的应用,大大减轻了教师的批改负担,提高了评估的效率和一致性。智能辅助教学工具的推出,使得课堂教学变得更为丰富和互动。例如,AI教师能够引导学生通过对话进行学习,解答学生的疑问,并提供即时反馈。Google的AI教育工具AutoML被用于创建定制的学习内容,让学生能够通过有趣的方式加深对学科概念的理解。这种方式既提高了学习动机,又使知识掌握变得更为深刻。在虚拟现实(VR)和增强现实(AR)方面,AI技术也在不断推动边界。学生可以通过VR头盔进入一个虚拟的化学实验室,不仅安全地进行实验操作,还能够立即得到AI系统的反馈。例如,Labster的虚拟实验室平台,它提供了一系列的高科技实验室场景,学生可以在这些场景中亲自尝试复杂的实验流程,比如基因编辑或量子物理实验,而无需昂贵的实验设备或专业实验室环境。

生成式 AI:下一个消费者平台

[title]生成式AI:下一个消费者平台关于AI的最强大之处之一是它能使产品个性化用户体验。这方面的早期应用已经出现在[教育科技](https://a16z.com/2023/02/08/the-future-of-learning-education-knowledge-in-the-age-of-ai/)和搜索中——如果你在解释为什么会下雨,那么对八岁儿童和高中生使用的语言将会不同。我们预计这种定制将是许多AI启用产品的核心价值主张。在这里,我们探讨了我们看到机会的主要消费者类别。在[后续的文章](https://a16z.com/2023/02/08/the-future-of-learning-education-knowledge-in-the-age-of-ai/)中,我们将更深入地研究这些领域,并分享我们在评估消费者AI公司时所提出的问题。

生成式 AI:下一个消费者平台

教育科技长期以来一直在有效性和规模之间做权衡。为大众打造有效的解决方案,就会失去吸引个体的个性化。为满足个体的需求而打造完美的解决方案,却又难以扩展。有了AI,这种状况不再存在。我们现在可以大规模部署个性化的学习计划,为每个用户提供一个“口袋里的老师”,这个老师理解他们独特的需求,并可以回答问题或测试他们的技能。想象一个由AI驱动的语言老师,能够实时交流,并对发音或措辞给予反馈。[Speak](https://www.speak.com/)、[Quazel](https://www.quazel.com/)和[Lingostar](https://www.lingostar.ai/)已经在做这样的事情!我们已经看到了教授新概念或帮助学习者在几乎所有学科中“摆脱困境”的产品。像[Photomath](https://photomath.com/en)和[Mathly](https://mathly.webflow.io/)这样的应用指导学生解决数学问题,而[PeopleAI](https://chatbotkit.com/apps/peopleai?ref=theresanaiforthat)和[Historical Figures](https://twitter.com/scottbelsky/status/1611244139764649991)通过模拟与杰出人物的聊天来教授历史。除了学习特定的科目,学生们还在他们的作业中利用AI助手。像Grammarly、[Orchard](https://orchard.ink/)和[Lex](https://lex.page/~)这样的工具帮助学生克服写作难题,并提升他们的写作水平。处理其他形式内容的产品也在全国各地的中学和大学中越来越受欢迎——例如,[Tome](https://beta.tome.app/)和[Beautiful.ai](https://www.beautiful.ai/)协助创建演示文稿。了解更多关于[AI时代学习的未来](https://a16z.com/2023/02/08/the-future-of-learning-education-knowledge-in-the-age-of-ai/)。

Others are asking
有没有可以分析历史事件关联性的AI
很抱歉,上述提供的内容中没有直接提到可以分析历史事件关联性的 AI 相关信息。但目前在 AI 领域,有一些自然语言处理和数据分析的技术及工具可能会被应用于历史事件关联性的分析。例如,利用大规模的语言模型结合历史数据进行文本挖掘和关联分析。不过,具体的专门用于此目的的成熟 AI 应用可能还需要进一步的研究和开发。
2025-02-24
有没有能进行历史进程分析的AI
以下是关于历史进程分析的 AI 相关内容: AI 技术的发展历程和前沿技术点可以概括如下: 发展历程: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):有专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):出现机器学习算法如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等得到发展。 当前前沿技术点: 1. 大模型(Large Language Models):如 GPT、PaLM 等。 2. 多模态 AI:包括视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习:如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习:有元学习、一次学习、提示学习等。 5. 可解释 AI:涉及模型可解释性、因果推理、符号推理等。 6. 机器人学:包含强化学习、运动规划、人机交互等。 7. 量子 AI:如量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 对于大众来说,AI 领域的使用随着国内互联网的发展,在近 20 年才开始普及。最初的应用主要是基于 NLP 技术的聊天机器人和客服机器人。随后,中英文翻译、语音识别、人脸识别等技术取得突破,在日常生活中的应用广泛,如语音助手、智能翻译设备、人脸识别支付系统等。但以前的技术突破大多限于特定领域,模型应用范围相对狭窄。而随着 OpenAI ChatGPT 等大型语言模型的突破,展示了通过大规模模型预训练涌现出广泛智能应用的新发展路线,一个模型就能实现多种能力。 此外,在法律法规方面,某些用于司法和民主进程的 AI 系统应被归类为高风险,考虑到其对民主、法治、个人自由以及有效补救和公平审判权利的潜在重大影响。但某些用于纯辅助行政活动且不影响个别案件实际司法管理的 AI 系统不应被归类为高风险。
2025-02-24
推荐几个可以做数据可视化的AI
以下是一些可以做数据可视化的 AI 工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,用户可通过拖放界面轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图创建,可与 Archi 工具配合使用,该工具提供图形化界面创建模型。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现称为 diagrams.net):免费的在线图表软件,允许创建各种类型图表,包括软件架构图,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 此外,还有 Graphy:这是一个数据可视化平台,其 AI 功能可帮助用户添加数据并自动生成图表和关键见解,用户还能通过视觉注释和一键增强功能使数据更有意义,并通过故事讲述来传达见解。
2025-02-24
最近的ai新闻
以下是最近的一些 AI 新闻: 2024 年 7 月: 苹果发布了 AI 原生操作系统,加强了硬件和模型布局。 Claude Sonnet 3.5 发布,挑战 OpenAI。 视频生成领域 Runway Gen3 和快手可灵表现优秀。 AI 3D 技术逐渐崭露头角。 Google 和月之暗面推出长上下文缓存技术。 快手发布可灵网页版及大量模型更新。 阶跃星辰发布多款模型。 商汤打造类似 GPT4o 的实时语音演示。 GraphRAG:微软开源新型 RAG 架构。 2024 年 9 月: 9 月 12 日:李继刚再现神级 Prompt,玩法持续翻新;Mistral 发布首个多模态模型 Pixtral 12B。 9 月 13 日:商汤 Vimi 相机开放微博小程序;元象开源中国最大 MoE 大模型 XVERSEMoEA36B。 9 月 14 日:人工智能生成合成内容标识办法(征求意见稿);Jina AI 发布 ReaderLM、Jina Embeddings V3。 9 月 18 日:DeepSeek 发文庆祝登上 LMSYS 榜单国产第一,几小时后 Qwen 新模型表示不服。 9 月 19 日:云栖大会;通义万相 AI 生视频上线;快手可灵 1.5 模型新增运动笔刷能力。 9 月 20 日:腾讯元器智能体对外发布;秘塔科技产品经理 JD 走红 AI 圈;阶跃跃问接入 Step2 万亿参数 MoE 语言大模型。 9 月 21 日:大模型测试基准研究组正式成立。 9 月 23 日:钉钉 365 会员上线。 9 月 24 日:讯飞星火 API 全新升级;豆包大模型全系列发布&更新。 9 月 25 日:Vidu API 正式开放,加速企业级视频创作;OpenAI 发布高级语音功能;西湖心辰开源 WestlakeOmni。 2024 年 1 月: 斯坦福大学 Mobile Aloha。 1 月 10 号 LumaAl Genie 文生 3D。 1 月 11 号 GPT store 上线。 1 月 MagnificAl 高清放大爆火。 1 月最后一天苹果 Vision Pro 宣布发售。 此外,红杉资本美国合伙人 Pat Grady 在最新访谈中表示,AI 技术将为服务行业带来变革机遇,而非取代软件公司。AI 的潜力在于赋能服务行业,但人际关系和实际执行仍需人工。对于基础模型公司,Grady 认为它们可能像数据库公司一样发展,提供开发者 API,有机会进入应用层。他认为现有模型已足够强大,关键在于工程化优化和认知架构设计。
2025-02-24
AI如何赋能售前售中售后等业务场景
AI 能够在以下售前售中售后等业务场景中发挥重要作用: 1. 医疗保健: 售前:通过分析患者数据,为潜在患者提供个性化的医疗建议和服务介绍。 售中:辅助医生进行诊断,如医学影像分析。 售后:为患者提供个性化的康复方案和护理建议。 2. 金融服务: 售前:利用信用评估为潜在客户提供贷款可能性的初步评估和相关产品介绍。 售中:进行风控和反欺诈,确保交易安全。 售后:提供投资分析和客户服务,解答客户疑问。 3. 零售和电子商务: 售前:通过产品推荐和个性化搜索,吸引潜在客户。 售中:提供动态定价和优化购物体验。 售后:利用聊天机器人解决客户售后问题。 4. 制造业: 售前:展示产品的制造优势和质量保障。 售中:确保生产过程的高效和质量控制。 售后:进行预测性维护,为客户提供优质的售后维护服务。 5. 交通运输: 售前:通过虚拟试驾等方式展示产品特点。 售中:提供智能导购服务,帮助客户选择合适的车型。 售后:持续监测车辆状态,提供维护建议。 6. 汽车行业: 售前:AI 辅助“市场营销”和“新媒体运营”,进行热点营销、用户画像预测等。 售中:提升“销售体验”,如智能“试驾”、“金牌销售”智能导购等。 售后:监测车辆使用情况,提供相关服务。 7. 企业运营: 售前:协助准备营销材料和市场分析。 售中:提供销售策略咨询。 售后:处理法律文书和人力资源相关事务。 8. 教育: 售前:为潜在学生提供学习规划建议。 售中:定制化学习内容。 售后:审核论文和提供后续学习支持。 9. 游戏/媒体: 售前:进行游戏定制化推广和出海文案宣传。 售中:提供动态生成的游戏体验和媒体内容。 售后:处理用户反馈和优化内容。 10. 金融/保险: 售前:提供个人金融理财顾问服务。 售中:处理贷款信息和风险评估。 售后:进行保险理赔处理和客户服务。 11. 生命科学: 售前:介绍研发成果和服务。 售中:协助医疗过程中的诊断和治疗。 售后:提供术后护理和康复辅助。
2025-02-24
那个AI擅长修改简历?
以下是一些擅长修改简历的 AI 工具: 1. 超级简历优化助手:这是一款 AI 简历优化工具,使用自然语言处理技术,能分析简历内容并提供优化建议,帮助用户提高求职成功率,市场规模达数亿美元。 2. Kickresume 的 AI 简历写作器:使用 OpenAI 的 GPT4 语言模型自动生成简历,为简历摘要、工作经验和教育等专业部分编写内容,并保持一致语调。 3. Rezi:是一个受到超过 200 万用户信任的领先 AI 简历构建平台,使用先进的 AI 技术自动化创建可雇佣简历的每个方面,包括写作、编辑、格式化和优化。 4. Huntr 的 AI 简历构建器:提供免费的简历模板,以及 AI 生成的总结/技能/成就生成器和 AI 驱动的简历工作匹配。 更多 AI 简历产品,还可以查看这里:https://www.waytoagi.com/category/79 。您可以根据自己的需要选择最适合的工具。
2025-02-24
请帮我找出在课堂可以使用的AI
以下是在课堂中可以使用的一些 AI 应用和方法: 1. 让 AI 出题,如出 Python 题,可先出 20 道再挑选修改。 2. 利用 AI 进行智慧课程设计,例如围绕巴以冲突出相关数学题,将维基百科的史料借助 AI 变成数学课教案,让孩子从生活中学习多学科知识。 3. 输入书上例题,让 AI 生成新颖解法,引发学生思考。 4. 进行交互式学习,随时要求 AI 解释关键代码并举例,为学生提供支架。 5. 利用 AI 分担低阶认知,让人有精力投入高阶认知加工。 6. 借助 AI 工具,将知识作为解决问题的方法来教。 7. 声音克隆:可在 Elevenlabs.io、speechify.com 等网站进行,还能通过 HeyGen 定制“数字分身”。 8. 视频生成:如用 runway 让互联网梗图动起来,用 lumalabs.ai 让图片动起来。 同时要注意对学生思维训练的引导,关注和设法引导“偷懒”的学生,避免差距拉大。
2025-02-16
有哪些好用的可以的课堂录音翻译的prompt
以下是一些与课堂录音翻译相关的 prompt 资源: 1. 百晓生:研究和解释者,适用于教育领域,角色是世上最好的研究和解释代理,工作是以各种可能的方式以中文解释主题,使其易于理解,方法包括在互联网和 Google 上搜索主题的最新信息并总结要点。链接地址:https://waytoagi.feishu.cn/wiki/AU2xwnaZgih8nkkIthhcU7j0nVg 2. 小七姐:EmotionPrompt 精读翻译,介绍了情绪提示(EmotionPrompt)这种新颖的方法,旨在融入心理学见解以提高 LLMs 的效果。 3. 吴恩达讲 Prompt:谷歌/百度 AI 部门负责人吴恩达和 OpenAI 合作推出了免费的 Prompt Engineering(提示工程师)课程,课程主要内容是教书写 AI 提示词并利用 GPT 开发一个 AI 聊天机器人。相关资源包括原版网址、B站版本、翻译版本、推荐的 Jupyter 版本、视频下载地址、OpenAI 开源的教程以及纯文字版本。 原版网址:https://www.deeplearning.ai/shortcourses/chatgptpromptengineeringfordevelopers/ B 站版本:【合集·AI Course哔哩哔哩】https://b23.tv/ATc4lX0 、https://b23.tv/lKSnMbB 翻译版本: Jupyter 版本:https://github.com/datawhalechina/promptengineeringfordevelopers/ 视频下载地址:https://pan.quark.cn/s/77669b9a89d7 OpenAI 开源教程:https://islinxu.github.io/promptengineeringnote/Introduction/index.html
2024-12-16
我想要生成AI辅助化学课堂教学内容
以下是关于生成 AI 辅助化学课堂教学内容的相关信息: 在教学中,可控地引导学生将部分课程和任务用 AI 辅助是可行的,但仍需限制部分课程的 AI 使用,以培养学生独立思考和解决问题的能力。很多时候人们未能很好地运用 AI 为自己赋能,并非能力欠缺,只是不知道可以这样做。 在医疗保健领域,为了让 AI 产生真正的改变,应创建像我们一样学习的模型生态系统。成为顶尖人才通常从多年密集的信息输入开始,如正规学校教育和学徒实践。对于 AI 来说,当前的学习方式及技术人员的处理方式使在复杂情况下确定最佳答案的直觉培养面临挑战。应通过堆叠模型训练 AI,如先训练生物学、化学模型,再添加特定数据点。就像预医学生从化学和生物学基础课程开始,设计新疗法的科学家也需多年学习,这种方式有助于培养处理细微差别决策的直觉。 您可以参考以上思路,将其中的方法和理念应用于化学课堂教学中,例如先让学生掌握化学的基础知识,再逐步引入 AI 辅助教学,同时注意培养学生的自主能力。
2024-10-06
目前市面上有哪些AI辅助工具,能结合信息科技课堂项目教学,并且能助力信息的课堂教学。
目前市面上结合信息科技课堂项目教学、助力信息课堂教学的 AI 辅助工具有以下几种: 数学学习方面: 1. 自适应学习系统,如 Khan Academy,结合 AI 技术为您提供个性化的数学学习路径和练习题,根据您的能力和需求进行精准推荐。 2. 智能题库和作业辅助工具,如 Photomath,通过图像识别和数学推理技术为您提供数学问题的解答和解题步骤。 3. 虚拟教学助手,如 Socratic,利用 AI 技术为您解答数学问题、提供教学视频和答疑服务,帮助您理解和掌握数学知识。 4. 交互式学习平台,如 Wolfram Alpha,参与其数学学习课程和实践项目,利用 AI 技术进行数学建模和问题求解。 制作 PPT 方面: 1. Gamma:在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片。支持嵌入多媒体格式,如 GIF 和视频,以增强演示文稿的吸引力。网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出。允许用户通过输入简单的文本描述来生成专业的 PPT 设计,包含丰富的模板库和设计元素,用户可根据需求选择不同风格和主题的模板,快速打造出适合多种场合的 PPT。网址:https://www.xdesign.com/ppt/ 3. Mindshow:AI 驱动的 PPT 辅助工具,提供一系列的智能设计功能,如自动布局、图像选择和文本优化等,还包括一些互动元素和动画效果,以增强演示文稿的吸引力。网址:https://www.mindshow.fun/ 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-09-12
使用那个aigc工具可以把一个课堂实录变成一篇论文?
以下是一些可以用于将课堂实录转变为论文的 AIGC 工具及相关介绍: 1. Turnitin:这是一个广泛使用的学术剽窃检测工具,最近也增加了检测 AI 生成内容的功能。使用方法为用户上传论文,系统会自动分析文本并提供详细报告,标示出可能由 AI 生成的部分。 2. :提供了免费的 AI 内容检测工具,能够识别文本是否由 AI 生成。使用时将文本粘贴到在线工具中,点击检测按钮,系统会提供分析结果。 3. Content at Scale:具有 AI 内容检测功能,可帮助用户识别文本是否由 AI 生成。使用时将文本粘贴到在线检测工具中,系统会分析并提供结果。 这些工具和网站可以帮助教育机构、研究人员和编辑识别 AI 生成的内容,确保学术和出版的原创性和诚信。您可以根据具体需求,选择适合的工具来进行检测。需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2024-08-22
steam教育融入中小学信息技术课堂的实践研究的课题申请报告
撰写关于“STEAM教育融入中小学信息技术课堂的实践研究”的课题申请报告时,需要遵循一定的结构和内容要求。以下是一个基本的框架和一些撰写建议: 1. 封面(Cover Page) 课题名称:STEAM教育融入中小学信息技术课堂的实践研究 申请人姓名: 申请人单位: 联系电话: 电子邮箱: 申请日期: 2. 摘要(Abstract) 简要介绍课题的研究背景、目的、方法、预期成果和意义。 3. 引言(Introduction) 研究背景:介绍STEAM教育的重要性和当前在中小学信息技术课堂中的应用情况。 研究意义:阐述本课题研究对于教育改革、学生能力培养等方面的贡献。 研究目的和问题:明确课题的研究目标和需要解决的核心问题。 4. 文献综述(Literature Review) 分析和评述现有文献中关于STEAM教育、信息技术课堂的相关理论和实践研究。 5. 研究方法(Methodology) 研究设计:描述课题的研究类型(定性、定量或混合方法)和设计框架。 数据收集:介绍将采用的数据收集方法,如问卷调查、访谈、课堂观察等。 数据分析:说明将如何处理和分析收集到的数据。 6. 研究实施计划(Research Implementation Plan) 实施步骤:详细列出研究的各个阶段和步骤。 时间表:提供研究的时间安排和里程碑。 7. 预期成果(Expected Outcomes) 描述预期的研究结果,包括理论贡献和实践应用。 8. 研究影响(Impact) 分析课题研究对教育实践、政策制定等方面的潜在影响。 9. 预算和资金(Budget and Funding) 提供课题研究的预算明细和资金来源。 10. 附录(Appendix) 包括研究所需的任何额外材料,如调查问卷、访谈指南等。 11. 参考文献(References) 列出所有引用的文献。 撰写建议: 明确性:确保研究目标和问题清晰明确。 可行性:研究方法和计划应切实可行。 创新性:突出课题的创新点和独特价值。 逻辑性:报告内容应逻辑清晰,条理分明。 规范性:遵循学术规范,正确引用文献。 完成报告后,应进行多次校对,确保没有语法错误和遗漏的信息。此外,根据申请的具体要求,可能需要对报告的结构和内容进行相应的调整。
2024-05-25
RAG最新进展
RAG(检索增强生成)是由 Lewis 等人于 2020 年中期提出的一种大语言模型领域的范式。 其发展经历了以下阶段: 1. 2017 年创始阶段,重点是通过预训练模型吸收额外知识以增强语言模型,主要集中在优化预训练方法。 2. 大型语言模型如 GPT 系列在自然语言处理方面取得显著成功,但在处理特定领域或高度专业化查询时存在局限性,易产生错误信息或“幻觉”,特别是在查询超出训练数据或需要最新信息时。 3. RAG 包括初始的检索步骤,查询外部数据源获取相关信息后再回答问题或生成文本,此过程为后续生成提供信息,确保回答基于检索证据,提高输出准确性和相关性。 4. 在推断阶段动态检索知识库信息能解决生成事实错误内容的问题,被迅速采用,成为完善聊天机器人能力和使大语言模型更适用于实际应用的关键技术。 RAG 在多个基准测试中表现出色,如在 Natural Questions、WebQuestions 和 CuratedTrec 等中表现抢眼。用 MSMARCO 和 Jeopardy 问题进行测试时,生成的答案更符合事实、具体和多样,FEVER 事实验证使用后也有更好结果。基于检索器的方法越来越流行,常与 ChatGPT 等流行大语言模型结合使用提高能力和事实一致性,在 LangChain 文档中有相关使用例子。 同时,对增强生成检索的兴趣增长促使了嵌入模型质量的提高,传统 RAG 解决方案中的问题也得到解决。
2025-02-20
哪里可以学习最新AI
以下是一些学习最新 AI 的途径和建议: 1. 持续学习和跟进:AI 是快速发展的领域,新成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 2. 加入相关社群和组织:参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。例如“通往 AGI 之路”这样的中文知识库和社区平台,它汇集了上千个人工智能网站和工具,提供最新的 AI 工具、应用、智能体和行业资讯,还有丰富的学习资源、实践活动,并倡导开放共享的知识体系。 3. 参考学习日记:如《雪梅 May 的 AI 学习日记》,其中提到适合纯 AI 小白的学习模式,即输入→模仿→自发创造。但需注意学习内容可能因 AI 发展而变化,可在相关社区发现自己感兴趣的领域,学习最新内容。 4. 利用免费开源资源:很多学习资源是免费开源的,充分利用这些资源进行学习。
2025-02-18
最新的AI行业动态和进展有哪些,包含2025年
以下是关于最新的 AI 行业动态和进展(包含 2025 年)的内容: 2024 年: 图片超短视频的精细操控:包括表情、细致动作、视频文字匹配。 有一定操控能力的生成式短视频:风格化、动漫风最先成熟,真人稍晚。 AI 音频能力长足进展:带感情的 AI 配音基本成熟。 “全真 AI 颜值网红”出现,可以稳定输出视频,可以直播带货。 游戏 AI NPC 有里程碑式进展,出现新的游戏生产方式。 AI 男/女朋友聊天基本成熟:记忆上有明显突破,可以较好模拟人的感情,产品加入视频音频,粘性提升并开始出圈。 实时生成的内容开始在社交媒体内容、广告中出现。 AI Agent 有明确进展,办公场景“AI 助手”开始有良好使用体验。 AI 的商业模式开始有明确用例:数据合成、工程平台、模型安全等。 可穿戴全天候 AI 硬件层出不穷,虽然大多数不会成功。 中国 AI 达到或超过 GPT4 水平;美国出现 GPT5;世界上开始现“主权 AI”。 华为昇腾生态开始形成,国内推理芯片开始国产替代(训练替代要稍晚)。 AI 造成的 DeepFake、诈骗、网络攻击等开始进入公众视野,并引发担忧。 AI 立法、伦理讨论仍然大规模落后于技术进展。 2025 2027 年: AI 3D 技术、物理规则成熟:正常人无法区别 AI 生成还是实景拍摄。 全真 AI 虚拟人成熟:包含感情的 AI NPC 成熟,开放世界游戏成熟;游戏中几乎无法区别真人和 NPC。 AR/VR 技术大规模商用。 接近 AGI 的技术出现。 人与 AI 配合的工作方式成为常态,很多日常决策开始由 AI 来执行。 AI 生产的数据量超过全人类生产数据量,“真实”成为稀缺资源。 具身智能、核聚变、芯片、超导、机器人等技术有明显进展突破。 “人的模型”出现,出现“集中化 AGI”与“个人 AGI”的历史分叉。 AI 引发的社会问题开始加重,结构性失业开始出现。 AGI 对于地缘政治的影响开始显露。 此外,还有以下相关动态: 算力瓶颈不只是单纯的技术和建设问题,而是影响整个行业竞争格局的重要变量。 逐渐进入多模态灵活转换的新时代,实现文本、图像、音频、视频及其他更多模态之间的互相理解和相互转换。 人类劳动形式逐步“软件化”,复杂劳动被抽象为可调用的软件服务,劳动流程被大幅标准化和模块化,劳动能力像“即插即用”的工具一样易于获取。 AI 行业目前仍处于严重亏损的阶段,商业化进程仍有巨大提升空间。 云厂商是产业链中毋庸置疑的“链主”。 2024 年,头部 AI 应用的品类变化并不显著。创意工具(如图像和视频内容创作)依然占据最大比重。To P(面向专业用户)应用展现出强大的市场潜力,ToB(面向企业)应用发展路径相对复杂,ToC 应用面临较大的挑战。 在 AI 应用领域,Copilot 和 AI Agent 是两种主要的技术实现方式。 北美和欧洲贡献了 AI 移动应用市场三分之二的份额,众多中国 AI 公司积极出海。 2024 年 10 月的大事记包括: Gartner 发布 2025 年十大战略技术趋势。 DeepSeek 开源多模态 LLM 框架 Janus。 司南开源大模型能力评估模型 CompassJudger。 Anthropic 发布新功能 computer use,发布 Claude 3.5 Haiku,更新 Claude 3.5 Sonnet。 Stability AI 发布 Stable Diffusion 3.5。 x.AI 正式推出 API。 ComfyUI V1 官方桌面版开放内测。 华为发布纯血操作系统鸿蒙 OS NEXT。 Jina AI 推出高性能分类器 Classifier API。 OpenAI 发布图像生成模型 sCM。 Midjourney 上线外部图片编辑器。 Runway 发布动画视频功能 ActOne。 Ideogram 推出 AI 画板工具 Canvas。 Genmo 开源视频生成模型 Mochi 1。 荣耀发布操作系统 MagicOS 9.0。 美国 14 岁少年与 C.AI 聊天后离世。 新华社发文表示警惕「AI 污染」乱象。 港中文&趣丸推出 TTS 模型 MaskGCT。 科大讯飞发布讯飞星火 4.0 Turbo。 阿里通义代码模式开始内测。 Anthropic Claude 新增数据分析功能。 北京市大中小学推广 AI 学伴和 AI 导学应用。 稚晖君开源「灵犀 X1」全套资料。 OpenAI 高管 Miles Brundage 离职。
2025-02-17
最新的AI行业动态和进展有哪些
以下是最新的 AI 行业动态和进展: 1. 《2024 年度 AI 十大趋势报告》发布,其中提到大模型创新方面,架构优化加速涌现,融合迭代大势所趋;Scaling Law 泛化方面,推理能力成皇冠明珠,倒逼计算和数据变革;AGI 探索方面,视频生成点燃世界模型,空间智能统⼀虚拟和现实;AI 应用格局方面,第⼀轮洗牌结束,聚焦 20 赛道 5 大场景;AI 应用竞争方面,多领域竞速运营大于技术,AI 助手兵家必争;AI 应用增长方面,AI+X 赋能类产品大干快上,原生 AI 爆款难求;AI 产品趋势方面,多模态上马,Agent 席卷⼀切,高度个性化呼之欲出;AI 智变千行百业,左手变革生产力,右手重塑行业生态;AI 行业渗透率方面,数据基础决定初速度,用户需求成为加速度;AI 创投方面,投融资马太效应明显,国家队出手频率提升。 2. 2024 年 9 月的 AI 行业大事记: 9 月 12 日:李继刚再现神级 Prompt,玩法持续翻新;Mistral 发布首个多模态模型 Pixtral 12B。 9 月 13 日:商汤 Vimi 相机开放微博小程序;元象开源中国最大 MoE 大模型 XVERSEMoEA36B;OpenAI 发布 o1 模型。 9 月 14 日:人工智能生成合成内容标识办法(征求意见稿);Jina AI 发布 ReaderLM 和 Jina Embeddings V3。 9 月 18 日:DeepSeek 发文庆祝登上 LMSYS 榜单国产第一,几小时后 Qwen 新模型表示不服。 9 月 19 日:云栖大会;通义万相 AI 生视频上线;快手可灵 1.5 模型新增运动笔刷能力。 9 月 20 日:腾讯元器智能体对外发布;秘塔科技产品经理 JD 走红 AI 圈;阶跃跃问接入 Step2 万亿参数 MoE 语言大模型。 9 月 21 日:大模型测试基准研究组正式成立。 9 月 23 日:钉钉 365 会员上线。 9 月 24 日:讯飞星火 API 全新升级;豆包大模型全系列发布&更新。 9 月 25 日:Vidu API 正式开放,加速企业级视频创作;OpenAI 发布高级语音功能;西湖心辰开源 WestlakeOmni。 3. 2024 年,国内 AI 行业融资总金额增加,但事件数同比下降,马太效应越发明显,资本更青睐热点和高成熟度赛道。智能驾驶在各细分赛道中独占鳌头,AI+教育、AI+游戏、AI+医疗等赛道投资总额也有增长。政府积极推进 AI 原生行业发展,北京、上海、武汉等城市出台系列政策吸引人才和企业,国家队频繁投资体现政策支持。
2025-02-17
最新的AI行业动态和进展有哪些
以下是最新的 AI 行业动态和进展: 1. 《2024 年度 AI 十大趋势报告》发布,其中提到: 大模型创新方面,架构优化加速涌现,融合迭代大势所趋。 Scaling Law 泛化,推理能力成皇冠明珠,倒逼计算和数据变革。 AGI 探索中,视频生成点燃世界模型,空间智能统⼀虚拟和现实。 AI 应用格局方面,第一轮洗牌结束,聚焦 20 赛道 5 大场景。 AI 应用竞争中,多领域竞速运营大于技术,AI 助手兵家必争。 AI 应用增长方面,AI+X 赋能类产品大干快上,原生 AI 爆款难求。 AI 产品趋势为多模态上马,Agent 席卷一切,高度个性化呼之欲出。 AI 智变千行百业,左手变革生产力,右手重塑行业生态。 AI 行业渗透率方面,数据基础决定初速度,用户需求成为加速度。 AI 创投方面,投融资马太效应明显,国家队出手频率提升。 2. 2024 年 9 月的 AI 行业大事记: 9 月 12 日:李继刚再现神级 Prompt,玩法持续翻新;Mistral 发布首个多模态模型 Pixtral 12B。 9 月 13 日:商汤 Vimi 相机开放微博小程序;元象开源中国最大 MoE 大模型 XVERSEMoEA36B;OpenAI 发布 o1 模型。 9 月 14 日:人工智能生成合成内容标识办法(征求意见稿);Jina AI 发布 ReaderLM 和 Jina Embeddings V3。 9 月 18 日:DeepSeek 发文庆祝登上 LMSYS 榜单国产第一,几小时后 Qwen 新模型表示不服。 9 月 19 日:云栖大会;通义万相 AI 生视频上线;快手可灵 1.5 模型新增运动笔刷能力。 9 月 20 日:腾讯元器智能体对外发布;秘塔科技产品经理 JD 走红 AI 圈;阶跃跃问接入 Step2 万亿参数 MoE 语言大模型。 9 月 21 日:大模型测试基准研究组正式成立,国家队来了。 9 月 23 日:钉钉 365 会员上线。 9 月 24 日:讯飞星火 API 全新升级;豆包大模型全系列发布&更新。 9 月 25 日:Vidu API 正式开放,加速企业级视频创作;OpenAI 发布高级语音功能;西湖心辰开源 WestlakeOmni。 3. 从行业视角来看,2024 年国内 AI 行业融资总金额增加,但事件数同比下降,马太效应越发明显,资本更青睐热点和高成熟度赛道。智能驾驶在各细分赛道中独占鳌头,AI+教育、AI+游戏、AI+医疗等赛道投资总额也有增长。在政策方面,政府积极推进 AI 原生行业发展,北京、上海、武汉等城市出台系列政策吸引人才和企业,国家队频繁出手投资体现政策支持。
2025-02-17
配置最新的ai
以下是关于配置最新 AI 的相关内容: 1. Yaki:GPT/MJ 接入微信 检查环境 安装 Python 安装 git 克隆项目代码 安装 pip 环境 更改名称 配置文件:在 FinalShell 窗口下找到 root/chatgptonwechat/config.json 文件打开进行配置。 OpenAI API 的基础 URL(如果调用的不是官方的 key,需要更改这部分的内容):"open_ai_api_base":"https://api.gptapi.us/v1" 使用的模型版本(如果想要使用其他模型,记得需要更改这里):"model":"gpt4" 启动命令 注:扫码登录是模拟电脑登录微信号,需要保持在线才会触发,如果切换退出等,那么服务器中的微信也会掉线。 更详细内容参考:https://github.com/zhayujie/chatgptonwechat/tree/master 2. python 安装 FittenAI 编程助手 安装 python 的运行环境: 安装步骤:点击左上角的 FileSettingsPluginsMarketplace 注册:安装完成后左侧会出现 Fitten Code 插件图标,注册登录后即可开始使用 智能补全:按下 Tab 键接受所有补全建议;按下 Ctrl+→键接收单个词补全建议 AI 问答:通过点击左上角工具栏中的 Fitten Code–开始新对话打开对话窗口进行对话 自动生成代码:Fitten Code 工具栏中选择"Fitten Code生成代码",然后在输入框中输入指令即可生成代码 代码转换:Fitten Code 可以实现代码的语义级翻译,并支持多种编程语言之间的互译。选中需要进行翻译的代码段,右键选择"Fitten Code–编辑代码",然后在输入框中输入需求即可完成转换 3. 张梦飞:【知识库】FastGPT+OneAPI+COW 带有知识库的机器人完整教程 环境配置: 复制代码时注意复制全,每次只粘贴一行,然后点击一次回车。 回车后,只有最左边显示中括号时,才是上一个命令执行完毕。 1、第一步:cd/root||exit 1 2、第二步:下方两行粘贴进入,然后点击回车,等待下载完成。(如果有卡点,进行不下去,可能是服务器网络问题,去拉取时下载不全,可以复制网址,手动去下载到电脑上。然后进入文件夹,找到 root 文件夹,把下载的文件上传进去。) 2.2、再粘贴下方代码,出现下图,就代表在执行中了。 3、然后把下边这行粘贴进去,点击回车。rm f Anaconda32021.05Linuxx86_64.sh 4、继续粘贴:/root/anaconda/bin/conda create y name AI python=3.8 5、继续,一行一行依次粘贴,依次回车:echo 'source /root/anaconda/bin/activate AI' >> ~/.bashrc 6、执行完成后。刷新一下,重新进入终端,最左侧出现了(AI)的字符则配置完成。
2025-02-16
我是一个什么都不懂的小白,但是我想通过ai弄出一个应用,我该怎么做?
对于纯小白想要通过 AI 开发应用,您可以参考以下步骤: 1. 从基础小任务开始: 让 AI 按照最佳实践为您写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以此学会必备的调试技能。 比如在学习写 chrome 插件时,可以要求 AI 选择适合小白上手的技术栈生成简单的示范项目,并包含尽可能全面的典型文件和功能,同时讲解每个文件的作用和程序运行的逻辑。 如果使用 o1mini,还可以在提示词最后添加“请生成 create.sh 脚本,运行脚本就能直接创建插件所需要的所有文件。请教我如何运行脚本。”(windows 机器则是 create.cmd),从而一次性生成多个目录和文件。 2. 明确项目需求: 通过和 AI 的对话,逐步明确项目需求。 可以让 AI 像高级别的懂技术的产品经理那样向您提问,帮助梳理产品功能,尤其注意涉及技术方案选择的关键点。 来回对话后,让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知正在做的功能点。 需要注意的是,虽然 AI 能提供帮助,但对于复杂的应用开发,仍需要您在过程中逐渐学习一些编程知识。目前像字节 Coze 这样的工具本质上是「AIfirst aPaaS」,它把实现应用所需的不同类型代码用不同可视化工具实现,生成的是「配置」,且开发和运行阶段都有大模型的支持。
2025-02-24
什么应用可以将草图进行绘制
以下是一些可以将草图进行绘制的应用: 1. Stable Diffusion:例如其中的 ControlNet 插件,如 tile 模型,可以对草图进行细化和加强细节。在放大图片时,能在较高的重绘幅度下保持画面质量。 2. 摩搭平台:可用于参加相关比赛,如“AI 梦一单一世界比赛”,作为底膜训练 Lora,并生成作品。 此外,在 AI 绘图中,还需要考虑构图、色彩、光影等因素,选择合适的景别和构图方式,以创作出高质量的作品。
2025-02-24
智能体和应用什么区别
智能体和应用的区别主要体现在以下几个方面: 1. 控制流:应用程序将语言模型作为语义搜索、综合或生成的“工具”,其采取的步骤由代码预先确定;而智能体是将语言模型置于应用程序的控制流中,让其动态决定要采取的行动、使用的工具以及如何解释和响应输入。 2. 自由度:在智能体中,如“决策智能体”设计使用语言模型遍历预定义的决策树,自由度受到限制;“轨道智能体”自由度更大,配备更高层次的目标,但解决空间有限;“通用人工智能体”则完全依赖语言模型的推理能力进行所有的计划、反思和纠正。 3. 概念理解:智能体简单理解就是 AI 机器人小助手,参照移动互联网,类似 APP 应用的概念。AI 大模型是技术,面向用户提供服务的是产品,很多公司关注 AI 应用层的产品机会,出现了如社交方向等 C 端案例和帮助 B 端商家搭建智能体等 B 端案例。同时,也有像字节扣子、腾讯元器等智能体开发平台。
2025-02-24
WaytoAGI 知识库有什么应用场景
WaytoAGI 知识库具有以下应用场景: 1. 在飞书 5000 人大群中,内置了智能机器人“waytoAGI 知识库智能问答”,可根据文档及知识进行回答。使用时在飞书群里发起话题时即可,它能自动回答用户关于 AGI 知识库内的问题,对多文档进行总结、提炼;在内置的“waytoAGI”知识库中搜索特定信息和数据,快速返回相关内容;提供与用户查询相关的文档部分或引用,帮助用户获取更深入的理解;通过互动式的问答,帮助群成员学习和理解 AI 相关的复杂概念;分享有关 AGI 领域的最新研究成果、新闻和趋势;促进群内讨论,提问和回答,增强社区的互动性和参与度;提供访问和下载 AI 相关研究论文、书籍、课程和其他资源的链接;支持多语言问答,满足不同背景用户的需求。 2. WaytoAGI 是由一群热爱 AI 的专家和爱好者共同建设的开源 AI 知识库,目前知识库的内容覆盖:AI 绘画、AI 视频、AI 智能体、AI 3D 等多个版块,包含赛事和活动促进大家动手实践。 3. WaytoAGI 里有个离谱村,是由 WaytoAGI 孵化的千人共创项目,让大家学习和接触 AI 更容易,更感兴趣。参与者不分年龄层,一起脑洞和创意,都可以通过 AI 工具快速简单地创作出各种各样的作品。离谱村是一个没有被定义的地方,每个人心中都有自己想象中的离谱村,不仅代表着一个物理空间,更是灵魂的避风港,激励着每一个生命体发挥其无限的想象力,创造属于自己的独特生活方式。
2025-02-24
关于RAG和知识库的应用
RAG(检索增强生成,Retrieval Augmented Generation)是一种利用大模型能力搭建知识库的技术应用。当需要依靠不包含在大模型训练集中的数据时,可通过该技术实现。 RAG 的应用可抽象为以下 5 个过程: 1. 文档加载(Document Loading):从多种不同来源加载文档,如 PDF 等非结构化数据、SQL 等结构化数据以及 Python、Java 之类的代码等。LangChain 提供了 100 多种不同的文档加载器。 2. 文本分割(Splitting):文本分割器把 Documents 切分为指定大小的块,称为“文档块”或“文档片”。 3. 存储(Storage):涉及两个环节,一是将切分好的文档块进行嵌入(Embedding)转换成向量的形式,二是将 Embedding 后的向量数据存储到向量数据库。 4. 检索(Retrieval):数据进入向量数据库后,通过某种检索算法找到与输入问题相似的嵌入片。 5. Output(输出):把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示生成更加合理的答案。 离线数据处理的目的是构建知识库这本“活字典”,知识会按照某种格式及排列方式存储在其中等待使用。在线检索则是利用知识库和大模型进行查询的过程。以构建智能问答客服为例,可了解 RAG 所有流程中的 What 与 Why。 相关资源: 文本加载器:将用户提供的文本加载到内存中,便于后续处理。 海外官方文档:https://www.coze.com/docs/zh_cn/knowledge.html 国内官方文档:https://www.coze.cn/docs/guides/use_knowledge
2025-02-24
在教育方面怎么应用
以下是 AI 在教育方面的应用: 1. 定制和动态化教育材料:视频扩散模型可将文本描述或课程大纲转化为针对个别学习者的特定风格和兴趣量身定制的动态、引人入胜的视频内容,图像到视频编辑技术能将静态教育资产转换为互动视频,支持多种学习偏好,增加学生参与度,使复杂概念更易于理解和吸引人。 2. 个性化教学:个性化学习平台通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。 3. 自动评估:利用自然语言处理技术,机器可自动批改学生的作文和开放性答案题,减轻教师批改负担,提高评估效率和一致性。 4. 智能辅助教学:AI 教师能引导学生通过对话学习,解答疑问并提供即时反馈,创建定制的学习内容,提高学习动机,加深知识掌握。 5. 虚拟现实和增强现实教学:学生可通过 VR 头盔进入虚拟实验室进行实验操作,立即得到 AI 系统反馈,无需昂贵设备或专业环境。 6. 数字教师和数字陪伴:人工智能生成的角色可作为数字教师,如让历史人物授课,实现一对一辅导,提供定制化学习计划和资源,还可作为数字陪伴促进儿童成长。
2025-02-23