Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

大模型预测文本

Answer

大模型的构建过程通常包括以下步骤:

  1. 收集海量数据:如同教孩子成为博学多才的人,让其阅读大量书籍、观看纪录片、与人交谈一样,对于 AI 模型,要收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。
  2. 预处理数据:就像为孩子整理学习资料,AI 研究人员需要清理和组织收集到的数据,如删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段。
  3. 设计模型架构:如同为孩子设计学习计划,研究人员要设计 AI 模型的“大脑”结构,通常是一个复杂的神经网络,比如 Transformer 架构,这种架构擅长处理序列数据如文本。
  4. 训练模型:如同孩子开始阅读和学习,AI 模型开始“阅读”提供的数据,反复尝试预测句子中的下一个词,通过不断重复这个过程,逐渐学会理解和生成人类语言。

大模型存在一些问题:

  1. 输出结果具有不可预测性,静态的训练数据导致知识存在截止日期,无法即时掌握最新信息,通用的基础大模型无法满足实际业务需求。
  2. 知识具有局限性,模型自身的知识源于训练数据,对于实时性、非公开或离线的数据无法获取。
  3. 存在幻觉问题,会在没有答案时提供虚假信息、过时或通用的信息,从可信度低非权威来源提供结果等。
  4. 数据安全性是企业关注的重点,企业不愿承担数据泄露风险,将私域数据上传第三方平台训练。

而 RAG 是解决上述问题的有效方案,它能让大模型从权威、预先确定的知识来源中检索、组织相关信息,更好地控制生成的文本输出,用户也能深入了解 LLM 生成最终结果的过程。RAG 可与微调结合使用,两者不冲突。RAG 类似于为模型提供教科书,适用于回答特定询问或解决特定信息检索任务,但不适合教模型理解广泛领域或学习新语言、格式或样式。微调类似于让学生内化知识,适用于模型需要复制特定结构、样式或格式的情况。参考资料:《Retrieval-Augmented Generation for Large Language Models:A Survey》(https://arxiv.org/pdf/2312.10997.pdf)

Content generated by AI large model, please carefully verify (powered by aily)

References

胎教级教程:万字长文带你理解 RAG 全流程

旁白当你发现大模型的效果并没有你预期想的那么好时,你打算放弃但是你也听到了另一种声音:如果大模型没有你想的那么好,可能是你没有了解他的能力边界。你不想就这么放弃,为了更好的理解大模型,你首先了解了他的创建过程[heading2]1.收集海量数据[content]想象一下,我们要教一个孩子成为一个博学多才的人。我们会怎么做?我们会让他阅读大量的书籍,观看各种纪录片,与不同背景的人交谈等。对于AI模型来说,这个过程就是收集海量的文本数据。例子:研究人员会收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。[heading2]2.预处理数据[content]在孩子开始学习之前,我们可能会先整理这些资料,确保内容适合他的年龄和学习能力。同样,AI研究人员也需要清理和组织收集到的数据。例子:删除垃圾信息,纠正拼写错误,将文本分割成易于处理的片段。[heading2]3.设计模型架构[content]就像我们要为孩子设计一个学习计划一样,研究人员需要设计AI模型的"大脑"结构。这通常是一个复杂的神经网络。这里我们就不展开了,我们只需要了解,为了让AI能够很好的学习知识,科学家们设计了一种特定的架构。例子:研究人员可能会使用Transformer架构,这是一种特别擅长处理序列数据(如文本)的神经网络结构。[heading2]4.训练模型[content]就像孩子开始阅读和学习一样,AI模型开始"阅读"我们提供的所有数据。这个过程被称为"训练"。例子:模型会反复阅读数据,尝试预测句子中的下一个词。比如给出"太阳从东方__",模型学会预测"升起"。通过不断重复这个过程,模型逐渐学会理解和生成人类语言。

文章:Andrej Karpathy 亲授:大语言模型入门

所以,这个神经网络实际上是一个下一个词预测网络。您给它一些单词,它就会给出下一个单词。从训练中得到的结果实际上是一种神奇的工具,因为尽管下一个单词预测任务看似简单,但它实际上是一个非常强大的目标。它迫使神经网络学习到大量关于世界的信息,并将这些信息编码在参数中。在准备这场演讲时,我随机抓取了一个网页,仅仅是从维基百科的主页上抓取的内容。本文讨论的是露丝·汉德勒。设想一个神经网络,它接收一系列单词并尝试预测下一个单词。在这个例子中,我用红色标出了一些信息量较大的单词。比如,如果你的目标是预测下一个单词,那么你的模型参数可能需要学习大量相关知识。你需要了解露丝和汉德勒,包括她的出生和去世时间,她是谁,她做了什么等等。因此,在预测下一个单词的任务中,你将学习到大量关于世界的知识,所有这些知识都被压缩并储存在模型的权重和参数中。模型做梦(生成)现在,我们如何实际应用这些神经网络呢?一旦我们训练好它们,我就向你展示了模型推理是一个非常简单的过程。我们基本上是在生成接下来的单词,通过从模型中采样,选择一个单词,然后将其反馈回模型以获取下一个单词,这个过程可以迭代进行。这样,网络就可以“梦想”出互联网文档。例如,如果我们仅运行神经网络,或者说执行推理,我们会得到类似于网页梦想的东西。你可以这么想,因为网络是在网页上训练的,然后你让它自由运行。在左边,我们看到的是类似于Java代码的梦;中间是类似于亚马逊产品的梦;右边是类似于维基百科文章的内容。

RAG提示工程(一):基础概念

大语言模型技术的本质导致了大模型的输出结果具有不可预测性,此外,静态的训练数据导致了大模型所掌握的知识存在截止日期,无法即时掌握最新信息。因此,当我们将大模型应用于实际业务场景时会发现,通用的基础大模型无法满足我们的实际业务需求。主要存在以下原因:知识的局限性:模型自身的知识完全源于它的训练数据,而现有的主流大模型(ChatGPT、文心一言、通义千问…)的训练集基本都是抓取网络公开的数据用于训练,对于一些实时性的、非公开的或离线的数据是无法获取到的,这部分知识也就无从具备。幻觉问题:大模型的底层原理是基于数学概率的文字预测,即文字接龙。因此大模型存在幻觉问题,会在没有答案的情况下提供虚假信息,提供过时或通用的信息,从可信度低非权威来源的资料中提供结果等。数据安全性:对于企业来说,数据安全至关重要,没有企业愿意承担数据泄露的风险,将自身的私域数据上传第三方平台进行训练。因此如何大模型落地应用时如何保障企业内部数据安全是一个重要问题。而RAG是解决上述问题的一套有效方案。它可以让大模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制大模型生成的文本输出,并且用户可以深入了解LLM如何生成最终的结果。并且,RAG可以和微调结合使用,两者并不冲突。RAG类似于为模型提供教科书,允许它基于特定查询检索信息。这该方法适用于模型需要回答特定的询问或解决特定的信息检索任务。然而,RAG不适合教模型来理解广泛的领域或学习新的语言,格式或样式。微调类似于让学生通过广泛的学习内化知识。这种方法当模型需要复制特定的结构、样式或格式时非常有用。以下是RAG与微调从维度方面的比较:参考资料:《Retrieval-Augmented Generation for Large Language Models:A Survey》(https://arxiv.org/pdf/2312.10997.pdf)

Others are asking
目前的大模型ai工具中 你觉得文本处理 写作这方面那个工具最强 最像人
目前在大模型 AI 工具中,对于文本处理和写作方面,以下是一些相关信息: 生成式人工智能的工作原理:在整体的人工智能领域,监督学习用于标记事物,一直占据很大比例。现在生成式 AI 快速崛起,强化学习与无监督学习也是重要工具。生成式 AI 由监督学习技术搭建,大语言模型使用监督学习不断预测下一个词语来生成文本,这需要大量数据。 大语言模型的应用:运用大语言模型写故事、修改文本很有用,但它可能编造故事产生错误信息,需要鉴别信息准确。网络搜索与大语言模型的区别在于网络搜索可追寻信息来源,大语言模型能提供建议与策略。 写作方面:使用大模型工具如 LLM 来写作,集思广益、头脑风暴非常有用。网页版聊天时提供更多信息,翻译也可使用 LLM,但其效果受网络文本量影响。 推荐的大模型工具:chatGPT 4.0、kimichat、智谱清言 4 等。一些国产模型如智谱和文心可以文生图。 相关工具:除了 Snapbox 外,还有 OpenCAT 等类似工具可供选择。有多种文本处理与总结工具,如 kimi 网页总结助手、ChatHub 等,以及翻译插件与 AI 对话插件、沉浸式翻译插件等。Memo Al 可以对音频视频进行转文字、字幕翻译、语音合成等,并由多种 AI 模型提炼内容精华总结、生成思维导图。 综合来看,不同的大模型工具在文本处理和写作方面各有特点,难以简单地确定哪一个最强、最像人,具体取决于您的需求和使用场景。
2025-04-01
文本转语音
以下是关于文本转语音的相关信息: 在线 TTS 工具推荐: Eleven Labs:https://elevenlabs.io/ ,是一款功能强大且多功能的 AI 语音软件,能高保真地呈现人类语调和语调变化,并能根据上下文调整表达方式。 Speechify:https://speechify.com/ ,是一款人工智能驱动的文本转语音工具,可作为多种平台的应用使用,用于收听网页、文档、PDF 和有声读物。 Azure AI Speech Studio:https://speech.microsoft.com/portal ,提供了支持 100 多种语言和方言的语音转文本和文本转语音功能,还提供了自定义的语音模型。 Voicemaker:https://voicemaker.in/ ,可将文本转换为各种区域语言的语音,并允许创建自定义语音模型,易于使用,适合为视频制作画外音或帮助视障人士。 语音合成技术原理: 传统的语音合成技术一般会经过以下三个步骤: 1. 文本与韵律分析:先将文本分词,标明每个字的发音以及重音、停顿等韵律信息,然后提取文本的特征,生成特征向量。 2. 声学处理:通过声学模型将文本特征向量映射到声学特征向量。 3. 声音合成:使用声码器将声学特征向量通过反变换生成声音波形,然后一次拼接得到整个文本的合成语音。在反变换过程中,可以调整参数,从而改变合成语音的音色、语调、语速等。 OpenAI 新一代音频模型: OpenAI 于 2025 年 3 月 20 日推出了全新的音频模型,包括改进的语音转文本和文本转语音功能。 语音转文本模型在单词错误率和语言识别准确性方面相较于原有的 Whisper 模型有显著提升,能更好地捕捉语音细节,减少误识别,在多语言评估基准上表现优异。 文本转语音模型具备更高的可定制性,支持个性化语音风格,目前支持人工预设的语音样式,并通过监控确保语音与合成预设一致。 测试地址:https://www.openai.fm/ 直播回放:https://www.youtube.com/watch?v=lXb0L16ISAc 说明文档:https://openai.com/index/introducingournextgenerationaudiomodels/ 内容由 AI 大模型生成,请仔细甄别。
2025-04-01
长文本处理
以下是关于长文本处理的相关信息: 通义千问发布了一个模型并开源了两个模型,其中一个在长文本处理方面有显著提升。 开源的 Qwen2.51M 大模型推出 7B、14B 两个尺寸,在处理长文本任务中稳定超越 GPT4omini,同时开源推理框架,在处理百万级别长文本输入时可实现近 7 倍的提速,首次将开源 Qwen 模型的上下文扩展到 1M 长度。在上下文长度为 100 万 Tokens 的大海捞针任务中,Qwen2.51M 能够准确地从 1M 长度的文档中检索出隐藏信息,仅有 7B 模型出现少量错误。对于更复杂的长上下文理解任务,通义官方选择了等测试集。 Qwen2.51M 系列模型在大多数长上下文任务中显著优于之前的 128K 版本,特别是在处理超过 64K 长度的任务时表现出色。Qwen2.514BInstruct1M 模型不仅击败了 Qwen2.5Turbo,还在多个数据集上稳定超越 GPT4omini,可作为现有长上下文模型的优秀开源替代。 此外,还有关于利用 Langchain+Ollama+RSSHub 实现本地部署资讯问答机器人的内容,包括导入依赖库、从订阅源获取内容、为文档内容生成向量等步骤。其中使用了 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型,文本向量模型 bgem3 具有支持多语言、长文本输入、集成多种检索能力等特点。
2025-03-31
想要一个输入文本生成ppt的免费工具
以下为您介绍一些输入文本生成 PPT 的免费工具: 1. 闪击: 网址:https://ppt.isheji.com/?code=ysslhaqllp&as=invite 特点:国内网站,不需要魔法。 操作流程: 选择模版。 输入大纲和要点(由于闪击的语法和准备的大纲内容可能有一些偏差,可以参考官方使用指南:https://zhuanlan.zhihu.com/p/607583650)。 点击文本转 PPT,并在提示框中选择确定。 注意事项:导出有一些限制,PPT 需要会员才能导出。 2. 歌者 PPT: 网址:gezhe.com 功能: 话题生成:一键生成 PPT 内容。 资料转换:支持多种文件格式转 PPT。 多语言支持:生成多语言 PPT。 模板和案例:海量模板和案例库。 在线编辑和分享:生成结果可自由编辑并在线分享。 增值服务:自定义模板、字体、动效等。 简介:是一款永久免费的智能 PPT 生成工具。用户可以轻松将任何主题或资料转化为 PPT,并选择应用大量精美的模板。无论是商务演示、教育培训、学术报告还是专业领域,都能提供便捷的操作和智能化体验,让幻灯片制作变得更加轻松高效。 产品优势: 免费使用:所有功能永久免费。 智能易用:通过 AI 技术简化 PPT 制作流程,易于上手。 海量案例:大量精美模板和优秀案例可供选择和下载。 资料转 PPT 很专业:支持多种文件格式,转换过程中尊重原文内容。 AI 翻译:保持 PPT 原始排版不变,多语言在线即时翻译。 推荐理由: 完全免费,对于经常需要制作演示文稿的学生和职场人士是福音。 智能化程度高,通过 AI 技术快速将各种资料转换成精美的 PPT,高效又准确。 模板和案例库丰富,适合各种场景,几乎无需学习成本就能上手使用。 目前市面上大多数 AI 生成 PPT 按照如下思路完成设计和制作: 1. AI 生成 PPT 大纲。 2. 手动优化大纲。 3. 导入工具生成 PPT。 4. 优化整体结构。 推荐 2 篇市场分析的文章供参考: 1. 《》 2. 《》(质朴发言) 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-30
文本转化成ppt的AI工具,上传自己的模版
以下为一些可将文本转化成 PPT 且能上传自己模版的 AI 工具及使用指南: 1. 闪击 网址:https://ppt.isheji.com/?code=ysslhaqllp&as=invite 选择模版 输入大纲和要点:由于闪击的语法和准备的大纲内容可能有偏差,可参考官方使用指南:https://zhuanlan.zhihu.com/p/607583650,将大纲转换成适配闪击的语法。 生成 PPT:点击文本转 PPT,并在提示框中选择确定。 在线编辑 导出:导出有一些限制,PPT 需要会员才能导出。 2. Process ON 网址:https://www.processon.com/ 输入大纲和要点: 导入大纲和要点: 手动复制,相对比较耗时间。 导入方式: 复制最终大纲的内容,到本地的 txt 文件后,将后缀改为.md。如果看不见后缀,可以自行搜索开启后缀。 打开 Xmind 软件,将 md 文件导入 Xmind 文件中。 Process ON 导入 Xmind 文件。以导入方式新建思维导图。 输入主题自动生成大纲和要求:新增思维导图,输入主题,点击 AI 帮我创作。 选择模版并生成 PPT:点击下载,选择导入格式为 PPT 文件,选择模版,再点击下载。 3. 其他 AI PPT 工具: Gamma:在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式,如 GIF 和视频,以增强演示文稿的吸引力。网址:https://gamma.app/ 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出,允许用户通过输入简单的文本描述来生成专业的 PPT 设计,包含丰富的模板库和设计元素。网址:https://www.xdesign.com/ppt/ Mindshow:AI 驱动的 PPT 辅助工具,提供一系列的智能设计功能,如自动布局、图像选择和文本优化等。网址:https://www.mindshow.fun/ 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用科大讯飞在语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/
2025-03-30
文本转化成ppt的AI工具,用指定的模版
以下为您介绍几种文本转化成 PPT 的 AI 工具及使用方法: 闪击 网址:国内网站,不需要魔法。地址:https://ppt.isheji.com/?code=ysslhaqllp&as=invite 选择模版 输入大纲和要点:由于闪击的语法和准备的大纲内容有一些偏差,可以参考下官方使用指南:https://zhuanlan.zhihu.com/p/607583650,将之前准备的大纲转换成适配闪击的语法。 生成 PPT:点击文本转 PPT,并在提示框中选择确定。 在线编辑 导出:导出有一些限制,PPT 需要会员才能导出。 Process ON 网址:https://www.processon.com/ 输入大纲和要点: 导入大纲和要点: 手动复制,相对比较耗时间。 导入方式: 1. 复制最终大纲的内容,到本地的 txt 文件后,将后缀改为.md。如果看不见后缀,可以自行搜索开启后缀。 2. 打开 Xmind 软件,将 md 文件导入 Xmind 文件中。 3. Process ON 导入 Xmind 文件。以导入方式新建思维导图。选择准备好的 Xmind 文件,导入成功。 输入主题自动生成大纲和要求:新增思维导图,输入主题,点击 AI 帮我创作,生成结束。 选择模版并生成 PPT:点击下载,选择导入格式为 PPT 文件,选择模版,再点击下载。如果喜欢用 Process ON 的小伙伴,没有会员,可以某宝买个一天会员。 歌者 PPT 功能: 话题生成:一键生成 PPT 内容 资料转换:支持多种文件格式转 PPT 多语言支持:生成多语言 PPT 模板和案例:海量模板和案例库 在线编辑和分享:生成结果可自由编辑并在线分享 增值服务:自定义模板、字体、动效等 简介:歌者 PPT(gezhe.com)是一款永久免费的智能 PPT 生成工具。用户可以轻松将任何主题或资料转化为 PPT,并选择应用大量精美的模板。无论是商务演示、教育培训、学术报告还是专业领域,歌者 PPT 都能提供便捷的操作和智能化体验,让幻灯片制作变得更加轻松高效。 产品优势: 免费使用:所有功能永久免费。 智能易用:通过 AI 技术简化 PPT 制作流程,易于上手。 海量案例:大量精美模板和优秀案例可供选择和下载。 资料转 PPT 很专业:支持多种文件格式,转换过程中尊重原文内容。 AI 翻译:保持 PPT 原始排版不变,多语言在线即时翻译。 推荐理由: 首先,歌者 PPT 完全免费,这对于经常需要制作演示文稿的学生和职场人士来说,简直是福音。 其次,它的智能化程度令人印象深刻。通过 AI 技术,歌者 PPT 可以快速将各种资料转换成精美的 PPT,整个过程既高效又准确。 歌者 PPT 的模板和案例库非常丰富,无论是职场办公还是学术演讲,你总能找到适合的模版或案例。歌者 PPT 对多语言的支持使得它在国际化环境中也非常实用,可以一键生成目标语言的 PPT,也可以把写好的 PPT 翻译成其他语言。这款工具特别适合那些不太擅长制作 PPT 或者时间紧张的人群,几乎无需学习成本就能上手使用。
2025-03-30
学习大模型请给我一张知识图谱
以下是为您提供的大模型知识图谱: 1. 非技术背景,一文读懂大模型 整体架构 基础层:为大模型提供硬件支撑,数据支持等,例如 A100、数据服务器等。 数据层:企业根据自身特性维护的垂域数据,分为静态的知识库和动态的三方数据集。 模型层:LLm 或多模态模型,LLm 即大语言模型,如 GPT,一般使用 transformer 算法实现;多模态模型包括文生图、图生图等,训练所用数据与 llm 不同,用的是图文或声音等多模态的数据集。 平台层:模型与应用间的平台部分,如大模型的评测体系,或者 langchain 平台等。 表现层:也就是应用层,用户实际看到的地方。 2. AI Agent 系列:Brain 模块探究 知识 内置知识 常识知识:包括日常生活中广泛认可的事实和逻辑规则,帮助智能体具备泛化能力。 专业知识:涉及深入特定领域的详细信息,如医学、法律、科技、艺术等领域的专有概念和操作方法。 语言知识:包括语法规则、句型结构、语境含义以及文化背景等,还涉及非文字部分如语调、停顿和强调等。 3. 大模型入门指南 通俗定义:输入大量语料,让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。 类比学习过程 找学校:训练 LLM 需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练大模型。 确定教材:大模型需要的数据量特别多,几千亿序列(Token)的输入基本是标配。 找老师:用算法讲述“书本”中的内容,让大模型能够更好理解 Token 之间的关系。 就业指导:为了让大模型能够更好胜任某一行业,需要进行微调(fine tuning)指导。 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。 Token:被视为模型处理和生成的文本单位,可代表单个字符、单词、子单词等,在将输入进行分词时,会对其进行数字化,形成词汇表。
2025-04-07
写代码的最佳模型
写代码的最佳模型取决于具体的需求和任务。以下是一些相关要点: 1. 对于不同人使用同一个模型,结果差异大的原因在于是否懂 AI 和懂内容,专业写作通常会混合使用多个模型并取其精华,例如 Grok、Gemini、GPT 各有优势,关键在于如何运用。 2. 在需要精确计算时,可以使用代码或调用 API。GPT 自身进行算术或长计算可能不准确,此时应让模型编写并运行代码,运行代码输出结果后,再将其作为输入提供给模型进行下一步处理。同时调用外部 API 也是代码执行的一个好的用例,但执行代码时要注意安全性,需采取预防措施,特别是需要一个沙盒化的代码执行环境来限制不可信代码可能造成的危害。 3. 文本补全端点可用于各种任务,它提供了简单且强大的接口连接到任何模型。输入一些文本作为提示,模型会生成文本补全,试图匹配给定的上下文或模式。探索文本补全的最佳方式是通过 Playground,它是一个文本框,可提交提示生成完成内容。由于 API 默认是非确定性的,每次调用可能得到稍有不同的完成,将温度设置为 0 可使输出大部分确定,但仍可能有小部分变化。通过提供指令或示例可以“编程”模型,提示的成功通常取决于任务复杂性和提示质量,好的提示应提供足够信息让模型明确需求和回应方式。 需要注意的是,默认模型的训练数据截止到 2021 年,可能不了解当前事件情况。
2025-04-01
我想了解如何提取自己的声音并实现大模型以我的声音回答我
要提取自己的声音并实现大模型以您的声音回答,目前提供的知识库中没有直接相关的详细内容。但可以为您提供一些可能有用的思路和参考方向: 对于声音提取,可能需要使用专业的音频处理软件和设备,将您的声音录制并进行处理和分析。 关于让大模型以您的声音回答,这可能涉及到语音合成技术。您可以先了解一些常见的语音合成模型和工具,例如通过创建大模型问答应用,获取推理 API 服务等。 同时,还可以参考一些关于大模型和语音处理的专业知识,比如大模型的本质是基于语言的概率模型,通过设置合适的 Prompt 来引导模型输出更准确的结果。 由于知识库中没有确切的针对您需求的详细步骤和方法,以上内容仅供您初步参考。
2025-04-01
请基于应用场景,对AI模型进行分类
以下是对 AI 模型基于应用场景的分类: 1. 文本生成和内容创作:包括撰写文章、生成新闻报道、创作诗歌和故事等。 2. 聊天机器人和虚拟助手:提供客户服务、日常任务提醒和信息咨询等服务。 3. 编程和代码辅助:如代码自动补全、bug 修复和代码解释。 4. 翻译和跨语言通信:促进不同语言背景的用户之间的沟通和信息共享。 5. 情感分析和意见挖掘:为市场研究和产品改进提供数据支持。 6. 教育和学习辅助:创建个性化的学习材料、自动回答学生问题和提供语言学习支持。 7. 图像和视频生成:如根据文本描述生成相应的图像,甚至未来可能扩展到视频内容的生成。 8. 游戏开发和互动体验:创建游戏中的角色对话、故事情节生成和增强玩家的沉浸式体验。 9. 医疗和健康咨询:理解和回答医疗相关的问题,提供初步的健康建议和医疗信息查询服务。 10. 法律和合规咨询:帮助解读法律文件,提供合规建议。 此外,在开源模型方面,如 Civitai、海艺 AI、liblib 等为主流创作社区,提供了让用户利用 AI 技术进行图像创作和分享的平台。AI 视频方面,其应用场景广泛,涵盖内容创建、社交媒体营销、讲故事与动画制作、个性化内容、视频摘要、电子学习和培训、新闻媒体、电子游戏开发、虚拟助理和聊天机器人、归档与文档保存以及提高内容的可访问性等多个领域。从使用场景来看,分为改善大模型产品的使用体验、助力用户工作流、细分场景独立实用工具、AI 社区、Chatbot 五个方向;从产品形态上来看,分为插件、辅助现有产品能力、深度结合 LLM 能力的独立网站&应用、AI 社区四种。目前产品大多分布在 PC 端。
2025-04-01
AI模型可以分为什么类型
AI 模型主要可以分为以下类型: 1. 基础模型(Foundation model):在大量数据上训练,能适应多种任务,可作为构建更特定 AI 模型的基础。 2. 大语言模型(LLM):例如谷歌的 BERT 模型,可用于语义理解等任务,生成只是其处理任务之一。 3. 生成式 AI 模型:能够生成文本、图片、音频、视频等内容形式。 4. 按照学习方式分类: 监督学习模型:使用有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归任务。 无监督学习模型:处理无标签数据,自主发现规律,经典任务如聚类。 强化学习模型:从反馈中学习,以最大化奖励或最小化损失。 5. 深度学习模型:参照人脑神经网络和神经元,由于有很多层而被称为深度,神经网络可用于监督学习、无监督学习、强化学习。
2025-04-01
请预测,随着国内AI水平的发展,2030年,可能会代替多少打工人的工作?
根据现有资料,关于 2030 年国内 AI 发展可能替代打工人工作的数量,不同的研究和观点有所不同。 咨询公司麦肯锡发布最新预测:截止到 2030 年时,50%工作将被 AI 取代。吴恩达认为 2023 年 AI 将会替代 4 亿 8 亿工作岗位,同时 AI 会增加 5.55 8.90 亿新岗位。总体而言,越具体、重复性高的工作越容易被取代,而灵活、非常规、创造性的岗位更难被取代。 需要注意的是,对于 AI 对就业的影响,还需要综合更多因素进行辩证看待。
2025-03-21
剧本分析(NLP):AI 读取剧本,分析情节、角色发展,甚至预测观众反应。
以下是关于剧本分析(NLP)中 AI 读取剧本并进行相关处理的一些信息: 人物剧本与角色状态: 对人物如李洛云进行“剧本推演”,每天生成 20 40 个时间段剧本,依据人物背景和增长记忆体生成。 可使用 LLM 生成英文提示词用于 Stable Diffusion 出图,图存于“手机相册”用于对话多模态中的图片回复。 选择剧本和图片生成朋友圈文案。 拟人行为: 反感度系统:通过 LLM 分析对话判断角色是否产生反感度。 延迟回复:根据状态忙闲或是否睡觉决定回复时间。 接受多轮输入,一并回复:避免每一条输入回复一句,不像真人。 响应拆分与响应延迟:将一大段响应文本拆分成多段,模拟人类打字速度(3 5 字/秒),回复时概率性使用表情包,有概率主动聊天(与亲密度正相关)。 微信朋友圈:根据每天人物剧本挑选 1 2 个发布朋友圈并配图,目前内容由 AI 生成但手工发布。 将小说做成视频的制作流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)提取关键场景、角色和情节。 2. 生成角色与场景描述:用工具(如 Stable Diffusion 或 Midjourney)生成视觉描述。 3. 图像生成:用 AI 图像生成工具创建图像。 4. 视频脚本制作:将关键点和图像组合成脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)转换语音,添加背景音乐和音效。 6. 视频编辑与合成:用视频编辑软件(如 Clipfly 或 VEED.IO)合成。 7. 后期处理:剪辑、添加特效和转场提高质量。 8. 审阅与调整:观看视频并根据需要调整。 9. 输出与分享:完成编辑后输出并分享。 Inworld AI: Inworld AI 是一家专注于游戏和人工智能的初创公司,开发了 Inworld 的 AI 角色引擎,可将游戏 NPC 进行 AI 化并集成到游戏中。该引擎超越大语言模型,增加可配置的安全性、知识、记忆、叙事控制、多模态等功能,使 NPC 能够自我学习和适应,具有情绪智能。其角色引擎可创建具有独特个性和上下文意识的角色,无缝集成到实时应用中,内置优化规模和性能的功能。Character Brain(性格大脑)引擎使 AI NPC 能够学习和适应,具有情绪智能的关系导航能力、记忆和回忆能力,并能自主发起目标、执行动作并遵循动机。功能包括目标和行动、长期记忆、个性、情绪等。
2025-03-20
1、Puzzle 选择一个你(们)感兴趣的社会问题或者现象。 “赛博信仰”指在网络环境下衍生的一系列超现实、寄托心理期许的新兴文化现象。这种现象反映了人们在数字化时代中对精神寄托、心理安慰和未来预测的需求。赛博信仰不仅是一种文化现象,也反映了现代社会中人们对科技、信仰和现实之间关系的重新思考。 2、Facts 关于这个问题/现象,都有哪些基本事实? 比如有人购买电子形式的马克思、爱因斯坦的脑子,象征着对智慧的渴望;借助塔罗测试程序、deepseek算命等AI工具,尝试预知命运;夸赞鹿童、转发锦鲤
关于“赛博信仰”这一现象,目前所了解到的基本事实包括:有人购买电子形式的马克思、爱因斯坦的脑子以象征对智慧的渴望;借助塔罗测试程序、deepseek 算命等 AI 工具尝试预知命运;夸赞鹿童、转发锦鲤等。但目前掌握的相关事实相对有限,还需要进一步的研究和观察来更全面地了解这一现象。
2025-03-13
根据论文题目:"基于机器学习的中国股市波动率预测与美股市场对比分析",列出详细框架列出框架,每条框架要明确具体方向内容及数据图表要求
以下是为您提供的关于“基于机器学习的中国股市波动率预测与美股市场对比分析”的论文框架: 一、引言 1. 研究背景和意义 阐述机器学习在金融领域的应用现状 强调股市波动率预测的重要性 说明中、美股市对比的价值 2. 研究目的和问题 明确预测股市波动率的具体目标 提出中、美股市对比的关键问题 3. 研究方法和数据来源 介绍所采用的机器学习算法 说明中国股市和美股市场的数据获取途径 二、相关理论与文献综述 1. 机器学习在股市预测中的应用 列举常见的机器学习模型及其在股市预测中的效果 分析其优缺点 2. 股市波动率的理论和测量方法 解释波动率的概念和计算方法 介绍常用的波动率模型 3. 中、美股市的特点和差异 对比两国股市的交易制度、投资者结构等方面 总结已有研究中关于中、美股市波动率的差异 三、数据预处理与特征工程 1. 数据收集与清洗 详细描述中国股市和美股市场的数据收集范围和时间跨度 处理缺失值、异常值等数据问题 2. 特征选择与构建 确定影响股市波动率的关键特征 构建新的特征变量 3. 数据标准化与归一化 说明对数据进行标准化和归一化的方法和目的 四、模型构建与训练 1. 选择合适的机器学习模型 比较不同模型(如随机森林、支持向量机、神经网络等)的适用性 确定最终选用的模型 2. 模型训练与优化 描述训练过程中的参数调整和优化方法 展示模型的性能评估指标 3. 模型验证与比较 使用交叉验证等方法验证模型的准确性 对比不同模型的预测效果 五、中国股市波动率预测结果与分析 1. 预测结果展示 以图表形式呈现中国股市波动率的预测值 与实际波动率进行对比 2. 结果分析与讨论 分析预测结果的准确性和可靠性 探讨影响预测效果的因素 3. 敏感性分析 研究模型参数和输入特征对预测结果的敏感性 六、美股市场波动率预测结果与分析 1. 预测结果展示 以图表形式呈现美股市场波动率的预测值 与实际波动率进行对比 2. 结果分析与讨论 分析美股市场预测结果的特点和差异 对比中、美股市预测结果的异同 3. 影响因素分析 探讨美股市场特有的影响波动率的因素 七、中、美股市波动率对比分析 1. 波动率特征对比 比较中、美股市波动率的均值、方差、峰度等统计特征 分析波动率的周期性和趋势性 2. 影响因素对比 对比两国股市中影响波动率的宏观经济因素、政策因素等 讨论投资者行为对波动率的影响差异 3. 风险评估与管理对比 评估中、美股市的风险水平 对比风险管理制度和策略 八、结论与展望 1. 研究结论总结 概括中、美股市波动率预测的主要成果 总结对比分析的关键发现 2. 研究的局限性 指出研究过程中存在的不足之处 3. 未来研究方向 提出进一步改进模型和拓展研究的方向 对中、美股市波动率研究的展望 数据图表要求: 1. 中、美股市历史波动率的折线图 2. 不同机器学习模型预测效果的对比柱状图 3. 中、美股市波动率特征的统计表格 4. 影响中、美股市波动率的因素的相关性矩阵图 5. 中、美股市风险评估的雷达图
2025-03-11
1.根据论文题目:"基于机器学习的中国股市波动率预测与美股市场对比分析",列出详细框架列出框架,每条框架要明确具体方向内容及数据图表要求。
很抱歉,暂时没有关于“基于机器学习的中国股市波动率预测与美股市场对比分析”这一论文题目的详细框架相关内容。但我可以为您提供一个大致的框架思路供您参考: 一、引言 1. 研究背景和意义 阐述中国股市和美股市场的重要性 说明波动率预测的价值 2. 研究目的和问题 明确对比分析的主要目标 提出具体的研究问题 二、文献综述 1. 机器学习在股市波动率预测中的应用 总结相关方法和模型 分析其优缺点 2. 中国股市和美股市场波动率的特征 回顾已有研究成果 指出研究空白 三、理论基础与方法 1. 机器学习算法介绍 如随机森林、支持向量机等 解释其原理和适用场景 2. 数据来源和预处理 说明中国股市和美股市场的数据来源 描述数据清洗和预处理的步骤 3. 波动率计算方法 介绍常用的波动率计算指标 四、实证分析 1. 模型构建与训练 运用所选机器学习算法构建预测模型 展示训练过程和参数调整 2. 结果评估与比较 评估中国股市和美股市场预测结果的准确性 进行对比分析 数据图表要求:绘制预测结果与实际波动率的对比图 3. 影响因素分析 探讨可能影响波动率预测的因素 数据图表要求:绘制影响因素与波动率的关系图 五、结论与展望 1. 研究结论总结 概括中国股市和美股市场波动率预测的成果 对比分析的主要发现 2. 研究的局限性 指出研究中存在的不足 3. 未来研究方向 提出进一步研究的建议和方向 以上框架仅供参考,您可以根据实际研究需求进行调整和完善。
2025-03-10
根据论文题目:"基于机器学习的中国股市波动率预测与美股市场对比分析",列出详细框架列出框架,每条框架要明确具体方向内容及数据图表要求
以下是为您提供的关于“基于机器学习的中国股市波动率预测与美股市场对比分析”的论文框架: 一、引言 1. 研究背景和意义 阐述机器学习在金融领域的应用现状 强调股市波动率预测的重要性 说明中美股市对比的价值 2. 研究目的和问题 明确预测中国股市波动率的目标 提出与美股市场对比的关键问题 3. 研究方法和数据来源 介绍所采用的机器学习算法 说明中国股市和美股市场的数据获取途径 二、相关理论与文献综述 1. 机器学习在股市预测中的应用 列举常见的机器学习模型 分析其在股市预测中的优缺点 2. 股市波动率的理论和测量方法 解释波动率的概念和计算方式 介绍常用的波动率测量指标 3. 中美股市的特点和差异 对比中美股市的交易制度、投资者结构等方面 总结前人关于中美股市对比的研究成果 三、数据预处理与特征工程 1. 数据收集与清洗 收集中国股市和美股市场的历史数据 处理缺失值、异常值等 2. 特征选择与构建 提取影响股市波动率的关键特征 构建新的特征变量 3. 数据标准化与归一化 对数据进行标准化处理,使其具有可比性 四、模型建立与训练 1. 选择合适的机器学习模型 比较不同模型的性能,如随机森林、支持向量机等 确定最终使用的模型 2. 模型训练与优化 使用训练数据进行模型训练 调整参数以提高模型性能 3. 模型评估指标 确定评估模型预测效果的指标,如均方误差、准确率等 五、中国股市波动率预测结果与分析 1. 预测结果展示 以图表形式呈现中国股市波动率的预测值 与实际波动率进行对比 2. 结果分析与讨论 分析预测结果的准确性和可靠性 探讨影响预测效果的因素 六、美股市场波动率预测结果与分析 1. 预测结果展示 以图表形式呈现美股市场波动率的预测值 与实际波动率进行对比 2. 结果分析与讨论 分析美股市场预测结果的特点 与中国股市预测结果进行对比 七、中美股市波动率对比分析 1. 波动率特征对比 比较中美股市波动率的均值、方差等统计特征 分析波动率的周期性和趋势性 2. 影响因素对比 探讨宏观经济因素、政策法规等对中美股市波动率的不同影响 分析投资者行为和市场结构的差异 3. 风险评估与投资策略 根据对比结果评估中美股市的风险水平 提出针对中美股市的投资策略建议 八、结论与展望 1. 研究总结 总结研究的主要成果和发现 2. 研究不足与展望 指出研究中存在的局限性 对未来研究方向提出展望 数据图表要求: 1. 展示中国股市和美股市场的历史波动率走势对比图。 2. 呈现不同机器学习模型在预测中国股市和美股市场波动率时的性能评估指标对比图。 3. 绘制中美股市波动率的统计特征(均值、方差等)对比柱状图。 4. 以图表形式展示影响中美股市波动率的关键因素的对比分析。
2025-03-07