直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

大模型预测文本

回答

大模型的构建过程通常包括以下步骤:

  1. 收集海量数据:如同教孩子成为博学多才的人,让其阅读大量书籍、观看纪录片、与人交谈一样,对于 AI 模型,要收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。
  2. 预处理数据:就像为孩子整理学习资料,AI 研究人员需要清理和组织收集到的数据,如删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段。
  3. 设计模型架构:如同为孩子设计学习计划,研究人员要设计 AI 模型的“大脑”结构,通常是一个复杂的神经网络,比如 Transformer 架构,这种架构擅长处理序列数据如文本。
  4. 训练模型:如同孩子开始阅读和学习,AI 模型开始“阅读”提供的数据,反复尝试预测句子中的下一个词,通过不断重复这个过程,逐渐学会理解和生成人类语言。

大模型存在一些问题:

  1. 输出结果具有不可预测性,静态的训练数据导致知识存在截止日期,无法即时掌握最新信息,通用的基础大模型无法满足实际业务需求。
  2. 知识具有局限性,模型自身的知识源于训练数据,对于实时性、非公开或离线的数据无法获取。
  3. 存在幻觉问题,会在没有答案时提供虚假信息、过时或通用的信息,从可信度低非权威来源提供结果等。
  4. 数据安全性是企业关注的重点,企业不愿承担数据泄露风险,将私域数据上传第三方平台训练。

而 RAG 是解决上述问题的有效方案,它能让大模型从权威、预先确定的知识来源中检索、组织相关信息,更好地控制生成的文本输出,用户也能深入了解 LLM 生成最终结果的过程。RAG 可与微调结合使用,两者不冲突。RAG 类似于为模型提供教科书,适用于回答特定询问或解决特定信息检索任务,但不适合教模型理解广泛领域或学习新语言、格式或样式。微调类似于让学生内化知识,适用于模型需要复制特定结构、样式或格式的情况。参考资料:《Retrieval-Augmented Generation for Large Language Models:A Survey》(https://arxiv.org/pdf/2312.10997.pdf)

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

胎教级教程:万字长文带你理解 RAG 全流程

旁白当你发现大模型的效果并没有你预期想的那么好时,你打算放弃但是你也听到了另一种声音:如果大模型没有你想的那么好,可能是你没有了解他的能力边界。你不想就这么放弃,为了更好的理解大模型,你首先了解了他的创建过程[heading2]1.收集海量数据[content]想象一下,我们要教一个孩子成为一个博学多才的人。我们会怎么做?我们会让他阅读大量的书籍,观看各种纪录片,与不同背景的人交谈等。对于AI模型来说,这个过程就是收集海量的文本数据。例子:研究人员会收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。[heading2]2.预处理数据[content]在孩子开始学习之前,我们可能会先整理这些资料,确保内容适合他的年龄和学习能力。同样,AI研究人员也需要清理和组织收集到的数据。例子:删除垃圾信息,纠正拼写错误,将文本分割成易于处理的片段。[heading2]3.设计模型架构[content]就像我们要为孩子设计一个学习计划一样,研究人员需要设计AI模型的"大脑"结构。这通常是一个复杂的神经网络。这里我们就不展开了,我们只需要了解,为了让AI能够很好的学习知识,科学家们设计了一种特定的架构。例子:研究人员可能会使用Transformer架构,这是一种特别擅长处理序列数据(如文本)的神经网络结构。[heading2]4.训练模型[content]就像孩子开始阅读和学习一样,AI模型开始"阅读"我们提供的所有数据。这个过程被称为"训练"。例子:模型会反复阅读数据,尝试预测句子中的下一个词。比如给出"太阳从东方__",模型学会预测"升起"。通过不断重复这个过程,模型逐渐学会理解和生成人类语言。

文章:Andrej Karpathy 亲授:大语言模型入门

所以,这个神经网络实际上是一个下一个词预测网络。您给它一些单词,它就会给出下一个单词。从训练中得到的结果实际上是一种神奇的工具,因为尽管下一个单词预测任务看似简单,但它实际上是一个非常强大的目标。它迫使神经网络学习到大量关于世界的信息,并将这些信息编码在参数中。在准备这场演讲时,我随机抓取了一个网页,仅仅是从维基百科的主页上抓取的内容。本文讨论的是露丝·汉德勒。设想一个神经网络,它接收一系列单词并尝试预测下一个单词。在这个例子中,我用红色标出了一些信息量较大的单词。比如,如果你的目标是预测下一个单词,那么你的模型参数可能需要学习大量相关知识。你需要了解露丝和汉德勒,包括她的出生和去世时间,她是谁,她做了什么等等。因此,在预测下一个单词的任务中,你将学习到大量关于世界的知识,所有这些知识都被压缩并储存在模型的权重和参数中。模型做梦(生成)现在,我们如何实际应用这些神经网络呢?一旦我们训练好它们,我就向你展示了模型推理是一个非常简单的过程。我们基本上是在生成接下来的单词,通过从模型中采样,选择一个单词,然后将其反馈回模型以获取下一个单词,这个过程可以迭代进行。这样,网络就可以“梦想”出互联网文档。例如,如果我们仅运行神经网络,或者说执行推理,我们会得到类似于网页梦想的东西。你可以这么想,因为网络是在网页上训练的,然后你让它自由运行。在左边,我们看到的是类似于Java代码的梦;中间是类似于亚马逊产品的梦;右边是类似于维基百科文章的内容。

RAG提示工程(一):基础概念

大语言模型技术的本质导致了大模型的输出结果具有不可预测性,此外,静态的训练数据导致了大模型所掌握的知识存在截止日期,无法即时掌握最新信息。因此,当我们将大模型应用于实际业务场景时会发现,通用的基础大模型无法满足我们的实际业务需求。主要存在以下原因:知识的局限性:模型自身的知识完全源于它的训练数据,而现有的主流大模型(ChatGPT、文心一言、通义千问…)的训练集基本都是抓取网络公开的数据用于训练,对于一些实时性的、非公开的或离线的数据是无法获取到的,这部分知识也就无从具备。幻觉问题:大模型的底层原理是基于数学概率的文字预测,即文字接龙。因此大模型存在幻觉问题,会在没有答案的情况下提供虚假信息,提供过时或通用的信息,从可信度低非权威来源的资料中提供结果等。数据安全性:对于企业来说,数据安全至关重要,没有企业愿意承担数据泄露的风险,将自身的私域数据上传第三方平台进行训练。因此如何大模型落地应用时如何保障企业内部数据安全是一个重要问题。而RAG是解决上述问题的一套有效方案。它可以让大模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制大模型生成的文本输出,并且用户可以深入了解LLM如何生成最终的结果。并且,RAG可以和微调结合使用,两者并不冲突。RAG类似于为模型提供教科书,允许它基于特定查询检索信息。这该方法适用于模型需要回答特定的询问或解决特定的信息检索任务。然而,RAG不适合教模型来理解广泛的领域或学习新的语言,格式或样式。微调类似于让学生通过广泛的学习内化知识。这种方法当模型需要复制特定的结构、样式或格式时非常有用。以下是RAG与微调从维度方面的比较:参考资料:《Retrieval-Augmented Generation for Large Language Models:A Survey》(https://arxiv.org/pdf/2312.10997.pdf)

其他人在问
如何在一段文本里放入不会发现但是 ai会读取的prompt
在一段文本里放入不会被发现但 AI 会读取的 prompt 可以参考以下方法: 1. 明确具体的描述:使用更具体、细节的词语和短语来表达您的需求,避免过于笼统的表述,以便 AI 准确理解。 2. 添加视觉参考:在 prompt 中插入相关的图片参考,可提高 AI 理解您意图和细节要求的能力。 3. 注意语气和情感:根据需求,用合适的形容词、语气词等调整 prompt 的整体语气和情感色彩,使 AI 生成出期望的语境和情绪。 4. 优化关键词组合:尝试不同的关键词搭配和语序,找到最能准确表达需求的 prompt 描述方式。 5. 增加约束条件:为避免 AI 产生意外的输出,在 prompt 中添加限制性条件,如分辨率、比例等。 6. 分步骤构建 prompt:将复杂的需求拆解为逐步的子 prompt,引导 AI 先生成基本结构,再逐步添加细节和完善。 7. 参考优秀案例:研究 AI 社区流行的、有效的 prompt 范例,借鉴其中的写作技巧和模式。 8. 反复试验、迭代优化:通过多次尝试不同的 prompt 写法,并根据输出效果反馈持续优化完善,直至达到理想结果。 总之,编写高质量 prompt 需要不断实践、总结经验,熟悉 AI 模型的能力边界。保持开放的思维尝试创新的描述方式也很有帮助。
2024-11-04
给我推荐一个最好的文本校对插件
以下为您推荐的文本校对相关插件: 读书神器:利用扣子平台的大模型等搭建工作流,能提供书籍的创作背景、章节大纲、故事详情、原文金句、读后感、豆瓣点评、相关推荐书籍、书籍插图等详尽内容。 Kimi Copilot 网页总结助手:这是一款实用的浏览器插件,可对网页文本进行总结和生成摘要。您可以在,不方便下载的话文末附下载链接。使用时需在浏览器中登录自己的 Kimi 账号并关联网页版。
2024-10-28
文本转语音网站
以下是一些文本转语音的网站和人工智能音频初创公司: 文本转语音网站: 1. WaytoAGI 的工具网站:https://www.waytoagi.com/sites/category/50 2. Eleven Labs:https://elevenlabs.io/ 是一款功能强大且多功能的 AI 语音软件,能高保真地呈现人类语调和语调变化,并能根据上下文调整表达方式。 3. Speechify:https://speechify.com/ 是一款人工智能驱动的文本转语音工具,可作为多种应用程序使用,用于收听网页、文档等。 4. Azure AI Speech Studio:https://speech.microsoft.com/portal 提供支持 100 多种语言和方言的语音转文本和文本转语音功能,还提供自定义语音模型。 5. Voicemaker:https://voicemaker.in/ 可将文本转换为各种区域语言的语音,并允许创建自定义语音模型。 人工智能音频初创公司(语音合成(TTS)): 1. 基于 AI 的语音引擎能够模仿人类语音的情感和韵律。 2. 基于 NLP 的最先进文本和音频编辑平台,内置数百种 AI 声音。 3. 使用突触技术和脑机接口将想象的声音转化为合成 MIDI 乐器的脑控仪器。 4. 为出版商和创作者开发最具吸引力的 AI 语音软件。 5. 使用户能够使用文本转语音技术生成播客。 6. 基于生成机器学习模型构建内容创作的未来。 7. 从网页仪表板或 VST 插件生成录音室质量的 AI 声音并训练 AI 语音模型。 8. 演员优先、数字双重声音由最新的 AI 技术驱动,确保高效、真实和符合伦理。 9. 将书面内容转化为引人入胜的音频,并实现无缝分发。 10. 专业音频、语音、声音和音乐的扩展服务。 11. (被 Spotify 收购) 提供完全表达的 AI 生成语音,带来引人入胜的逼真表演。 12. 利用合成媒体生成和检测,带来无限可能。 13. 一键使您的内容多语言化,触及更多人群。 14. 生成听起来真实的 AI 声音。 15. 为游戏、电影和元宇宙提供 AI 语音演员。 16. 为内容创作者提供语音克隆服务。 17. 超逼真的文本转语音引擎。 18. 使用单一 AI 驱动的 API 进行音频转录和理解。 19. 听起来像真人的新声音。 20. 从真实人的声音创建逼真的合成语音的文本转语音技术。 21. 生成听起来完全像你的音频内容。 22. 为所有人提供开放的语音技术。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-10-27
文本转语音
以下是关于文本转语音的相关信息: 一、TTS 简介 Text to Speech(TTS)是一种人机交互技术,将文本转换为自然的语音输出。通过该技术,计算机可模拟人类语音与用户交互,实现语音提示、导航、有声读物等功能,在智能语音助手、语音识别、语音合成等领域广泛应用。 二、在线 TTS 工具推荐 1. Eleven Labs:https://elevenlabs.io/ ,是一款功能强大且多功能的 AI 语音软件,能生成逼真、高品质音频,可根据上下文调整表达方式。 2. Speechify:https://speechify.com/ ,人工智能驱动的文本转语音工具,可将文本转换为音频文件,有多种应用形式。 3. Azure AI Speech Studio:https://speech.microsoft.com/portal ,提供 100 多种语言和方言的语音转文本和文本转语音功能,还提供自定义语音模型。 4. Voicemaker:https://voicemaker.in/ ,可将文本转换为各种区域语言的语音,并允许创建自定义语音模型。 三、语音合成技术原理 传统语音合成技术一般经过以下三个步骤: 1. 文本与韵律分析:先将文本分词,标明每个字的发音及韵律信息,提取文本特征生成特征向量。 2. 声学处理:通过声学模型将文本特征向量映射到声学特征向量。 3. 声音合成:使用声码器将声学特征向量反变换生成声音波形,拼接得到整个文本的合成语音,反变换过程中可调整参数改变音色、语调、语速等。 四、StyleTTS 2 StyleTTS 2 是一个开源的媲美 Elevenlabs 的文本转语音工具,结合文本角色内容和场景音可快速生成有声小说。其特点包括多样化的语音风格、更自然的语音、高效生成、精确的语音控制、接近真人的语音合成、适应不同说话者。工作原理是利用风格扩散和与大型语音语言模型(SLM)的对抗性训练来实现接近人类水平的 TTS 合成,采用非自回归架构,可并行生成整个语音。 内容由 AI 大模型生成,请仔细甄别。
2024-10-27
你好我需要一个AI对话总结撰写文字的AI,要求必须超长文本理解,文笔很棒
以下为您推荐两款具备超长文本理解能力且文笔不错的 AI 对话产品: 1. Kimi: 显著特点是拥有超长上下文能力,最初支持 20 万字上下文,现已提升至 200 万字。对于处理长文本或大量信息的任务具有巨大优势,能帮助从事文案工作、处理大量文字或文件的用户更有效地处理和分析信息,提高工作效率,对需要长期记忆或参考大量背景信息的任务尤其有用。 不足之处在于文字生成和语义理解、文字生成质量方面可能不如国内其他产品好,且不支持用户自定义智能体。但仍推荐给刚入门 AI 的朋友。 2. 智谱清言: 其背后的技术源自清华大学研发团队的科研成果转化,模型质量出色。 产品设计对标 ChatGPT,努力打造类似用户体验,是国内首批开放智能体应用的公司之一,在智能体开发和模型优化方面积累了丰富经验和技术,在逻辑推理和处理复杂提示词方面表现出明显优势,处理需要深度思考和分析的任务时表现出色。
2024-10-24
文本转语音
以下是关于文本转语音的相关信息: 一、TTS 简介 Text to Speech(TTS)是一种人机交互技术,将文本转换为自然的语音输出。通过该技术,计算机可模拟人类语音与用户交互,实现语音提示、导航、有声读物等功能,在智能语音助手、语音识别、语音合成等领域广泛应用。 二、在线 TTS 工具推荐 1. Eleven Labs:https://elevenlabs.io/ ,是一款功能强大且多功能的 AI 语音软件,能生成逼真、高品质的音频,可高保真地呈现人类语调和语调变化,并能根据上下文调整表达方式。 2. Speechify:https://speechify.com/ ,人工智能驱动的文本转语音工具,可将文本转换为音频文件,可作为多种应用程序使用。 3. Azure AI Speech Studio:https://speech.microsoft.com/portal ,提供支持 100 多种语言和方言的语音转文本和文本转语音功能,还提供自定义语音模型。 4. Voicemaker:https://voicemaker.in/ ,可将文本转换为各种区域语言的语音,并允许创建自定义语音模型,易于使用,适合为视频制作画外音或帮助视障人士。 三、语音合成技术原理 传统的语音合成技术一般经过以下三个步骤: 1. 文本与韵律分析:先将文本分词,标明每个字的发音以及重音、停顿等韵律信息,然后提取文本的特征,生成特征向量。 2. 声学处理:通过声学模型将文本特征向量映射到声学特征向量。 3. 声音合成:使用声码器将声学特征向量通过反变换生成声音波形,然后依次拼接得到整个文本的合成语音。在反变换过程中,可以调整参数,改变合成语音的音色、语调、语速等。 四、StyleTTS 2 介绍 StyleTTS 2 是一个开源的媲美 Elevenlabs 的文本转语音工具,能够结合文本角色内容和场景音快速生成有声小说。其具有多样化的语音风格、更自然的语音、高效生成、精确的语音控制、接近真人的语音合成、适应不同说话者等特点。工作原理是利用风格扩散和与大型语音语言模型(SLM)的对抗性训练来实现接近人类水平的 TTS 合成,采用非自回归架构,通过扩散模型将风格建模为潜在随机变量生成适合文本的风格,无需参考语音,实现高效潜在扩散。 内容由 AI 大模型生成,请仔细甄别。
2024-10-22
AI大模型的历史路径
AI 大模型的发展历史路径大致如下: 1. 早期阶段(1950s 1960s):出现专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理得到发展。 3. 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等兴起。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等技术不断发展。 自 2022 年 11 月 30 日 ChatGPT 发布以来,AI 大模型在全球范围内掀起了大规模的人工智能浪潮。国内学术和产业界在过去一年也有了实质性突破,大致分为三个阶段: 1. 准备期:ChatGPT 发布后,国内产学研迅速形成大模型共识。 2. 成长期:国内大模型数量和质量开始逐渐增长。 3. 爆发期:各行各业开源闭源大模型层出不穷,形成百模大战的竞争态势。 随着大模型技术的愈发成熟和规模增大,为 AI Agent 提供了强大能力,有望构建具备自主思考、决策和执行能力的智能体,广泛应用于多个行业和领域。当前 AI 前沿技术点包括大模型(如 GPT、PaLM 等)、多模态 AI、自监督学习、小样本学习、可解释 AI、机器人学、量子 AI 以及 AI 芯片和硬件加速等。
2024-11-05
详细描述AI大模型历史
AI 大模型的发展具有丰富的历史。 早期阶段,人工智能经历了从图灵测试、早期的图灵机器人和 ELISA,到 IBM 的语音控制打印机、完全由人工智能创作的小说、微软的同声传译系统等的发展。 随着技术的进步,大模型逐渐兴起。其由数据、算法、算力构成,算法有技术架构的迭代,如英伟达的显卡辅助模型训练,而数据质量对生成理想的大模型至关重要。 近年来,从 2022 年开始掀起了生成式 AI 的革命。生成式 AI 是深度学习中的一个细分流派,相较之前的所有 AI 实现方法,在结果质量和效果上有了根本性、跨时代的进步。在某些细分场景应用中,甚至让人感觉通过了图灵测试。 随着大模型技术愈发成熟、规模增大,为 AI Agent 提供了强大能力,有望构建具备自主思考、决策和执行能力的智能体,广泛应用于多个行业和领域。如今,大模型和多模态模型呈现出百花齐放的态势。
2024-11-05
AI大模型历程
AI 大模型的发展历程如下: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):出现专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等得到发展。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等技术兴起。 自 2022 年 11 月 30 日 ChatGPT 发布以来,国内大模型大致经历了三个阶段:准备期(ChatGPT 发布后国内产学研迅速形成大模型共识)、成长期(国内大模型数量和质量开始逐渐增长)、爆发期(各行各业开源闭源大模型层出不穷,形成百模大战的竞争态势)。 当前,随着大模型技术的愈发成熟和规模增大,为 AI Agent 提供了强大能力,有望构建具备自主思考、决策和执行能力的智能体,并广泛应用于多个行业和领域。当前 AI 的前沿技术点包括:大模型(如 GPT、PaLM 等)、多模态 AI(视觉 语言模型如 CLIP、Stable Diffusion 以及多模态融合)、自监督学习(自监督预训练、对比学习、掩码语言模型等)、小样本学习(元学习、一次学习、提示学习等)、可解释 AI(模型可解释性、因果推理、符号推理等)、机器人学(强化学习、运动规划、人机交互等)、量子 AI(量子机器学习、量子神经网络等)、AI 芯片和硬件加速。
2024-11-05
应急大模型推荐哪个
以下为一些应急大模型的推荐及相关信息: 常用的模型网站有: 不同类型的模型安装位置: 大模型(Ckpt):放入 models\\Stablediffusion VAE 模型:一些大模型需要配合 vae 使用,对应的 vae 同样放置在 models\\Stablediffusion 或 models\\VAE 目录,然后在 webui 的设置栏目选择。 Lora/LoHA/LoCon 模型:放入 extensions\\sdwebuiadditionalnetworks\\models\\lora,也可以在 models/Lora 目录 Embedding 模型:放入 embeddings 目录 不同照片风格对应不同大模型,例如生成真人 AI 小姐姐,可选用 chilloutmix 的大模型。生成真实场景下的字体,可选择 lofi.v2 等大模型。不同的大模型对 ControlNet 模型的控制力有不同的适应度,可能需要微调参数。
2024-11-05
开源大模型ChatGLM 系列有哪些版本
ChatGLM 系列的开源版本包括: ChatGLM36B:第三代 ChatGLM 对话模型,采用全新设计的 Prompt 格式,原生支持工具调用、代码执行和 Agent 任务等复杂场景。 ChatGLM36Bbase:第三代 ChatGLM 基座模型,采用更多样的训练数据、更充分的训练步数和更合理的训练策略,在 10B 以下的基础模型中性能较强。 ChatGLM36B32k:第三代 ChatGLM 长上下文对话模型,在 ChatGLM36B 的基础上进一步强化了对长文本的理解能力,能处理最多 32K 长度的上下文。
2024-11-04
智谱清言的开源大模型哪些种类
智谱清言的开源大模型种类包括: 多模态模型: CogAgent18B:基于 CogVLM17B 改进的开源视觉语言模型,拥有 110 亿视觉参数和 70 亿语言参数,支持 11201120 分辨率的图像理解,具备 GUI 图像的 Agent 能力。代码链接:、始智社区。 CogVLM17B:强大的开源视觉语言模型(VLM),在多模态权威学术榜单上综合成绩优异。代码链接:。 Visualglm6B:开源的支持图像、中文和英文的多模态对话语言模型,语言模型基于 ChatGLM6B,具有 62 亿参数;图像部分通过训练 BLIP2Qformer 构建起视觉模型与语言模型的桥梁,整体模型共 78 亿参数。代码链接:。 RDM:Relay Diffusion Model,级联扩散模型,可以从任意给定分辨率的图像快速生成,而无需从白噪声生成。代码链接:。 此外,智谱清言是智谱 AI 和清华大学推出的大模型产品,基础模型为 ChatGLM 大模型。2023 年 10 月 27 日,智谱 AI 于 2023 中国计算机大会(CNCC)上,推出了全自研的第三代基座大模型 ChatGLM3 及相关系列产品。智谱清言在工具使用排名国内第一,在计算、逻辑推理、传统安全能力上排名国内前三。总体来看,智谱清言更擅长专业能力,但在代码能力上还有一定优化空间,知识百科与其他第一梯队模型相比稍显不足。综合来看,智谱清言是一个很有竞争力的大模型。可应用的场景相对广泛,根据 SuperCLUE 测评结果,优先推进在 AI 智能体方面相关的应用,包括任务规划、工具使用及一些长文本记忆相关的场景。另外在较复杂推理应用上的效果会比较不错,在广告文案、文学写作方面也是一个很好的选择。
2024-11-04
如何用大模型做销量预测
用大模型做销量预测可以从以下几个方面考虑: 1. 数据收集:销量预测需要大量相关数据,包括历史销售数据、市场趋势、经济指标、消费者行为等。 2. 模型选择:选择适合的大模型,例如基于深度学习的神经网络模型。 3. 特征工程:对收集到的数据进行处理和特征提取,以便模型能够更好地理解和学习。 4. 训练与优化:使用合适的算法和技术对模型进行训练,并不断优化模型参数以提高预测准确性。 5. 考虑国情和政策:不同国家和地区的国情和政策会对销售情况产生影响,模型应进行相应的优化和调整。 6. 可解释性:追求模型的可解释性,以便更好地理解预测结果和做出决策。 关于大模型相关的模型下载和安装: 1. 模型下载: Civitai(C 站):https://civitai.com/ ,可通过点击右上角筛选按钮找到所需模型类型,如 Checkpoint=大模型、LoRA=Lora 等,还可通过点击左上角“Images”查看他人已做好的图片并获取相关模型。 2. 模型安装: 大模型(Ckpt):放入 models\\Stablediffusion VAE 模型:一些大模型需要配合 vae 使用,对应的 vae 同样放置在 models\\Stablediffusion 或 models\\VAE 目录,然后在 webui 的设置栏目选择。 Lora/LoHA/LoCon 模型:放入 extensions\\sdwebuiadditionalnetworks\\models\\lora,也可以在 models/Lora 目录 Embedding 模型:放入 embeddings 目录 若下载的模型不知类型,可使用秋叶的模型解析工具 https://spell.novelai.dev/ ,将模型拖动到空白处即可查看模型信息。
2024-10-22
科学问题二:XXX(小标题) 问题挑战:如何通过构建合理的先验知识或模型假设,刻画出数据中的可变性?如何利用从少量样本中提取到的变化信息来预测未见数据的表现? XXX XXX(问题挑战一的方法) XXX)问题挑战二的方法) 请将XXX补充完整,重点在预测,如何刻画和利用数据分布的“变化性”
以下是为您补充完整的内容: 对于如何通过构建合理的先验知识或模型假设,刻画出数据中的可变性,以及如何利用从少量样本中提取到的变化信息来预测未见数据的表现,我们可以参考以下方法: 在准备 LLM 数据方面,对于制作 LLM 微调数据集,首先获取文本格式非结构式和网络式结构式的数据。对于 QA 数据集,主要依靠已有的大语言模型生成,根据不同文本设定不同的提示词以获取尽可能多且信息量丰富的 QA。先对文件中的文本进行切割,将每一大部分放进一个约 200 字的 txt 文件里,然后设定提示词模板。例如对于公司产品手册,模板可以是:“你是一个聪明的 xxx 公司的 xxx 产品的产品经理。给你一段 xxxxx 有限公司 xx 产品相关的文本,你必须依据文本想出十个不同的问题和这十个问题对应的答案。你想出的问题可以被用来测试公司内部 xxx 职员的专业能力。你想出的问题可以是使用公司产品的用户会想到的问题。你想出的问题和答案必须和所给文本相关。你回答得答案必须可以让使用产品的用户理解。当你想出问题和答案后,你必须用以下格式回复:```
2024-10-21
我是一名研究生,我想利用python实现机器学习,对碳排放进行预测,需要你帮我写出代码,我应该问你哪些问题或者给你哪些前提条件
在您希望利用 Python 实现机器学习对碳排放进行预测并让我为您编写代码时,您需要向我提供以下关键信息和问题: 1. 您所拥有的碳排放相关数据的格式和特征,例如数据的类型(数值型、分类型等)、数据的字段(如时间、能源消耗、生产活动等)。 2. 您对预测模型的性能要求,比如预测的精度、召回率等指标的期望。 3. 您是否有特定的机器学习算法倾向,或者是否希望我根据数据特点为您推荐合适的算法。 4. 数据的规模和分布情况,这会影响模型的训练时间和复杂度。 5. 您是否有可用的预处理步骤,例如数据清洗、特征工程的想法或已经完成的部分。 6. 对于模型的可解释性是否有要求。 7. 您的计算资源情况,例如内存、CPU 核心数等,以便选择适合的模型和训练策略。
2024-10-10
AI对于政府预算编制与预测的影响
AI 对于政府预算编制与预测具有多方面的影响: 案例方面:摩根大通用 AI 创建金融模型,通过处理大量数据集、检测模式并整合多个变量,完善经济和货币预测,使中央银行和政府能从更准确的通胀、国内生产总值增长和失业率等指标预测中受益,为政策选择提供信息,改善利率、流动性管理和宏观审慎措施的决策。 美国政府行动方面:拜登签署的 AI 行政命令指出,AI 能帮助政府为美国人民提供更好的结果,能扩大机构的监管、治理和福利分配能力,降低成本并增强政府系统的安全性。同时,总统指示采取一系列行动,包括为机构使用 AI 发布指导,帮助机构更快速、更便宜、更有效地获取特定 AI 产品和服务,加速招聘 AI 专业人员等。此外,美国《2024 财年预算申请》专门划拨总统预算中的一部分用于人工智能开发和部署,白宫科技政策办公室呼吁获得人工智能资助的机构将人工智能在执行任务时的公平性与可信度作为首要目标,并保护权利和隐私的技术研发。还发布了信息征集,以帮助制定国家 AI 战略。
2024-10-10
AI对于预算编制与预测的影响
AI 对于预算编制与预测具有多方面的影响: 更动态的预测和报告: 生成式 AI 能够帮助编写 Excel、SQL 和 BI 工具中的公式和查询,实现分析自动化,还能发现模式,从更广泛、更复杂的数据集中为预测建议输入,例如考虑宏观经济因素,并建议如何适应模型以支持公司决策。 可以自动创建文本、图表、图形等内容,并根据不同示例调整报告,无需手动整合数据和分析到外部和内部报告中。 对于会计和税务团队,能帮助综合、总结,并就税法和潜在扣除项提出可能答案。 能帮助自动生成和调整采购和应付账款方面的合同、采购订单、发票以及提醒。 挑战: 使用金融数据训练 LLMs:新进入者可能先使用公开金融数据优化模型,再用自身收集的数据;现有参与者虽可利用现有专有数据,但往往过于保守,这给新进入者带来竞争优势。 模型输出准确性:金融问题答案影响重大,新的 AI 模型需尽可能准确,初期人类常作为最终验证环节。 以下是一些相关案例: “工作流:成为生产力工具”,介绍了个人如何用 ChatGPT 提升生产力。 “金融:摩根大通用 AI 创建金融模型”,人工智能可完善经济和货币预测,使中央银行和政府受益。 “工作:人类和 AI 协作效率探讨”,表明使用 AI 的被测试者在任务完成量、速度和结果质量上有显著提升。
2024-10-10
有很多通过学习易经的卦象来预测未来,通过AI能不能学习易经来占卦,要怎么做
目前关于通过 AI 学习易经来占卦的相关内容较为复杂和多样。 一方面,有案例如“问事屋一个摇签算卦 Bot”,其创建者原本打算做基于六爻周易解卦的 bot,但因 AI 对结果的分析和推理存在不足,后转换思路,以庙里摇签抽签的经历为灵感,收集整理相关签文并搭建工作流。 另一方面,从理论角度来看,AI 模型具有一定的灵活性和学习能力,但如同简单神经网络在预测未来时可能失败一样,AI 在学习易经占卦这类复杂且具有深厚文化内涵和哲学思考的领域,仍面临诸多挑战和限制。 需要注意的是,易经占卦更多是一种文化和哲学的表达方式,其结果并非具有科学可验证性的准确预测。
2024-10-06