直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

AI能够预测未来烘焙行业的趋势吗?

回答

AI 具有一定的预测能力,但对于未来烘焙行业趋势的预测具有一定的局限性。

在其他领域,如音乐产业,AI 音乐生成应用正在带来变革,为企业和创作者提供了新的方法,预示着新趋势。在汽车行业,AI 应用广泛,包括自动驾驶技术、车辆安全系统、个性化用户体验、预测性维护、生产自动化以及销售和市场分析等方面。在游戏领域,可能很快进入新的“黄金时代”,更低的准入门槛将导致更具创新性和创造性的游戏大量涌现,如 AI 辅助“微型游戏工作室”的崛起,每年发布的游戏数量增加等。

然而,烘焙行业有其独特的特点和复杂性,受到多种因素的影响,如消费者口味变化、原材料供应、市场竞争、经济环境等。虽然可以利用 AI 对相关数据进行分析和建模,但要准确预测未来趋势仍面临挑战。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

AI音乐 | 2.19资讯

行动启示方面,文章建议音乐产业的企业客户和创业者应考虑如何利用AI音乐生成应用来增强创造力、提高效率和竞争力。同时,对于音乐创作者和制作人来说,探索和实验AI音乐生成工具不仅可以开辟新的创作渠道,甚至有可能改变他们与音乐的互动方式。总的来说,AI音乐生成应用正在为音乐产业带来前所未有的变革,为企业客户和创业者提供了创新的音乐创作、生产和分发方法。这一变革不仅仅体现在过程的自动化上,更在于它引入了新的创造性和效率层次,预示着音乐产业未来发展的新趋势。

问:人工智能在汽车行业的应用案例

人工智能(AI)在汽车行业的应用已经非常广泛,它正在改变汽车的设计、制造、销售和使用方式。以下是一些人工智能在汽车行业的应用案例:1.自动驾驶技术:利用AI进行图像识别、传感器数据分析和决策制定,自动驾驶汽车能够自主导航和驾驶。公司如特斯拉(Tesla)、Waymo和Cruise等都在开发和测试自动驾驶汽车。1.车辆安全系统:AI被用于增强车辆的安全性能,如自动紧急制动(AEB)、车道保持辅助(LKA)和盲点检测系统。这些系统通过分析来自摄像头和传感器的数据来预防事故。1.个性化用户体验:AI可以根据驾驶员的偏好和习惯来调整车辆设置,如座椅位置、音乐选择和导航系统。这提供了更加个性化和舒适的驾驶体验。1.预测性维护:通过分析车辆的实时数据,AI可以预测潜在的故障和维护需求,从而减少停机时间和维修成本。这有助于提高车辆的可靠性和效率。1.生产自动化:在汽车制造过程中,AI被用于自动化生产线,提高生产效率和质量控制。AI系统可以监测设备状态,优化生产流程,并减少人为错误。1.销售和市场分析:

游戏中的生成式 AI 革命

我们可能很快就会进入游戏开发的新“黄金时代”,在这个时代,更低的准入门槛将导致更具创新性和创造性的游戏大量涌现。这不仅是因为较低的生产成本导致风险减小,而且是因为这些工具解锁了为更广泛的受众创造高质量内容的能力。这引出了下一个预测……1.AI辅助“微型游戏工作室”的崛起配备了生成性AI工具和服务,我们将开始看到由仅有1或2名员工组成的“微型工作室”生产更多具有商业可行性的游戏。小型独立游戏工作室的概念并不新鲜——热门游戏《Among Us》就是由仅有5名员工的Innersloth工作室创作的——但这些小型工作室能够创建的游戏的规模和大小将会增长。这将导致……1.每年发布的游戏数量增加Unity和Roblox的成功表明,提供强大的创意工具会导致更多的游戏被开发。生成性AI将进一步降低门槛,从而创造出更多的游戏。该行业已经面临发现新游戏的挑战——仅去年一年,就有[超过10,000款游戏被添加到Steam](https://www.statista.com/statistics/552623/number-games-released-steam/)平台——这将对游戏发现带来更大的压力。然而,我们也将看到......

其他人在问
中文写作哪个AI工具更适合?
以下是一些适合中文写作的 AI 工具: 内容仿写方面: 秘塔写作猫:https://xiezuocat.com/ 是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,还能实时同步翻译。支持全文改写,一键修改,实时纠错并给出修改建议,智能分析文章属性并打分。 笔灵 AI 写作:https://ibiling.cn/ 是智能写作助手,能处理多种文体,支持一键改写/续写/扩写,智能锤炼打磨文字。 腾讯 Effidit 写作:https://effidit.qq.com/ 由腾讯 AI Lab 开发,能提升写作效率和创作体验。 更多 AI 写作类工具可查看:https://www.waytoagi.com/sites/category/2 (内容由 AI 大模型生成,请仔细甄别) 文章排版方面: Grammarly:不仅是语法和拼写检查工具,还提供排版功能,可改进文档风格和流畅性。 QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性。 Latex:虽不是纯粹的 AI 工具,但常用于学术论文排版,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件简化排版。 PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 Wordtune:AI 写作助手,可重新表述和改进文本,使其更清晰专业。 Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择取决于具体需求,如文档类型、出版标准和个人偏好。学术论文常用 Latex 和 Overleaf,一般文章和商业文档常用 Grammarly 和 PandaDoc 等。 论文写作方面: 文献管理和搜索: Zotero:结合 AI 技术,自动提取文献信息,管理和整理参考文献。 Semantic Scholar:AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作: Grammarly:提供文本校对、语法修正和写作风格建议,提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,精简和优化内容。 研究和数据分析: Google Colab:提供云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,进行复杂数据分析和模型构建。 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,提供丰富模板库和协作功能,简化编写过程。 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保原创性。 Crossref Similarity Check:通过与已发表作品比较,检测抄袭问题。 使用这些工具时,要结合自己的写作风格和需求,选择最合适的辅助工具。(内容由 AI 大模型生成,请仔细甄别)
2024-11-06
我拥有很多的行业资料,我想构建一个自己的知识库,然后通过向AI助手提问,帮我快速找到资料和解决方案,这个知识库应该怎么建立?按什么格式?
以下是建立自己的知识库的步骤和相关格式: 1. 选择工具:以 Coze 为例,来到个人空间,找到知识库导航栏,点击创建知识库。 需注意知识库是共享资源,多个 Bot 可以引用同一个知识库。 2. 选择格式并填写信息: 目前(2024.06.08)Coze 支持三种格式,分别是文档、表格(CSV、Excel 等)、图片(上传图片并填写图片文字说明)。 格式并非关键,重要的是理解影响 RAG 输出质量的因素。 例如可以选择本地文档(问答对可选择表格)。 参考。 选择自定义的文档切割,数据处理完成后,一个问答对会被切割成一个文档片。 3. 使用知识库:关于使用知识库,可以查看教程。
2024-11-06
最新AI资讯
以下是为您提供的最新 AI 资讯: 对于新手学习 AI,要持续学习和跟进,关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 AIGC Weekly 32 中的部分资讯: Netflix 列出了一个年薪 90 万美元的机器学习平台产品经理的 AI 产品工作岗位: Shopify 的 AI 助手现已上线。Sidekick 是一个帮助机器人,它知道如何在 Shopify 中执行任何操作提取相关数据、操作新功能或创建报告: Artifact(Ins 创始人做的 AI 新闻浏览软件)推出了自定义内容阅读语音的功能: OpenAI、谷歌、微软和 Anthropic 组建了前沿模型论坛,主要目的是确保 AI 模型的安全发展: Open AI 悄咪咪下线了他们的 ChatGPT 生成内容的检测器: 2024 年人工智能现状: OpenAI 的 o1 模型占据主导地位:OpenAI 的 o1 在数学、科学和推理方面重新定义了 AI 的极限,让竞争对手感到困惑和挫败。 中国的 AI 崛起:中国模型不顾制裁,凭借强大的韧性和战略智慧在排行榜上名列前茅,证明了其主导地位。 生成式 AI 的数十亿美元繁荣:AI 初创公司大赚,但可持续性仍像能理解细微差别的聊天机器人一样难以捉摸。报告链接:
2024-11-06
非技术背景的产品经理如何快速掌握AI相关知识
对于非技术背景的产品经理,要快速掌握 AI 相关知识,可以从以下几个方面入手: 1. 理解产品核心技术:了解基本的机器学习算法原理,有助于更好地理解 AI 产品的核心技术,从而做出更合理的产品决策。 2. 与技术团队有效沟通:掌握一定的算法知识,能够与开发团队进行更有效的沟通,减少信息不对称带来的误解。 3. 评估技术可行性:在产品规划阶段,评估某些功能的技术可行性。了解算法知识可以帮助做出更准确的判断。 4. 把握产品发展方向:AI 技术发展迅速,了解算法前沿可以更好地把握产品的未来发展方向。 5. 提升产品竞争力:了解算法可以帮助发现产品的独特优势,提出创新的产品特性,从而提升产品的竞争力。 6. 增强数据分析能力:很多 AI 算法都涉及到数据处理和分析,掌握相关知识可以提升数据分析能力。 在实际应用中,比如在商业化问答场景中,非技术从业者需要了解一些落地的配置,如问答机器人的配置包括 AI 模型、提示词、知识库等。 此外,在成为 AI 摊主方面,不同的人群有不同的优势。技术背景丰富的人具备扎实的技术基础,产品开发与管理经验丰富的人能推动产品落地与优化,AI 爱好者与学习者渴望提升技能,内容创作与营销能力强的人能将 AI 技术与商业化需求结合。
2024-11-06
非技术背景的产品经理如何快速上手AI
对于非技术背景的产品经理快速上手 AI ,可以参考以下建议: 1. 从基础小任务开始: 让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,学会必备的调试技能。 若使用 o1mini ,可在提示词最后添加“请生成 create.sh 脚本,运行脚本就能直接创建插件所需要的所有文件。请教我如何运行脚本。”(Windows 机器则是 create.cmd),它会为您生成代码并给出提示,方便一次性生成多个目录和文件。 2. 明确项目需求: 通过和 AI 的对话,逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,包含影响技术方案选择的细节,后续开发时每次新起聊天就把文档发给 AI 并告知在做第几点功能。 此外,在将 AI 大模型能力接入微信等应用场景时,非技术从业者需要注意解决模型存在幻觉、胡乱回答的问题。在配置问答机器人时,要关注左侧的 AI 模型、提示词、知识库这三处配置。 对于 AI 产品经理,个人划分仅供娱乐和参考: 1. 入门级:能通过 WaytoAGI 等开源网站或一些课程了解 AI 概念,使用 AI 产品并尝试动手实践应用搭建。 2. 研究级:有技术研究和商业化研究两个路径,能根据需求场景选择解决方案,或利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 3. 落地应用级:有成功落地应用的案例并产生商业化价值。 总之,AI 产品经理要懂得技术框架,不一定要了解技术细节,而是对技术边界有认知,最好能知道一些优化手段和新技术的发展。产品经理要关注的还是场景、痛点、价值。
2024-11-06
AI ppt
以下是一些做 PPT 的 AI 产品: Gamma:在线 PPT 制作网站,可通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式,如 GIF 和视频,增强演示文稿吸引力。网址:https://gamma.app/ 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出,通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素,适用于多种场合。网址:https://www.xdesign.com/ppt/ Mindshow:AI 驱动的 PPT 辅助工具,提供智能设计功能,如自动布局、图像选择和文本优化等,还可能包含互动元素和动画效果。网址:https://www.mindshow.fun/ 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 目前市面上大多数 AI 生成 PPT 按照以下思路完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 推荐 2 篇市场分析的文章供参考: 《》 《》 另外,还了解到以下信息: 在众多的 PPT 工具中,AI 的介入带来了便捷与高效的体验。深入了解了五大 AI PPT 工具:MindShow、爱设计、闪击、Process ON、WPS AI,它们各自有鲜明特色和擅长场景。对于不同需求的人群,选择合适的工具要根据实际情况调整,试用和体验比盲目跟风更明智。 希望以上内容对您有所帮助。
2024-11-06
大模型预测文本
大模型的构建过程通常包括以下步骤: 1. 收集海量数据:如同教孩子成为博学多才的人,让其阅读大量书籍、观看纪录片、与人交谈一样,对于 AI 模型,要收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。 2. 预处理数据:就像为孩子整理学习资料,AI 研究人员需要清理和组织收集到的数据,如删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段。 3. 设计模型架构:如同为孩子设计学习计划,研究人员要设计 AI 模型的“大脑”结构,通常是一个复杂的神经网络,比如 Transformer 架构,这种架构擅长处理序列数据如文本。 4. 训练模型:如同孩子开始阅读和学习,AI 模型开始“阅读”提供的数据,反复尝试预测句子中的下一个词,通过不断重复这个过程,逐渐学会理解和生成人类语言。 大模型存在一些问题: 1. 输出结果具有不可预测性,静态的训练数据导致知识存在截止日期,无法即时掌握最新信息,通用的基础大模型无法满足实际业务需求。 2. 知识具有局限性,模型自身的知识源于训练数据,对于实时性、非公开或离线的数据无法获取。 3. 存在幻觉问题,会在没有答案时提供虚假信息、过时或通用的信息,从可信度低非权威来源提供结果等。 4. 数据安全性是企业关注的重点,企业不愿承担数据泄露风险,将私域数据上传第三方平台训练。 而 RAG 是解决上述问题的有效方案,它能让大模型从权威、预先确定的知识来源中检索、组织相关信息,更好地控制生成的文本输出,用户也能深入了解 LLM 生成最终结果的过程。RAG 可与微调结合使用,两者不冲突。RAG 类似于为模型提供教科书,适用于回答特定询问或解决特定信息检索任务,但不适合教模型理解广泛领域或学习新语言、格式或样式。微调类似于让学生内化知识,适用于模型需要复制特定结构、样式或格式的情况。参考资料:《RetrievalAugmented Generation for Large Language Models:A Survey》(https://arxiv.org/pdf/2312.10997.pdf)
2024-11-05
如何用大模型做销量预测
用大模型做销量预测可以从以下几个方面考虑: 1. 数据收集:销量预测需要大量相关数据,包括历史销售数据、市场趋势、经济指标、消费者行为等。 2. 模型选择:选择适合的大模型,例如基于深度学习的神经网络模型。 3. 特征工程:对收集到的数据进行处理和特征提取,以便模型能够更好地理解和学习。 4. 训练与优化:使用合适的算法和技术对模型进行训练,并不断优化模型参数以提高预测准确性。 5. 考虑国情和政策:不同国家和地区的国情和政策会对销售情况产生影响,模型应进行相应的优化和调整。 6. 可解释性:追求模型的可解释性,以便更好地理解预测结果和做出决策。 关于大模型相关的模型下载和安装: 1. 模型下载: Civitai(C 站):https://civitai.com/ ,可通过点击右上角筛选按钮找到所需模型类型,如 Checkpoint=大模型、LoRA=Lora 等,还可通过点击左上角“Images”查看他人已做好的图片并获取相关模型。 2. 模型安装: 大模型(Ckpt):放入 models\\Stablediffusion VAE 模型:一些大模型需要配合 vae 使用,对应的 vae 同样放置在 models\\Stablediffusion 或 models\\VAE 目录,然后在 webui 的设置栏目选择。 Lora/LoHA/LoCon 模型:放入 extensions\\sdwebuiadditionalnetworks\\models\\lora,也可以在 models/Lora 目录 Embedding 模型:放入 embeddings 目录 若下载的模型不知类型,可使用秋叶的模型解析工具 https://spell.novelai.dev/ ,将模型拖动到空白处即可查看模型信息。
2024-10-22
科学问题二:XXX(小标题) 问题挑战:如何通过构建合理的先验知识或模型假设,刻画出数据中的可变性?如何利用从少量样本中提取到的变化信息来预测未见数据的表现? XXX XXX(问题挑战一的方法) XXX)问题挑战二的方法) 请将XXX补充完整,重点在预测,如何刻画和利用数据分布的“变化性”
以下是为您补充完整的内容: 对于如何通过构建合理的先验知识或模型假设,刻画出数据中的可变性,以及如何利用从少量样本中提取到的变化信息来预测未见数据的表现,我们可以参考以下方法: 在准备 LLM 数据方面,对于制作 LLM 微调数据集,首先获取文本格式非结构式和网络式结构式的数据。对于 QA 数据集,主要依靠已有的大语言模型生成,根据不同文本设定不同的提示词以获取尽可能多且信息量丰富的 QA。先对文件中的文本进行切割,将每一大部分放进一个约 200 字的 txt 文件里,然后设定提示词模板。例如对于公司产品手册,模板可以是:“你是一个聪明的 xxx 公司的 xxx 产品的产品经理。给你一段 xxxxx 有限公司 xx 产品相关的文本,你必须依据文本想出十个不同的问题和这十个问题对应的答案。你想出的问题可以被用来测试公司内部 xxx 职员的专业能力。你想出的问题可以是使用公司产品的用户会想到的问题。你想出的问题和答案必须和所给文本相关。你回答得答案必须可以让使用产品的用户理解。当你想出问题和答案后,你必须用以下格式回复:```
2024-10-21
我是一名研究生,我想利用python实现机器学习,对碳排放进行预测,需要你帮我写出代码,我应该问你哪些问题或者给你哪些前提条件
在您希望利用 Python 实现机器学习对碳排放进行预测并让我为您编写代码时,您需要向我提供以下关键信息和问题: 1. 您所拥有的碳排放相关数据的格式和特征,例如数据的类型(数值型、分类型等)、数据的字段(如时间、能源消耗、生产活动等)。 2. 您对预测模型的性能要求,比如预测的精度、召回率等指标的期望。 3. 您是否有特定的机器学习算法倾向,或者是否希望我根据数据特点为您推荐合适的算法。 4. 数据的规模和分布情况,这会影响模型的训练时间和复杂度。 5. 您是否有可用的预处理步骤,例如数据清洗、特征工程的想法或已经完成的部分。 6. 对于模型的可解释性是否有要求。 7. 您的计算资源情况,例如内存、CPU 核心数等,以便选择适合的模型和训练策略。
2024-10-10
AI对于政府预算编制与预测的影响
AI 对于政府预算编制与预测具有多方面的影响: 案例方面:摩根大通用 AI 创建金融模型,通过处理大量数据集、检测模式并整合多个变量,完善经济和货币预测,使中央银行和政府能从更准确的通胀、国内生产总值增长和失业率等指标预测中受益,为政策选择提供信息,改善利率、流动性管理和宏观审慎措施的决策。 美国政府行动方面:拜登签署的 AI 行政命令指出,AI 能帮助政府为美国人民提供更好的结果,能扩大机构的监管、治理和福利分配能力,降低成本并增强政府系统的安全性。同时,总统指示采取一系列行动,包括为机构使用 AI 发布指导,帮助机构更快速、更便宜、更有效地获取特定 AI 产品和服务,加速招聘 AI 专业人员等。此外,美国《2024 财年预算申请》专门划拨总统预算中的一部分用于人工智能开发和部署,白宫科技政策办公室呼吁获得人工智能资助的机构将人工智能在执行任务时的公平性与可信度作为首要目标,并保护权利和隐私的技术研发。还发布了信息征集,以帮助制定国家 AI 战略。
2024-10-10
AI对于预算编制与预测的影响
AI 对于预算编制与预测具有多方面的影响: 更动态的预测和报告: 生成式 AI 能够帮助编写 Excel、SQL 和 BI 工具中的公式和查询,实现分析自动化,还能发现模式,从更广泛、更复杂的数据集中为预测建议输入,例如考虑宏观经济因素,并建议如何适应模型以支持公司决策。 可以自动创建文本、图表、图形等内容,并根据不同示例调整报告,无需手动整合数据和分析到外部和内部报告中。 对于会计和税务团队,能帮助综合、总结,并就税法和潜在扣除项提出可能答案。 能帮助自动生成和调整采购和应付账款方面的合同、采购订单、发票以及提醒。 挑战: 使用金融数据训练 LLMs:新进入者可能先使用公开金融数据优化模型,再用自身收集的数据;现有参与者虽可利用现有专有数据,但往往过于保守,这给新进入者带来竞争优势。 模型输出准确性:金融问题答案影响重大,新的 AI 模型需尽可能准确,初期人类常作为最终验证环节。 以下是一些相关案例: “工作流:成为生产力工具”,介绍了个人如何用 ChatGPT 提升生产力。 “金融:摩根大通用 AI 创建金融模型”,人工智能可完善经济和货币预测,使中央银行和政府受益。 “工作:人类和 AI 协作效率探讨”,表明使用 AI 的被测试者在任务完成量、速度和结果质量上有显著提升。
2024-10-10
未来AI的发展趋势是什么?
未来 AI 的发展趋势主要包括以下几个方面: 1. 技术模型方面:o1 preview 模型升级迅速,将很快达到 GPT4 水平。 2. 发展阶段方面:AI 会经历从聊天机器人到推理系统、智能体、创新者,最终到完整组织的五个阶段。 3. 研究方向方面:OpenAI 坚持专注于深度学习,并实现 AGI 且持续调整策略。 4. 应用领域方面:看好 AI 在医疗、教育和科学领域的应用,有可能降低这些关键领域的成本,使人们更容易获得和负担得起相关服务。AI 可以通过抽象出琐碎的工作,让人们把注意力集中在更重要的问题上,并为未来提供更好的工具。 5. 资金投入方面:预计明年会有团队花费超过 10 亿美元来训练单个大型模型,生成式 AI 的热潮不会消退,只会变得更加“奢华”。 6. 计算压力方面:政府和大型科技公司将继续承受计算需求的压力,这些需求已经逼近电网的极限。 7. 社会影响方面:虽然预期的 AI 对选举和就业的影响尚未成真,但仍需警惕。AI 的影响如同潘多拉魔盒,一旦打开,将会在未来长期存在。 8. 领域拓展方面:从 2024 年 AI50 强榜单中可以看出,AI 涉及的领域有扩大的趋势,预计在未来几年,这份榜单的深度和广度都将不断扩大。
2024-10-30
AI 未来的发展趋势是什么?
AI 未来的发展趋势主要包括以下几个方面: 1. 模型升级:o1 preview 模型升级迅速,将很快达到 GPT4 水平。 2. 发展阶段:从聊天机器人到推理系统、智能体、创新者,最终到完整组织。 3. 技术专注:OpenAI 坚持专注方向,实现 AGI 并持续调整策略。 4. 应用领域:看好在医疗、教育和科学领域的应用。 5. 企业赋能:提示词工程作为人机交互关键接口,重要性日益凸显。AI 能力持续提升,为企业带来超级个性化、预测性决策、自动创新、智能流程优化等新机遇。 6. 成本与生产力:AI 革命促使成本下降,有可能降低医疗、教育等关键领域成本,改变成本结构并提高生产力。 7. 领域扩展:从 AI50 强榜单可看出,AI 涉及领域有扩大趋势,预计未来榜单的深度和广度将不断扩大。
2024-10-30
帮我找一篇权威的分析AI趋势的文章
以下为两篇权威的分析 AI 趋势的文章: 1. 入门经典必读 作者: 原文地址:https://a16z.com/2023/05/25/aicanon/ 内容:人工智能的研究正呈指数级增长,对于 AI 专家和初学者跟上新发布内容都很困难。因此,文中分享了一份用于深入了解现代 AI 的精选资源列表,称为“AI 典藏”,包括对 Transformer 和 Latent Diffusion 模型的介绍,深入研究技术学习资源、构建大型语言模型的实用指南以及 AI 市场的分析,还列出了里程碑式研究成果的参考列表。 2. 2023 年历史更新(归档)8 月 21 日 内容:麦肯锡本月发布了《2023 年 AI 现状:生成式 AI 的爆发之年》重磅报告(可在。
2024-10-20
请选择一个产业,比如手机、汽车、石油化工等产业,围绕行业传感器的技术原理和应用,进行背景概况、传感器分类、发展历程、智能传感器、产业链结构、应用领域、发展趋势和展望等要点完成调研分析报告和PPT。
很抱歉,目前知识库中没有您所需的关于特定产业(如手机、汽车、石油化工等)中行业传感器的完整调研分析报告和 PPT 内容。但以下为您提供一个大致的框架和思路,您可以据此进行进一步的资料收集和研究: 一、背景概况 介绍所选产业的发展现状和重要性,阐述传感器在该产业中的关键作用。 二、传感器分类 列举该产业中常见的传感器类型,如压力传感器、温度传感器、位置传感器等,并说明其特点和适用场景。 三、发展历程 回顾传感器在该产业中的发展阶段,从早期的简单传感器到如今的高精度、智能化传感器的演变过程。 四、智能传感器 着重介绍智能传感器的特点和优势,如具备自诊断、自校准、自适应等功能。 五、产业链结构 分析传感器产业链的各个环节,包括原材料供应商、传感器制造商、系统集成商、终端用户等。 六、应用领域 详细阐述传感器在该产业的具体应用领域,如生产过程监控、质量检测、设备故障诊断等。 七、发展趋势和展望 探讨未来传感器在该产业的发展趋势,如微型化、集成化、智能化、无线化等,并对其前景进行展望。 希望以上框架对您有所帮助,祝您顺利完成调研分析报告和 PPT。
2024-09-06
对于大语言模型使用的未来趋势,是闭源云端还是开源本地部署,作为普通用户是否有必要了解本地部署知识,并且是否有必要自己搭建agent以及rag?
大语言模型的未来趋势在闭源云端和开源本地部署方面存在多种可能性。 对于开源本地部署,以下是一些相关信息: Ollama 是一个方便用户在本地运行和管理大型语言模型的框架,具有以下特点: 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 CPU 和 GPU。 提供模型库,用户可从中下载不同模型,以满足不同需求和硬件条件,模型库可通过 https://ollama.com/library 查找。 支持用户自定义模型,例如修改温度参数调整创造性和连贯性,或设置特定系统消息。 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 安装可访问 https://ollama.com/download/ 。 可以通过一些教程学习如何本地部署大模型以及搭建个人知识库,例如了解如何使用 Ollama 一键部署本地大模型、通过搭建本地聊天工具了解 ChatGPT 信息流转、RAG 的概念及核心技术、通过 AnythingLLM 搭建完全本地化的数据库等。 同时,采用开源或国内企业提供的 13B 级模型本地部署在内部系统中,虽需投入算力,但有其价值。智能客服的大量优质大客户可能会选择自己搭建智能客服平台,并结合大模型企业提供的技术服务,基于大模型搭建 LangChain、RAG 框架,实现 RPA 自动流程。 对于普通用户是否有必要了解本地部署知识以及是否有必要自己搭建 agent 以及 rag,这取决于个人需求和兴趣。如果您希望更深入了解大模型的工作原理和运行机制,或者有特定的个性化需求,那么了解和尝试本地部署可能是有意义的。但如果只是一般的使用需求,可能无需深入了解和自行搭建。
2024-09-03
分析机器人发展趋势3000字
以下是关于机器人发展趋势的分析: 目前,机器人领域的发展呈现出一些显著的趋势。以特斯拉为例,他们训练的机器人“Optimus”能够抓取物体,且无需进行特定任务的编程,而是通过人类示范学习。这意味着可以快速扩展到许多任务。 在 AI 性能方面,当考虑到像 GPT4 这样的模型在图像识别上的能力,其回应比许多人类更加清晰和出色。如果在互联网上所有可用数据的基础上训练一个比 GPT4 大 100 倍、与人类大脑大小相当的模型,其潜力将是巨大的。 值得注意的是,AI 模型能够生成同一场景的多个角度,具有物理上准确的光线,在某些情况下还能生成物理上准确的流体和雨水。这种生成具有准确、常识性物理的图像和视频的能力,意味着模型拥有了常识推理能力,也表明其对常识有了理解。 总的来说,机器人的发展正朝着更加智能、灵活和通用的方向迈进,通过不断学习和模仿人类行为,以及借助强大的 AI 模型和海量数据,未来机器人在各个领域的应用和性能都有望取得突破性的进展。
2024-09-01