对于纯小白想要通过 AI 开发应用,您可以参考以下步骤:
需要注意的是,虽然 AI 能提供帮助,但对于复杂的应用开发,仍需要您在过程中逐渐学习一些编程知识。目前像字节 Coze 这样的工具本质上是「AI-first aPaaS」,它把实现应用所需的不同类型代码用不同可视化工具实现,生成的是「配置」,且开发和运行阶段都有大模型的支持。
从去年三月GPT4发布会上一个由手绘草图直接生成网站的demo惊艳众人开始,很多人就认为程序员工种已进入倒计时。最近cursor和o1的出现,更是让非技术同学们热切期盼:是不是真的能再也不“就差一个程序员”了呀!很遗憾,现实依旧骨感。demo还停留在贪吃蛇,太小巧也太普通。真正的应用会有复杂得多的特殊需求,代码量也会超出AI单次吞吐量,AI根本无法直接搞定。(o1?o1的能力确实强了很多,但其实还是不够。后面找机会另写文章详解吧。)如果你请教号称“我不懂编程但靠XX开发了XXX”的技术小白该如何开始,多半会得知他们多少还是懂一些css或python。而纯小白,一开始通过cursor里的对话创建好起始文件后,往往会无从下手——到底要在哪里敲什么字符,才能触发一连串美妙的tab让AI开始自动工作?对于纯小白来说,如果你的需求远比AI直出的内容复杂,无法一次性直出。那就耐下性子,在AI的帮助下一步一步来,并在这个过程中学会一点点编程。[heading2]
推荐你从一个最最基础的小任务开始让AI先帮你按照best practice写一个say hello的示例程序,并解释每个文件的作用及程序运行的逻辑。这样,你可以通过最基础的绝对不会出错的小任务,来学会必备的调试技能。“我在学习写chrome插件。请选择最适合小白上手的技术栈,按照best practice为我生成一个简单的示范项目,但要包含尽可能全面的典型文件和功能。请为我讲解每个文件的作用和程序运行的逻辑。”此处要求AI按照best practice来写非常重要:文件一开始就有良好的组织,后续功能复杂了才不会乱套。还有一个偷懒小妙招:如果你用的是o1-mini,你可以在prompt最后添加这句:“请生成create.sh脚本,运行脚本就能直接创建插件所需要的所有文件。请教我如何运行脚本。”(如果windows机器则是create.cmd)足够勤勉的的o1-mini会为你生成一段超级长的代码,并给出提示,你只需要复制粘贴并执行,一次性生成十多个目录和文件,超方便。[heading2][heading1]2明确项目需求[content]你可以通过和AI的对话,来逐步明确项目需求。(如果你是训练有素的产品经理,可以忽略这一步)“我想要开发一个XXX。你能否像一个高级别的还懂技术的产品经理指导初级产品经理那样,向我提问,帮我梳理清产品功能,尤其要注意可能会涉及到技术方案选择的关键点。请一问一答,帮我由全局到细节逐步梳理。不要一口气问我太多问题。”来来回回的对话后,你可以让AI帮助你梳理出产品需求文档。这样的文档会包含影响技术方案选择的细节,比直接给AI一段口头的需求描述要准确地多。在后续开发的时候每次新起一个聊天就把文档发给AI并告知你现在在做第几点功能,会非常方便。[heading2]
像字节Coze这样的工具本质上是「AI-first aPaaS」。「aPaaS」是指这些Bot Builder完完全全就是以前的aPaaS,把实现一个应用所需的不同类型代码——数据、状态、API调用、逻辑(工作流、事件系统等)、UI,用不同的可视化工具来实现,比如数据库建模、服务插件、节点图工具、拖拽式UI搭建工具。且生成的不是新应用的完整代码,而是「配置」,所有创建出来的「应用」都是aPaaS本体这个单一应用读取不同配置的运行结果。Bot Builder只是对其中部分类型,换了不同的可视化工具,比如针对「数据」类型用RAG工具,对「状态」类型用Token缓存等工具、对「工作流逻辑」用Agent搭建工具,对「UI」用提示词和卡片配置工具。得到的「应用」一部分作为「配置」存储和运行在Bot Builder平台自身,一部分作为「配置」存储和运行在各种Chatbot平台(比如ChatGPT)。「AI-first」是指它们不但开发应用时用AI辅助或依赖AI,开发出来的也是AI应用(目前主要形态是各平台上的chatbot)。应用的开发阶段有大模型加持(比如用自然语言描述任务),应用的运行阶段也有大模型支撑(大模型扮演两个角色,最平庸的角色是用大模型的prompt调用取代手工编写的代码,更重要的角色是借助大模型做到手工代码做不到的事情)。