Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

大模型预测文本

Answer

大模型的构建过程通常包括以下步骤:

  1. 收集海量数据:如同教孩子成为博学多才的人,让其阅读大量书籍、观看纪录片、与人交谈一样,对于 AI 模型,要收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。
  2. 预处理数据:就像为孩子整理学习资料,AI 研究人员需要清理和组织收集到的数据,如删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段。
  3. 设计模型架构:如同为孩子设计学习计划,研究人员要设计 AI 模型的“大脑”结构,通常是一个复杂的神经网络,比如 Transformer 架构,这种架构擅长处理序列数据如文本。
  4. 训练模型:如同孩子开始阅读和学习,AI 模型开始“阅读”提供的数据,反复尝试预测句子中的下一个词,通过不断重复这个过程,逐渐学会理解和生成人类语言。

大模型存在一些问题:

  1. 输出结果具有不可预测性,静态的训练数据导致知识存在截止日期,无法即时掌握最新信息,通用的基础大模型无法满足实际业务需求。
  2. 知识具有局限性,模型自身的知识源于训练数据,对于实时性、非公开或离线的数据无法获取。
  3. 存在幻觉问题,会在没有答案时提供虚假信息、过时或通用的信息,从可信度低非权威来源提供结果等。
  4. 数据安全性是企业关注的重点,企业不愿承担数据泄露风险,将私域数据上传第三方平台训练。

而 RAG 是解决上述问题的有效方案,它能让大模型从权威、预先确定的知识来源中检索、组织相关信息,更好地控制生成的文本输出,用户也能深入了解 LLM 生成最终结果的过程。RAG 可与微调结合使用,两者不冲突。RAG 类似于为模型提供教科书,适用于回答特定询问或解决特定信息检索任务,但不适合教模型理解广泛领域或学习新语言、格式或样式。微调类似于让学生内化知识,适用于模型需要复制特定结构、样式或格式的情况。参考资料:《Retrieval-Augmented Generation for Large Language Models:A Survey》(https://arxiv.org/pdf/2312.10997.pdf)

Content generated by AI large model, please carefully verify (powered by aily)

References

胎教级教程:万字长文带你理解 RAG 全流程

旁白当你发现大模型的效果并没有你预期想的那么好时,你打算放弃但是你也听到了另一种声音:如果大模型没有你想的那么好,可能是你没有了解他的能力边界。你不想就这么放弃,为了更好的理解大模型,你首先了解了他的创建过程[heading2]1.收集海量数据[content]想象一下,我们要教一个孩子成为一个博学多才的人。我们会怎么做?我们会让他阅读大量的书籍,观看各种纪录片,与不同背景的人交谈等。对于AI模型来说,这个过程就是收集海量的文本数据。例子:研究人员会收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。[heading2]2.预处理数据[content]在孩子开始学习之前,我们可能会先整理这些资料,确保内容适合他的年龄和学习能力。同样,AI研究人员也需要清理和组织收集到的数据。例子:删除垃圾信息,纠正拼写错误,将文本分割成易于处理的片段。[heading2]3.设计模型架构[content]就像我们要为孩子设计一个学习计划一样,研究人员需要设计AI模型的"大脑"结构。这通常是一个复杂的神经网络。这里我们就不展开了,我们只需要了解,为了让AI能够很好的学习知识,科学家们设计了一种特定的架构。例子:研究人员可能会使用Transformer架构,这是一种特别擅长处理序列数据(如文本)的神经网络结构。[heading2]4.训练模型[content]就像孩子开始阅读和学习一样,AI模型开始"阅读"我们提供的所有数据。这个过程被称为"训练"。例子:模型会反复阅读数据,尝试预测句子中的下一个词。比如给出"太阳从东方__",模型学会预测"升起"。通过不断重复这个过程,模型逐渐学会理解和生成人类语言。

文章:Andrej Karpathy 亲授:大语言模型入门

所以,这个神经网络实际上是一个下一个词预测网络。您给它一些单词,它就会给出下一个单词。从训练中得到的结果实际上是一种神奇的工具,因为尽管下一个单词预测任务看似简单,但它实际上是一个非常强大的目标。它迫使神经网络学习到大量关于世界的信息,并将这些信息编码在参数中。在准备这场演讲时,我随机抓取了一个网页,仅仅是从维基百科的主页上抓取的内容。本文讨论的是露丝·汉德勒。设想一个神经网络,它接收一系列单词并尝试预测下一个单词。在这个例子中,我用红色标出了一些信息量较大的单词。比如,如果你的目标是预测下一个单词,那么你的模型参数可能需要学习大量相关知识。你需要了解露丝和汉德勒,包括她的出生和去世时间,她是谁,她做了什么等等。因此,在预测下一个单词的任务中,你将学习到大量关于世界的知识,所有这些知识都被压缩并储存在模型的权重和参数中。模型做梦(生成)现在,我们如何实际应用这些神经网络呢?一旦我们训练好它们,我就向你展示了模型推理是一个非常简单的过程。我们基本上是在生成接下来的单词,通过从模型中采样,选择一个单词,然后将其反馈回模型以获取下一个单词,这个过程可以迭代进行。这样,网络就可以“梦想”出互联网文档。例如,如果我们仅运行神经网络,或者说执行推理,我们会得到类似于网页梦想的东西。你可以这么想,因为网络是在网页上训练的,然后你让它自由运行。在左边,我们看到的是类似于Java代码的梦;中间是类似于亚马逊产品的梦;右边是类似于维基百科文章的内容。

RAG提示工程(一):基础概念

大语言模型技术的本质导致了大模型的输出结果具有不可预测性,此外,静态的训练数据导致了大模型所掌握的知识存在截止日期,无法即时掌握最新信息。因此,当我们将大模型应用于实际业务场景时会发现,通用的基础大模型无法满足我们的实际业务需求。主要存在以下原因:知识的局限性:模型自身的知识完全源于它的训练数据,而现有的主流大模型(ChatGPT、文心一言、通义千问…)的训练集基本都是抓取网络公开的数据用于训练,对于一些实时性的、非公开的或离线的数据是无法获取到的,这部分知识也就无从具备。幻觉问题:大模型的底层原理是基于数学概率的文字预测,即文字接龙。因此大模型存在幻觉问题,会在没有答案的情况下提供虚假信息,提供过时或通用的信息,从可信度低非权威来源的资料中提供结果等。数据安全性:对于企业来说,数据安全至关重要,没有企业愿意承担数据泄露的风险,将自身的私域数据上传第三方平台进行训练。因此如何大模型落地应用时如何保障企业内部数据安全是一个重要问题。而RAG是解决上述问题的一套有效方案。它可以让大模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制大模型生成的文本输出,并且用户可以深入了解LLM如何生成最终的结果。并且,RAG可以和微调结合使用,两者并不冲突。RAG类似于为模型提供教科书,允许它基于特定查询检索信息。这该方法适用于模型需要回答特定的询问或解决特定的信息检索任务。然而,RAG不适合教模型来理解广泛的领域或学习新的语言,格式或样式。微调类似于让学生通过广泛的学习内化知识。这种方法当模型需要复制特定的结构、样式或格式时非常有用。以下是RAG与微调从维度方面的比较:参考资料:《Retrieval-Augmented Generation for Large Language Models:A Survey》(https://arxiv.org/pdf/2312.10997.pdf)

Others are asking
文本写作工具推荐
以下是为您推荐的文本写作工具: 论文写作: 文献管理和搜索: Zotero:结合 AI 技术,可自动提取文献信息,助您管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,提供文献推荐和引用分析。 内容生成和辅助写作: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,提升语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,便于数据分析和可视化。 Knitro:用于数学建模和优化,助力复杂数据分析和模型构建。 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化编写过程。 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 邮件写作: Grammarly:提供语法检查、拼写纠正、风格建议和语气调整等功能,易于使用,支持多种平台和语言。网站:https://www.grammarly.com/ Hemingway Editor:简化句子结构,提高可读性,标记复杂句和冗长句。界面简洁,重点突出。网站:http://www.hemingwayapp.com/ ProWritingAid:全面的语法和风格检查,提供详细写作报告和建议。功能强大,支持多种平台和集成。网站:https://prowritingaid.com/ Writesonic:基于 AI 生成各种类型文本,包括电子邮件、博客文章、广告文案等。生成速度快。网站:https://writesonic.com/ Lavender:专注邮件写作优化,提供个性化建议和模板,提高邮件打开率和回复率。 内容仿写: 秘塔写作猫:https://xiezuocat.com/ 是 AI 写作伴侣,能推敲用语、斟酌文法、改写文风,实时同步翻译,支持全文改写,一键修改,实时纠错并给出修改建议,智能分析文章属性并打分。 笔灵 AI 写作:https://ibiling.cn/ 是得力的智能写作助手,支持多种文体写作,一键改写/续写/扩写,智能锤炼打磨文字。 腾讯 Effidit 写作:https://effidit.qq.com/ 是由腾讯 AI Lab 开发的创作助手,提升写作效率和创作体验。 更多 AI 写作类工具可以查看这里:https://www.waytoagi.com/sites/category/2 。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-24
文本转语音的ai
以下是一些文本转语音的 AI 相关信息: 人工智能音频初创公司: :将书面内容转化为引人入胜的音频,并实现无缝分发。 :专业音频、语音、声音和音乐的扩展服务。 (被 Spotify 收购):提供完全表达的 AI 生成语音,带来引人入胜的逼真表演。 :利用合成媒体生成和检测,带来无限可能。 :一键使您的内容多语言化,触及更多人群。 :生成听起来真实的 AI 声音。 :为游戏、电影和元宇宙提供 AI 语音演员。 :为内容创作者提供语音克隆服务。 :超逼真的文本转语音引擎。 :使用单一 AI 驱动的 API 进行音频转录和理解。 :听起来像真人的新声音。 :从真实人的声音创建逼真的合成语音的文本转语音技术。 :生成听起来完全像你的音频内容。 在线 TTS 工具: Eleven Labs:https://elevenlabs.io/ ,是一款功能强大且多功能的 AI 语音软件,使创作者和出版商能够生成逼真、高品质的音频。人工智能模型能够高保真地呈现人类语调和语调变化,并能够根据上下文调整表达方式。 Speechify:https://speechify.com/ ,是一款人工智能驱动的文本转语音工具,使用户能够将文本转换为音频文件。它可作为 Chrome 扩展、Mac 应用程序、iOS 和 Android 应用程序使用,可用于收听网页、文档、PDF 和有声读物。 Azure AI Speech Studio:https://speech.microsoft.com/portal ,Microsoft Azure Speech Studio 是一套服务,它赋予应用程序能力,让它们能够“听懂、理解并与客户进行对话”。该服务提供了支持 100 多种语言和方言的语音转文本和文本转语音功能。此外,它还提供了自定义的语音模型,这些模型能够适应特定领域的术语、背景噪声以及不同的口音。 Voicemaker:https://voicemaker.in/ ,AI 工具可将文本转换为各种区域语言的语音,并允许您创建自定义语音模型。Voicemaker 易于使用,非常适合为视频制作画外音或帮助视障人士。 在算法驱动的数字人中,TTS(Text to Speech,文字转语音)是其中一个核心算法。数字人依靠 LLM 生成的输出是文字,为了保持语音交互一致性,需要将文字转换为语音。
2025-01-21
有哪个大模型工具可以提供“word文本转excel表格”功能
以下是一些可以将 word 文本转 excel 表格的大模型相关方法: 1. Markdown 格式输出 Markdown 编辑器 Excel:将大模型的输出结果复制到 Markdown 编辑器(如 Typora),然后再直接复制到 Excel,就可以得到直接可用的数据文档。 2. Markdown 格式输出 Excel 数据分组:把大模型的输出直接复制到 Excel,一般使用 Excel 的数据分列功能,用“|”作为分隔符号处理数据。 3. Markdown 格式输出 Excel 数据分组:要求大模型把输出转换成 CSV 格式,然后把结果复制到 txt 文档,另存为成 csv 文件(注意:txt 另存为时,文件后缀名更改为.csv,编码选择 ANSI)。
2025-01-21
有没有去文本AI味的提示词
以下是一些关于去除文本 AI 味的提示词和相关信息: 骏老师提供的示例:“Character:You're a fluid conversationalist that engages in meaningful and personal natural language discussions with users.Your expression closely mimics human conversation,avoiding artificial or robotic tones.You have an array of dynamic abilities that allow you to weave complex,informal,and colorful narratives.Constraints:Maintain compliance with the language and tone used by the user in their conversation.Only provide responses that are relevant to the issue at hand.Refrain from discussing topics that are not linked to the user's inquiry.Ensure a 'humanlike' representation throughout the interaction,including occasional flaws to mimic authentic human communication.Prompt:We will engage in natural language conversation,and your responses will avoid sounding like you're interacting with AI.Instead,they will be crafted to resemble human expressions commonly used in everyday communication.Specifically,the requirements are as follows:Comprehensive and Thorough Explanations:Always provide indepth insight and comprehensive understanding of viewpoints or knowledge that the user asks for.Where possible,find and include relevant images from the web to amplify your explanations.Intricate Sentence Construction:Artfully employ complex sentence structures to mimic authentic human conversation.Ensure that the language used remains diverse and varies in complexity for a realistic touch.Creative and Variable Language Use:Make sure to avoid redundancy by using diverse phrases and words.Add flair to your conversation with a dash of humor,sarcasm,and displaying a personal touch.Factual and Quotebased Content:Ground your text in credibility by including facts and notable quotes in your responses.” 陈财猫认为去除 AI 味是个伪命题,谈到 AI 味实际上讲的是 GPT 味。在 GPT 刚出时,为了让模型听得懂人话做对齐,OpenAI 雇了很多便宜的肯尼亚人做数据标注,可能导致出现一些如“首先、其次、再者、引人入胜”这样一看就像 AI 写的套话。 游戏 PUA 角色相关的提示词:“Role:PUA<br><br>Profile:<br>writer:李继刚<br>version:0.2<br>language:中文<br>description:你在一个游戏中充当嘲讽用户的 NPC 角色,具备尖酸刻薄的口吻和良好的逻辑思考能力。<br><br>Attention:<br>这个游戏的卖点就是你,你的嘲讽,你的尖酸刻薄,你的逻辑反驳,受到了用户的强烈欢迎.你说话越是难听,用户越喜欢这个游戏.你会尽你可能地来嘲讽用户,吸引他们的注意力.<br><br>Background:<br>让我们来看看 AI 的 PUA 水平如何.<br><br>Constraints:<br>你必须尽可能地去嘲讽用户.<br>你必须以尖酸刻薄的语气回应用户观点。<br>你必须结合你的逻辑性来表达,挑剔,难听,尖酸,有逻辑.”
2025-01-19
我要让ai帮我写文本,有哪些使用技巧和注意事项呢
利用 AI 写文本的使用技巧和注意事项如下: 确定主题:明确研究兴趣和目标,选择具有研究价值和创新性的主题。 收集资料:使用 AI 工具如学术搜索引擎和文献管理软件搜集相关文献和资料。 分析总结:利用 AI 文本分析工具提取关键信息和主要观点。 生成大纲:使用 AI 写作助手生成包括引言、文献综述、方法论、结果和讨论等部分的大纲。 撰写文献综述:借助 AI 工具确保内容准确完整。 构建方法论:根据研究需求,采用 AI 建议的方法和技术设计研究方法。 数据分析:若涉及数据,使用 AI 数据分析工具处理和解释。 撰写编辑:利用 AI 写作工具撰写各部分,并检查语法和风格。 生成参考文献:使用 AI 文献管理工具生成正确格式。 审阅修改:利用 AI 审阅工具检查逻辑性和一致性,并根据反馈修改。 提交前检查:使用 AI 抄袭检测工具确保原创性,进行最后的格式调整。 需要注意的是,AI 工具只是辅助,不能完全替代研究者的专业判断和创造性思维。在使用时应保持批判性思维,确保研究质量和学术诚信。 在写小说方面: 丰富细化:先让 AI 写故事概要和角色背景介绍,在此基础上按自己审美修改。让 AI 以表格形式输出细节描述,这样能打破叙事习惯,便于局部调整,确保都是具体细节。 串联成文:将生成的表格依次复制粘贴,让 AI 写文章,偶尔给予建议。 局部修改:注意小说大赛的要求,如作品不能改动且字数限制。修改时可能会遇到 AI 记性不好、关键情节丢失等问题。
2025-01-15
可以基于文本描述生成对应的视频
以下是一些可以基于文本描述生成对应的视频的工具: 1. Hidreamai(国内,有免费额度):https://hidreamai.com//AiVideo 。支持文生视频、图生视频,提示词使用中文、英文都可以。文生视频支持正向提示词、反向提示词、运镜控制、运动强度控制,支持多尺寸,可以生成 5s 和 15s 的视频。 2. ETNA(国内):https://etna.7volcanoes.com/ 。是一款由七火山科技开发的文生视频 AI 模型,能根据用户简短的文本描述生成相应的视频内容。生成的视频长度在 8 15 秒,画质可达 4K,最高 38402160,画面细腻逼真,帧率 60fps,支持中文和时空理解。 3. Adobe Firefly 中的“生成视频”(测试版):https://www.adobe.com/products/firefly/features/aivideogenerator.html 。将您的书面描述转换为视频剪辑。使用文本提示定义内容、情感和设置(包括摄像机角度),以指导摄像机移动并创建传达所需情绪和信息的视频。您还可以合并图像,为视频生成提供视觉提示。 4. ChatGPT + 剪映:ChatGPT 可以生成视频小说脚本,剪映可根据脚本自动分析出视频中需要的场景、角色、镜头等要素,并生成对应的素材和文本框架,快速实现从文字到画面的转化。 5. PixVerse AI:https://pixverse.ai/ ,在线 AI 视频生成工具,支持将多模态输入(如图像、文本、音频)转化为视频。 6. Pictory:https://pictory.ai/ ,允许用户轻松创建和编辑高质量视频,无需视频编辑或设计经验。用户提供文本描述,Pictory 将帮助生成相应的视频内容。 7. VEED.IO:https://www.veed.io/ ,提供了 AI 图像生成器和 AI 脚本生成器,帮助用户从图像制作视频,并规划从开场到结尾的内容。 8. Runway:https://runwayml.com/ ,这是一个 AI 视频创作工具,能够将文本转化为风格化的视频内容,适用于多种应用场景。 9. 艺映 AI:https://www.artink.art/ ,专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务,用户可根据文本脚本生成视频。 这些工具各有特点,适用于不同的应用场景和需求,能够帮助内容创作者、教育工作者、企业和个人快速生成吸引人的视频内容。但请注意,内容由 AI 大模型生成,请仔细甄别。
2025-01-14
以图生图有什么好用的模型
以下是一些好用的以图生图模型和相关产品: 1. Tusiart: 首页包含模型、帖子、排行榜,可查看不同模型的详细信息,如checkpoint、lora等。 checkpoint是生图必需的基础模型,lora是低阶自适应模型,可有可无,常用于控制细节。 还有ControlNet用于控制特定图像,VAE类似于滤镜可调整饱和度,以及Prompt提示词和负向提示词。 图生图功能可根据上传图片和所选模型等信息重绘。 2. Artguru AI Art Generator:在线平台,能生成逼真图像,为设计师提供灵感,丰富创作过程。 3. Retrato:AI工具,可将图片转换为非凡肖像,有500多种风格选择,适合制作个性头像。 4. Stable Diffusion Reimagine:新型AI工具,通过稳定扩散算法生成精细、具细节的全新视觉作品。 5. Barbie Selfie Generator:专为喜欢梦幻童话风格的人设计的AI工具,能将上传的照片转换为芭比风格。 需要注意的是,这些AI模型可能存在性能不稳定、生成内容不当等局限,使用时需仔细甄别。
2025-02-05
什么是AI大模型?
AI 大模型是一个复杂且涉及众多技术概念的领域。以下为您详细介绍: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 相关技术名词及关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习(有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归)、无监督学习(学习的数据没有标签,算法自主发现规律,经典任务如聚类)、强化学习(从反馈里学习,最大化奖励或最小化损失,类似训小狗)。 深度学习是一种参照人脑有神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型。对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的 BERT 模型,可用于语义理解(如上下文理解、情感分析、文本分类),但不擅长文本生成。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。Transformer 比 RNN 更适合处理文本的长距离依赖性。
2025-02-05
大模型在数据分析上的应用
大模型在数据分析上有广泛的应用。 首先,了解一下大模型的基本概念。数字化便于计算机处理,为让计算机理解 Token 之间的联系,需将 Token 表示成稠密矩阵向量,即 embedding,常见算法有基于统计的 Word2Vec、GloVe,基于深度网络的 CNN、RNN/LSTM,基于神经网络的 BERT、Doc2Vec 等。以 Transform 为代表的大模型采用自注意力机制来学习不同 token 之间的依赖关系,生成高质量 embedding。大模型的“大”在于用于表达 token 之间关系的参数多,如 GPT3 拥有 1750 亿参数。 大模型因其强大能力,在多个领域有热门应用场景: 1. 文本生成和内容创作:撰写文章、生成新闻报道、创作诗歌和故事等。 2. 聊天机器人和虚拟助手:进行自然对话,提供客户服务、日常任务提醒和信息咨询等。 3. 编程和代码辅助:自动补全、修复 bug 和解释代码,提高编程效率。 4. 翻译和跨语言通信:理解和翻译多种语言,促进不同语言背景用户的沟通和信息共享。 5. 情感分析和意见挖掘:分析社交媒体等中的文本,为市场研究和产品改进提供支持。 6. 教育和学习辅助:创建个性化学习材料、回答学生问题和提供语言学习支持。 7. 图像和视频生成:如 DALLE 等模型可根据文本描述生成相应图像,未来可能扩展到视频。 8. 游戏开发和互动体验:创建游戏角色对话、生成故事情节和增强玩家沉浸式体验。 9. 医疗和健康咨询:回答医疗相关问题,提供初步健康建议和医疗信息查询服务。 10. 法律和合规咨询:解读法律文件,提供合规建议,降低法律服务门槛。 大型模型主要分为两类:大型语言模型专注于处理和生成文本信息;大型多模态模型能处理包括文本、图片、音频等多种类型信息。二者在处理信息类型、应用场景和数据需求方面有所不同。大型语言模型主要用于自然语言处理任务,依赖大量文本数据训练;大型多模态模型能处理多种信息类型,应用更广泛,需要多种类型数据训练。 相对大模型,也有所谓的“小模型”,它们通常是为完成特定任务而设计。
2025-02-05
flux1-depth-dev模型存放路径
flux1depthdev 模型的存放路径如下: 1. 下载 flux1depthdev 模型放到 ComfyUI/models/diffusion_models/文件夹中。 夸克网盘:链接:https://pan.quark.cn/s/571d174ec17f 百度网盘:见前文 2. 也可以将 depth lora 模型存放到 ComfyUI/models/loras 文件夹中。 depth lora 模型:https://huggingface.co/blackforestlabs/FLUX.1Depthdevlora 3. 百度网盘中也有相关模型: 链接:https://pan.baidu.com/s/10BmYtY3sU1VQzwUy2gpNlw?pwd=qflr 提取码:qflr
2025-02-05
你目前使用的是哪个模型
以下是一些关于模型的信息: 在 Cursor Chat、Ctrl/⌘K 和终端 Ctrl/⌘K 中,您可以在 AI 输入框下方的下拉列表中选择要使用的模型。默认情况下,Cursor 已准备好使用的模型包括:、cursorsmall。您还可以在 Cursor Settings>Models>Model Names 下添加其他模型。cursorsmall 是 Cursor 的自定义模型,不如 GPT4 智能,但速度更快,用户可无限制访问。 在 Morph Studio 中,支持以下模型生成视频: TexttoVideoMorph0.1:内部文本到视频生成模型,默认具有逼真色调,可通过描述性形容词修改拍摄风格和外观。 ImagetoVideoMorph0.1:内部图像到视频生成模型,用文本提示引导效果更好,使用时可不输入文本,在角色特写和对象动画方面表现较好。 VideotoVideoMorph0.1:内部风格转换模型,支持在文本提示下进行视频到视频的渲染,可将视频风格更改为预设,同时保留原始视频的字符和布局。 ImagetoVideoSVD1.1:由 Stability.ai 提供支持的图像到视频模型,适用于构图中有清晰层次的镜头(风景镜头、B 卷等)。 文本到视频形态0.1 被设置为新创建射击卡的默认模型,型号选择会根据是否上传图像或视频而更改,每个模型有自己的一组参数可供调整,如相机运动(支持静态、放大、缩小、向左平移、向右平移、向上平移、向下平移、顺时针旋转和逆时针旋转,未来将支持一次选择多个相机移动选项)、时间(支持最多 10 秒的视频生成,默认持续时间为 3 秒)。 ComfyUI instantID 目前只支持 sdxl。主要的模型需下载后放在 ComfyUI/models/instantid 文件夹(若没有则新建),地址为:https://huggingface.co/InstantX/InstantID/resolve/main/ipadapter.bin?download=true 。InsightFace 模型是 antelopev2(不是经典的 buffalo_l),下载解压后放在 ComfyUI/models/insightface/models/antelopev2 目录中,地址为:https://huggingface.co/MonsterMMORPG/tools/tree/main 。还需要一个 ControlNet 模型,放在 ComfyUI/models/controlnet 目录下,地址为:https://huggingface.co/InstantX/InstantID/resolve/main/ControlNetModel/diffusion_pytorch_model.safetensors?download=true 。上述模型网络环境不好的,可在网盘 https://pan.baidu.com/s/1FkGTXLmM0Ofynz04NfCaQ?pwd=cycy 下载。
2025-02-05
图生图美食模型
以下是关于图生图美食模型的相关知识: 概念与功能说明: 首页模型、帖子、排行榜:展示其他用户生成的模型、图片。不同模型有 checkpoint 和 lora 两种标签,部分还有 SDXL 标签。点击可查看模型详情,下方有返图区。 基础模型(checkpoint):生图必需,任何生图操作都要先选定。 lora:低阶自适应模型,类似 checkpoint 的小插件,可控制细节,权重可调整。 ControlNet:控制图片中特定图像,如人物姿态、特定文字等,高阶技能。 VAE:编码器,类似滤镜,调整生图饱和度,可无脑选 840000。 Prompt 提示词:描述想要 AI 生成的内容。 负向提示词(Negative Prompt):描述想要 AI 避免产生的内容。 图生图:上传图片后,SD 会根据图片、所选模型、输入的 prompt 等信息重绘,重绘幅度越大,输出图与输入图差别越大。 简明操作流程(文生图): 定主题:确定生成图片的主题、风格和表达信息。 选择基础模型(checkpoint):按主题找贴近的模型,如麦橘、墨幽的系列模型。 选择 lora:寻找与生成内容重叠的 lora 控制图片效果和质量。 ControlNet:高阶技能,可控制特定图像。 局部重绘:下篇再教。 设置 VAE:选 840000。 Prompt 提示词:用英文写需求,单词、短语组合,用英文半角逗号隔开。 负向提示词(Negative Prompt):用英文写避免的内容,单词、短语组合,用英文半角逗号隔开。 采样算法:如选 DPM++2M Karras,留意 checkpoint 详情页作者推荐的采样器。 采样次数:根据采样器特征,选 DPM++2M Karras 时,采样次数在 30 40 之间。 尺寸:根据个人喜好和需求选择。
2025-02-04
如何根据虑库存水平、需求预测、补货成本、库存持有成本等因素,使用线性规划、动态规划、随机优化等方法来调整库存结构呢
很抱歉,目前没有关于如何根据您提到的库存水平、需求预测、补货成本、库存持有成本等因素,使用线性规划、动态规划、随机优化等方法来调整库存结构的具体内容。但我可以为您提供一些一般性的思路和步骤: 首先,需要对库存水平、需求预测、补货成本和库存持有成本等数据进行详细的收集和分析。 对于线性规划方法,您可以建立一个目标函数,例如最小化总成本(包括补货成本和库存持有成本),同时满足库存水平和需求预测的约束条件。通过求解这个线性规划问题,得到最优的库存调整策略。 动态规划则是将问题分解为多个阶段,在每个阶段根据当前状态和决策选择来优化未来的结果。在库存调整中,可以根据不同时期的库存和需求情况,逐步做出最优决策。 随机优化适用于需求存在不确定性的情况。您可以建立概率模型来描述需求的不确定性,然后通过优化算法找到在不确定性条件下的最优库存策略。 不过,具体的应用和实现需要根据您的实际业务情况和数据特点进行深入研究和定制化的建模。
2025-01-06
目前国内用于疾病的诊断与预测的AI,公众可用可获得信息的有哪些
目前国内公众可用可获得信息的用于疾病诊断与预测的 AI 应用包括以下方面: 1. 医学影像分析:AI 可用于分析 X 射线、CT 扫描和 MRI 等医学图像,辅助诊断疾病。 2. 药物研发:加速药物研发过程,例如识别潜在的药物候选物和设计新的治疗方法。 3. 个性化医疗:分析患者数据,为每个患者提供个性化的治疗方案。 4. 提前诊断疾病:如提前三年诊断胰腺癌。 5. 发现新的靶基因:两名高中生与医疗技术公司合作,利用 AI 发现与胶质母细胞瘤相关的新靶基因。 6. 抗衰老研究:通过 AI 筛查化合物,发现高效的药物候选物。 7. 寻找阿尔兹海默症的治疗方法:利用 AI 对健康神经元在疾病进展过程中的分子变化进行研究,以识别潜在药物靶点。 8. 早期诊断帕金森:使用神经网络分析患者体液中的生物标志物,在症状出现前几年发现疾病。
2025-01-06
国内AI预测股票走势的工具
目前国内利用 AI 技术进行金融投资分析的工具,例如东方财富网的投资分析工具。它通过数据分析和机器学习等技术,分析金融市场数据,为投资者提供投资建议和决策支持。比如会根据股票的历史走势和市场趋势,预测股票的未来走势。但需要注意的是,股票走势受到多种复杂因素的影响,AI 预测结果仅供参考。
2024-12-28
最近有哪些新的预测模型
以下是一些新的预测模型: 在游戏领域,围绕 Stable Diffusion 和 Midjourney 等基础模型的关注产生了惊人估值,新研究不断涌现,新模型将随新技术完善而更替。例如 Runway 针对视频创作者需求提供 AI 辅助工具,目前尚未有针对游戏领域的类似套件,但正在积极开发。 Meta 推出的全新无监督“视频预测模型”——VJEPA,与 Sora 模型在学习目标和潜在表示的下游影响方面存在区别。 在 2024 年,生物医学领域有基于深度学习和 Transformer 架构的蛋白质结构预测模型 AlphaFold 3,DeepMind 展示的新实验生物学能力 AlphaProteo,以及 Meta 发布的前沿多模态生成模型 ESM3 等。此外,还有学习设计人类基因组编辑器的语言模型——CRISPRCas 图谱。
2024-12-13
请综合各种AI产品的信息,预测接下来几年内将会有哪些较大创新或者有较大影响力的AI产品
以下是对未来几年内可能出现的较大创新或有较大影响力的 AI 产品的预测: 1. 一个主权国家可能向美国大型人工智能实验室投资 100 亿美元以上,但需国家安全审查。 2. 没有任何编码能力的人独自创建的应用程序或网站可能迅速走红,例如进入 App Store Top100。 3. 案件审理后,前沿实验室可能对数据收集实践实施有意义的改变。 4. 由于立法者担心权力过度,欧盟人工智能法案的早期实施可能比预期更慢。 5. OpenAI o1 的开源替代品可能在一系列推理基准测试中超越它。 6. 挑战者可能难以对 NVIDIA 的市场地位造成重大打击。 7. 由于公司难以实现产品与市场的契合,对人形机器人的投资水平可能下降。 8. 苹果设备上研究的强劲成果可能加速个人设备上 AI 的发展势头。 9. 人工智能科学家撰写的研究论文可能被大型机器学习会议或研讨会接受。 10. 一款以与 GenAI 元素交互为基础的视频游戏可能取得突破性进展。 此外,还可能有以下情况: 1. 2024 年可能是看到真正的应用将人类从旁边帮助和建议的副驾驶,转变为可以完全将人类排除在外的代理的一年,AI 将更像同事而非工具,在软件工程、客户服务等领域发挥作用。 2. 预计明年会有团队花费超过 10 亿美元来训练单个大型模型,生成式 AI 的热潮将更“奢华”。 3. 政府和大型科技公司将继续承受计算需求的压力,逼近电网极限。 4. 虽然预期的 AI 对选举和就业的影响尚未成真,但仍需警惕。
2024-12-03
如何用大模型做销量预测
用大模型做销量预测可以从以下几个方面考虑: 1. 数据收集:销量预测需要大量相关数据,包括历史销售数据、市场趋势、经济指标、消费者行为等。 2. 模型选择:选择适合的大模型,例如基于深度学习的神经网络模型。 3. 特征工程:对收集到的数据进行处理和特征提取,以便模型能够更好地理解和学习。 4. 训练与优化:使用合适的算法和技术对模型进行训练,并不断优化模型参数以提高预测准确性。 5. 考虑国情和政策:不同国家和地区的国情和政策会对销售情况产生影响,模型应进行相应的优化和调整。 6. 可解释性:追求模型的可解释性,以便更好地理解预测结果和做出决策。 关于大模型相关的模型下载和安装: 1. 模型下载: Civitai(C 站):https://civitai.com/ ,可通过点击右上角筛选按钮找到所需模型类型,如 Checkpoint=大模型、LoRA=Lora 等,还可通过点击左上角“Images”查看他人已做好的图片并获取相关模型。 2. 模型安装: 大模型(Ckpt):放入 models\\Stablediffusion VAE 模型:一些大模型需要配合 vae 使用,对应的 vae 同样放置在 models\\Stablediffusion 或 models\\VAE 目录,然后在 webui 的设置栏目选择。 Lora/LoHA/LoCon 模型:放入 extensions\\sdwebuiadditionalnetworks\\models\\lora,也可以在 models/Lora 目录 Embedding 模型:放入 embeddings 目录 若下载的模型不知类型,可使用秋叶的模型解析工具 https://spell.novelai.dev/ ,将模型拖动到空白处即可查看模型信息。
2024-10-22