Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

智能体和应用什么区别

Answer

智能体和应用的区别主要体现在以下几个方面:

  1. 控制流:应用程序将语言模型作为语义搜索、综合或生成的“工具”,其采取的步骤由代码预先确定;而智能体是将语言模型置于应用程序的控制流中,让其动态决定要采取的行动、使用的工具以及如何解释和响应输入。
  2. 自由度:在智能体中,如“决策智能体”设计使用语言模型遍历预定义的决策树,自由度受到限制;“轨道智能体”自由度更大,配备更高层次的目标,但解决空间有限;“通用人工智能体”则完全依赖语言模型的推理能力进行所有的计划、反思和纠正。
  3. 概念理解:智能体简单理解就是 AI 机器人小助手,参照移动互联网,类似 APP 应用的概念。AI 大模型是技术,面向用户提供服务的是产品,很多公司关注 AI 应用层的产品机会,出现了如社交方向等 C 端案例和帮助 B 端商家搭建智能体等 B 端案例。同时,也有像字节扣子、腾讯元器等智能体开发平台。
Content generated by AI large model, please carefully verify (powered by aily)

References

AI 智能体:企业自动化的新架构 - Menlo Ventures

很明确,未来的完全自主智能体可能会拥有所有四个构建块,但今天的LLM应用程序和智能体还没有达到这个水平。例如,流行的RAG架构不是智能体式的,而是以推理和外部记忆作为其基础。一些设计,如[OpenAI的结构化输出](https://openai.com/index/introducing-structured-outputs-in-the-api/)甚至支持工具使用。但重要的区别在于,这些应用程序将LLM作为语义搜索、综合或生成的"工具",但它们采取的步骤(即逻辑流)仍由代码预先确定。对比来说,当您将LLM置于应用程序的控制流中并让它动态决定要采取的行动、要使用的工具以及如何解释和响应输入时,智能体就会出现。只要这是真的,有些智能体甚至不需要与外部工具交互或采取行动。在Menlo,我们确定了三种不同主要用例和应用程序进程控制自由度的智能体类型。受到最严格限制的是"决策智能体"设计,它们使用语言模型来遍历预定义的决策树。"轨道智能体"则提供了更大的自由度,为智能体配备了更高层次的目标,但同时限制了解决空间,要求遵循标准作业程序并使用预先设定的"工具"库。最后,在光谱的另一端是"通用人工智能体"——本质上是没有任何数据支架的for循环,完全依赖于语言模型的推理能力来进行所有的计划、反思和纠正。以下,我们将探讨五种参考架构和每种智能体类型的人工智能体示例。

XAIR:AI 智能体平台对决:腾讯元器与字节扣子的创新之路

1、什么是智能体?随着ChatGPT与AI概念的爆火,出现了很多新名词,“智能体Agent”还有bot和GPTs等,Kimi(月之暗面的大模型)的书面解释是:简单理解就是AI机器人小助手,参照移动互联网的话,类似APP应用的概念(我记得GPT刚出的时候,还有人把GPT应用称为GAP),AI大模型是一个技术,而面向用户提供服务的是产品,所以有很多公司开始关注AI应用层的产品机会。我知道的在做Agent创业的公司就有好几家:C端案例:比如社交方向,用户注册之后先捏一个自己的Agent,然后让自己的Agent和其他人的Agent聊天,两个Agent聊到一起后再真人介入,也是一个很有趣的场景;还有借Onlyfans入局打造个性化聊天的创业公司。B端案例:如果字节扣子和腾讯元器是面向普通人的低代码平台,类似APP时代的个人开发者,那还有一个机会就是帮助B端商家搭建Agent,类似APP时代专业做APP的。2、智能体开发平台我最早接触到扣子Coze,是一篇科技报道:国产GPTs商店来了。平替版GPTs商店,字节Coze扣子上线。2月1日,字节正式推出AI聊天机器人构建平台Coze的国内版“扣子”,主要用于开发下一代AI聊天机器人。后来发现国内也有很多智能体开发平台,如Dify.AI,但个人比较常用的还是扣子,所以本篇主要对比字节扣子和腾讯元器。3、为什么要关注智能体?

XAIR:AI 智能体平台对决:腾讯元器与字节扣子的创新之路

1、什么是智能体?随着ChatGPT与AI概念的爆火,出现了很多新名词,“智能体Agent”还有bot和GPTs等,Kimi(月之暗面的大模型)的书面解释是:简单理解就是AI机器人小助手,参照移动互联网的话,类似APP应用的概念(我记得GPT刚出的时候,还有人把GPT应用称为GAP),AI大模型是一个技术,而面向用户提供服务的是产品,所以有很多公司开始关注AI应用层的产品机会。我知道的在做Agent创业的公司就有好几家:C端案例:比如社交方向,用户注册之后先捏一个自己的Agent,然后让自己的Agent和其他人的Agent聊天,两个Agent聊到一起后再真人介入,也是一个很有趣的场景;还有借Onlyfans入局打造个性化聊天的创业公司。B端案例:如果字节扣子和腾讯元器是面向普通人的低代码平台,类似APP时代的个人开发者,那还有一个机会就是帮助B端商家搭建Agent,类似APP时代专业做APP的。2、智能体开发平台我最早接触到扣子Coze,是一篇科技报道:国产GPTs商店来了。平替版GPTs商店,字节Coze扣子上线。2月1日,字节正式推出AI聊天机器人构建平台Coze的国内版“扣子”,主要用于开发下一代AI聊天机器人。后来发现国内也有很多智能体开发平台,如Dify.AI,但个人比较常用的还是扣子,所以本篇主要对比字节扣子和腾讯元器。3、为什么要关注智能体?

Others are asking
有没有一个人工智能工具,可以针对某个网站的更新内容进行分析
以下是为您找到的一些可能针对网站更新内容进行分析的人工智能工具: 1. NotebookLM:可以综合不同材料生成笔记,但存在交互设计不够清晰的问题。 2. Excel 中的 Copilot:能帮助写复杂公式、创建可视化图表及书写 Python 代码完成复杂任务。 3. Loop:可以生成对应内容的表格和其他 Office 软件链接。 4. Stream 中的 Copilot:能够帮助理解视频内容,询问并跳转到对应时间点。 5. Bard:推出了英语版 Bard Extensions,可从 Google 工具中查找并显示相关信息,还能使用“Google it”按钮核实答案,分享聊天时可继续对话并询问。 6. PaLM 2 模型:根据用户反馈应用强化学习技术训练,更加直观和富有想象力。 7. Youtube 的 AI 工具:包括 Dream Screen 可添加背景、YouTube Create 编辑手机视频、AI Insights 获取创意和大纲建议、Aloud 自动配音、创作者音乐中的辅助搜索找到配乐。 8. Dzine:更新了 Insert Character 能力,可快速替换画面角色。 9. 谷歌 IOS 中 Google Lens:在手机 Chrome 浏览器中可更快视觉搜索,还将 AI Overviews 广泛集成到搜索结果中。
2025-02-24
国内可以用DeepSeek的智能体,哪个比较好
以下是关于国内 DeepSeek 智能体的相关信息: 您可以通过 Coze 接入 DeepSeek 智能体。2 月 14 日 8 点有火山引擎解决方案专家在 Coze 搭建满血版 R1 bot 的直播,直播结束后可在查看回放。 学习文档: 模板更新了: 创建账号:如果您是普通账号,请自行升级或注册专业号后使用。 创建智能体:点击创建,先完成一个智能体的创建。如果在最上面的教程里已经创建好自己的推理点,那么直接在 Bot 编排里就可以直接看到和选择创建好的推理模型。测试完成后可以直接发布,但注意事项:如果发布到公共空间,其他人用的是您的 API,要注意 Token 消耗(也可以设置成仅自己使用)。如果想搭建联网及复杂的工作流,可以看完整搭建教程: 在 2025 年 1 月的国内流量增速榜单中,DeepSeek 排名第一,网址为 chat.deepseek.com,访问量为 22541 万,环比变化为 20.4093%。此外,还有 deepseek 开放平台,网址为 platform.deepseek.com,访问量为 1093 万,环比变化为 10.0697%。
2025-02-24
你是智能体嘛
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 智能体是一种自主系统,通过感知环境(通常借助传感器)并采取行动(通常通过执行器)来达成目标。在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并辅以几个关键组成部分: 1. 规划:包括子目标和分解,将大型任务分解为更小、可管理的子目标,以有效处理复杂任务。 2. 反思和完善:能够对过去的行为进行自我批评和反思,从错误中吸取教训,完善未来步骤,提高最终结果质量。 3. 记忆:包含短期记忆,用于所有的上下文学习;长期记忆,通过利用外部向量存储和快速检索实现长时间保留和回忆(无限)信息的能力。 4. 工具使用:学习调用外部 API 来获取模型权重中缺失的额外信息,包括当前信息、代码执行能力、对专有信息源的访问等。 创建智能体时,输入人设等信息,放上相关工作流。配置完成后可进行测试,但注意工作流中的某些节点使用的插件 api_token 填的是个人 token,不能直接发布,可将其作为工作流最开始的输入,用户购买后输入 api_token 再发布。 OpenAI 和 Google 都在研究智能体相关项目,如 OpenAI 会通过 GPT4o 让 ChatGPT 具备 Assistant Agent 能力,Google 也计划推出 Gemini Live 支持类似功能。智能体除了端到端的多模态,还具有实时性特点,从文字语音聊天升级到视频直播,保持一直在线,这对算力开销大,需缩小参数规模、升级架构提升性能,让终端分担一部分计算量。智能体的发展将改变硬件产品和手机的设计,带来新的交互方式。
2025-02-24
如何构建智能问答Agent
以下是关于构建智能问答 Agent 的相关信息: Agent 构建平台: 1. Coze:新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具拓展 Bot 能力边界。 2. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据自身需求打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 在飞书上构建 FAQ 机器人: 1. 会议介绍了 WaytoAGI 社区的成立愿景和目标,以及其在飞书平台上的知识库和社区的情况。 2. 讨论了利用 AI 技术帮助用户更好地检索知识库中的内容,引入了 RAG 技术,通过机器人来帮助用户快速检索内容。 3. 介绍了基于飞书的知识库智能问答技术的应用场景和实现方法,可以快速地给大模型补充新鲜的知识,提供大量新的内容。 4. 讨论了如何使用飞书的智能伙伴功能来搭建 FAQ 机器人,以及智能助理的原理和使用方法。 5. 飞书智能伙伴创建平台(Aily)是飞书团队旗下的企业级 AI 应用开发平台,提供简单、安全且高效的环境,帮助企业轻松构建和发布 AI 应用。 本地部署资讯问答机器人: 决定先采取 Langchain + Ollama 的技术栈来作为 demo 实现,后续也会考虑使用 dify、fastgpt 等更加直观易用的 AI 开发平台。 整体框架设计思路如下: Langchain 是当前大模型应用开发的主流框架之一,提供一系列工具和接口,核心在于其“链”概念,包括 Model I/O、Retrieval、Chains、Agents、Memory 和 Callbacks 等组件,可灵活组合支持复杂应用逻辑,其生态系统还包括 LangSmith、LangGraph 和 LangServe 等工具。 Ollama 是一个开箱即用的用于在本地运行大模型的框架。 请注意,以上信息由 AI 大模型生成,请仔细甄别。
2025-02-24
智能财务
以下是关于智能财务的相关信息: 金融服务业将比想象中更快地接纳生成式 AI: 生成式 AI 能帮助金融服务团队改进内部流程,简化财务团队日常工作流程。现代财务团队日常工作仍依赖手动流程,CFO 等在繁琐记录和报告任务上花费过多时间。 生成式 AI 可从更多数据源获取数据,并自动化突出趋势、生成预测和报告的过程,如帮助编写公式和查询实现分析自动化,发现模式并为预测建议输入,自动创建文本、图表等内容,帮助会计和税务团队综合、总结并提出可能答案,帮助采购和应付账款团队自动生成和调整相关文件及提醒。 新兴的 AI 智能体示例包括用于财务后勤的等。
2025-02-24
请问如何创建AI智能体
创建 AI 智能体通常可以参考以下步骤: 1. 了解相关概念:AI 智能体是拥有各项能力的“打工人”,能帮助我们做特定的事情。它包含自己的知识库、工作流,还可以调用外部工具,结合大模型的自然语言理解能力完成复杂工作。 2. 选择平台:如字节的扣子(Coze),其是新一代一站式 AI Bot 开发平台,无论是否具备编程基础,都能在该平台上构建基于 AI 模型的各类问答 Bot。 3. 具体创建步骤: 起一个智能体的名称。 写一段智能体的简单介绍。 使用 AI 创建一个头像。 在创建过程中,还需注意一些事项,如在配置完成后进行测试,对于涉及消耗个人资源的工作流,不能直接发布,可将相关输入作为工作流的初始输入,让用户自行购买后输入再使用。 例如,像“写作助手”这样的 AI 智能体,只需在文本框输入文章的主题、风格和要求,它就能自动完成文章大纲处理、初稿撰写、修改润色和排版等全流程任务。
2025-02-23
大模型和小模型区别是什么?是否大模型都属于生成式AI,小模型属于判别式AI,为什么大模型有幻觉小模型没有?
大模型和小模型的区别主要体现在以下几个方面: 1. 规模和参数数量:大模型通常具有更多的参数和更复杂的架构,能够处理更大量和更复杂的数据。 2. 能力和性能:大模型在语言理解、生成等任务上往往表现更出色,能够生成更准确、丰富和连贯的内容。 3. 应用场景:大模型适用于广泛的通用任务,而小模型可能更专注于特定的、较狭窄的领域。 并非大模型都属于生成式 AI,小模型都属于判别式 AI。生成式 AI 能够生成新的内容,如文本、图片等;判别式 AI 则主要用于对输入进行分类或判断。模型的分类与其大小并无直接的必然联系。 大模型出现幻觉的原因主要是其通过训练数据猜测下一个输出结果,可能会因错误或不准确的数据导致给出错误的答案。而小模型相对来说数据量和复杂度较低,出现幻觉的情况相对较少,但这并非绝对,还取决于模型的训练质量、数据的准确性等多种因素。优质的数据集对于大模型减少幻觉现象非常重要。
2025-02-21
大模型和小模型区别是什么?为什么大模型有幻觉,小模型没有?
大模型和小模型的区别主要体现在以下几个方面: 1. 规模和参数:大模型通常具有更多的参数和更复杂的架构,而小模型相对规模较小。 2. 能力和性能:在处理自然语言等任务时,大模型往往表现出更强的能力,例如更准确的理解和生成能力。 3. 应用场景:大模型适用于通用的、复杂的任务,小模型则更适合特定的、简单的场景。 关于大模型存在幻觉而小模型没有的原因: 1. 工作原理:大模型基于统计模型预测生成内容,通过训练数据猜测下一个输出结果,可能因错误数据导致给出错误答案。 2. 数据局限性:大模型的知识完全源于其训练数据,可能存在过时、不准确或不完整的信息。 3. 不可预测性:大模型的输出结果具有不可预测性,而小模型相对更稳定和可预测。
2025-02-20
kimi、豆包、deepseek的区别和优劣
以下是 kimi、豆包、deepseek 的区别和优劣: 从月活榜来看: deepseek:在月活用户方面表现出色,排名第一,月活用户达 7068 万人,环比变化为 24.3616%。 豆包:月活用户为 779 万人,环比变化为 0.1911%。 kimi:月活用户为 591 万人,环比变化为 0.1135%。 从流量榜来看: deepseek:访问量排名第一,达 22541 万。 豆包:访问量为 3457 万。 kimi:访问量为 3282 万。 在输出效果方面,DeepSeek 的思考与表达被认为碾压了包括豆包和 kimi 在内的其他模型,其思考过程细腻、自洽、深刻、全面,输出结果在语气、结构、逻辑上表现出色。 需要注意的是,这些数据仅反映了一定时期内的情况,且不同模型在不同的应用场景和用户需求下可能具有不同的优势。
2025-02-19
人工智能(AI)、机器学习(ML)、深度学习(DL)、生成式AI(AIGC)的区别与联系
AI(人工智能)是一个广泛的概念,旨在让机器模拟人类智能。 机器学习(ML)是AI的一个分支,指计算机通过数据找规律进行学习,包括监督学习(使用有标签的训练数据,学习输入和输出之间的映射关系,如分类和回归)、无监督学习(处理无标签数据,让算法自主发现规律,如聚类)和强化学习(从反馈中学习,以最大化奖励或最小化损失,类似训练小狗)。 深度学习(DL)是一种机器学习方法,参照人脑构建神经网络和神经元,由于网络层数较多被称为“深度”。神经网络可用于监督学习、无监督学习和强化学习。 生成式 AI(AIGC)能够生成文本、图片、音频、视频等内容形式。 它们之间的联系在于:深度学习是机器学习的一种重要方法,机器学习又是实现人工智能的重要途径,而生成式 AI 是人工智能的一个应用领域。例如,生成式 AI 中的一些技术可能基于深度学习和机器学习的算法。2017 年 6 月,谷歌团队发表的论文《Attention is All You Need》首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络,对相关技术的发展具有重要意义。大语言模型(LLM)如谷歌的 BERT 模型,可用于语义理解(如上下文理解、情感分析、文本分类),但不擅长文本生成,对于生成式 AI,生成图像的扩散模型不属于大语言模型。
2025-02-19
我是少儿编程老师,现在我需要知道编程每个语言之间的区别,并绘制出一张思维导图给我详细介绍
很抱歉,目前没有关于编程各语言区别的详细内容来为您绘制思维导图。但一般来说,不同的编程语言在语法、应用场景、性能特点等方面存在差异。例如,Python 语法简洁,常用于数据科学和人工智能;Java 应用广泛,在企业级开发中表现出色;C++ 性能高效,常用于系统编程和游戏开发等。您可以通过在线编程学习网站、相关书籍以及技术论坛获取更详细准确的信息来绘制思维导图。
2025-02-19
传统AI、大模型、AGI的区别
传统 AI、大模型、AGI 存在以下区别: 传统 AI: 语音技能 NLU 通常通过一系列规则、分词策略等训练而成。 运作逻辑规律可观测,具有 ifelse 式的逻辑性。 大模型: 凭借海量数据在向量空间中学习知识的关联性。 运作逻辑难以观测,脱离了 ifelse 的层面。 Transformer 是其底层结构,是一个大参数(千亿级别)的回归方程,底层是 function loss 损失函数,能在一定 prompt condition 情况下,repeat 曾经出现过的数据内容,实现“生成”能力。 大语言模型是一个 perfect memory,repeat 曾经出现的内容。与 Alpha Go 相比,Alpha Go 是增强学习模型,有推理能力,而大语言模型这块很弱。 AGI(通用人工智能): 部分人觉得 LLM(大语言模型)具有 AGI 潜力,但 LeCun 反对。 目前对于能否到达 AGI 阶段尚不明确。 在公众传播层面: AIGC 指用 Stable Diffusion 或 Midjourney 生成图像内容,后来泛指用 AI 生成音乐、图像、视频等内容。 LLM 指 NLP 领域的大语言模型,如 ChatGPT。 GenAI 是生成式人工智能模型,国内官方政策文件使用这个词相对科学,涵盖了 LLM 和 AIGC。 公众传播一般会混用上述名词,但底层是 transformer 结构。
2025-02-18
我是一个什么都不懂的小白,但是我想通过ai弄出一个应用,我该怎么做?
对于纯小白想要通过 AI 开发应用,您可以参考以下步骤: 1. 从基础小任务开始: 让 AI 按照最佳实践为您写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以此学会必备的调试技能。 比如在学习写 chrome 插件时,可以要求 AI 选择适合小白上手的技术栈生成简单的示范项目,并包含尽可能全面的典型文件和功能,同时讲解每个文件的作用和程序运行的逻辑。 如果使用 o1mini,还可以在提示词最后添加“请生成 create.sh 脚本,运行脚本就能直接创建插件所需要的所有文件。请教我如何运行脚本。”(windows 机器则是 create.cmd),从而一次性生成多个目录和文件。 2. 明确项目需求: 通过和 AI 的对话,逐步明确项目需求。 可以让 AI 像高级别的懂技术的产品经理那样向您提问,帮助梳理产品功能,尤其注意涉及技术方案选择的关键点。 来回对话后,让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知正在做的功能点。 需要注意的是,虽然 AI 能提供帮助,但对于复杂的应用开发,仍需要您在过程中逐渐学习一些编程知识。目前像字节 Coze 这样的工具本质上是「AIfirst aPaaS」,它把实现应用所需的不同类型代码用不同可视化工具实现,生成的是「配置」,且开发和运行阶段都有大模型的支持。
2025-02-24
什么应用可以将草图进行绘制
以下是一些可以将草图进行绘制的应用: 1. Stable Diffusion:例如其中的 ControlNet 插件,如 tile 模型,可以对草图进行细化和加强细节。在放大图片时,能在较高的重绘幅度下保持画面质量。 2. 摩搭平台:可用于参加相关比赛,如“AI 梦一单一世界比赛”,作为底膜训练 Lora,并生成作品。 此外,在 AI 绘图中,还需要考虑构图、色彩、光影等因素,选择合适的景别和构图方式,以创作出高质量的作品。
2025-02-24
WaytoAGI 知识库有什么应用场景
WaytoAGI 知识库具有以下应用场景: 1. 在飞书 5000 人大群中,内置了智能机器人“waytoAGI 知识库智能问答”,可根据文档及知识进行回答。使用时在飞书群里发起话题时即可,它能自动回答用户关于 AGI 知识库内的问题,对多文档进行总结、提炼;在内置的“waytoAGI”知识库中搜索特定信息和数据,快速返回相关内容;提供与用户查询相关的文档部分或引用,帮助用户获取更深入的理解;通过互动式的问答,帮助群成员学习和理解 AI 相关的复杂概念;分享有关 AGI 领域的最新研究成果、新闻和趋势;促进群内讨论,提问和回答,增强社区的互动性和参与度;提供访问和下载 AI 相关研究论文、书籍、课程和其他资源的链接;支持多语言问答,满足不同背景用户的需求。 2. WaytoAGI 是由一群热爱 AI 的专家和爱好者共同建设的开源 AI 知识库,目前知识库的内容覆盖:AI 绘画、AI 视频、AI 智能体、AI 3D 等多个版块,包含赛事和活动促进大家动手实践。 3. WaytoAGI 里有个离谱村,是由 WaytoAGI 孵化的千人共创项目,让大家学习和接触 AI 更容易,更感兴趣。参与者不分年龄层,一起脑洞和创意,都可以通过 AI 工具快速简单地创作出各种各样的作品。离谱村是一个没有被定义的地方,每个人心中都有自己想象中的离谱村,不仅代表着一个物理空间,更是灵魂的避风港,激励着每一个生命体发挥其无限的想象力,创造属于自己的独特生活方式。
2025-02-24
关于RAG和知识库的应用
RAG(检索增强生成,Retrieval Augmented Generation)是一种利用大模型能力搭建知识库的技术应用。当需要依靠不包含在大模型训练集中的数据时,可通过该技术实现。 RAG 的应用可抽象为以下 5 个过程: 1. 文档加载(Document Loading):从多种不同来源加载文档,如 PDF 等非结构化数据、SQL 等结构化数据以及 Python、Java 之类的代码等。LangChain 提供了 100 多种不同的文档加载器。 2. 文本分割(Splitting):文本分割器把 Documents 切分为指定大小的块,称为“文档块”或“文档片”。 3. 存储(Storage):涉及两个环节,一是将切分好的文档块进行嵌入(Embedding)转换成向量的形式,二是将 Embedding 后的向量数据存储到向量数据库。 4. 检索(Retrieval):数据进入向量数据库后,通过某种检索算法找到与输入问题相似的嵌入片。 5. Output(输出):把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示生成更加合理的答案。 离线数据处理的目的是构建知识库这本“活字典”,知识会按照某种格式及排列方式存储在其中等待使用。在线检索则是利用知识库和大模型进行查询的过程。以构建智能问答客服为例,可了解 RAG 所有流程中的 What 与 Why。 相关资源: 文本加载器:将用户提供的文本加载到内存中,便于后续处理。 海外官方文档:https://www.coze.com/docs/zh_cn/knowledge.html 国内官方文档:https://www.coze.cn/docs/guides/use_knowledge
2025-02-24
在教育方面怎么应用
以下是 AI 在教育方面的应用: 1. 定制和动态化教育材料:视频扩散模型可将文本描述或课程大纲转化为针对个别学习者的特定风格和兴趣量身定制的动态、引人入胜的视频内容,图像到视频编辑技术能将静态教育资产转换为互动视频,支持多种学习偏好,增加学生参与度,使复杂概念更易于理解和吸引人。 2. 个性化教学:个性化学习平台通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。 3. 自动评估:利用自然语言处理技术,机器可自动批改学生的作文和开放性答案题,减轻教师批改负担,提高评估效率和一致性。 4. 智能辅助教学:AI 教师能引导学生通过对话学习,解答疑问并提供即时反馈,创建定制的学习内容,提高学习动机,加深知识掌握。 5. 虚拟现实和增强现实教学:学生可通过 VR 头盔进入虚拟实验室进行实验操作,立即得到 AI 系统反馈,无需昂贵设备或专业环境。 6. 数字教师和数字陪伴:人工智能生成的角色可作为数字教师,如让历史人物授课,实现一对一辅导,提供定制化学习计划和资源,还可作为数字陪伴促进儿童成长。
2025-02-23
Ai在电商行业的应用
AI 在电商行业有以下应用: 1. 产品推荐:通过分析客户数据,为每个客户推荐可能感兴趣的产品。 2. 搜索和个性化:改善搜索结果,为客户提供个性化的购物体验。 3. 动态定价:根据市场需求动态调整产品价格。 4. 聊天机器人:提供服务,回答客户问题并解决他们的问题。 在这个领域,电子商务已成为生成式 AI 最富成效的垂直行业之一。相关工具能帮助品牌创建引人注目的产品照片,如将连衣裙的静态照片变成女人穿着裙子在花园行走的形象,预期用途将极度个性化,如展示沙发在用户公寓中的照片。品牌还能通过相关工具创作用于电子邮件或社交媒体的营销材料、编写经过 SEO 优化的产品描述,未来甚至能仅通过描述期望的审美并点击按钮创建完整的电商商店及营销材料。 同时,AIGC 应用在电商领域也存在法律风险。目前关于 AIGC 侵权的关注重点多集中于版权和专利侵权,实际上也可能产生商标侵权和不正当竞争的风险。例如,利用 AIGC 设计商标可能生成与在先注册商标近似的标志,导致商标侵权。在数据采集过程中,若直接抓取竞争者加工过的数据且未付出新的劳动创造就将其作为获取商业利益的工具,可能构成不正当竞争。
2025-02-23