Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我拥有很多的行业资料,我想构建一个自己的知识库,然后通过向AI助手提问,帮我快速找到资料和解决方案,这个知识库应该怎么建立?按什么格式?

Answer

以下是建立自己的知识库的步骤和相关格式:

  1. 选择工具:以 Coze 为例,来到个人空间,找到知识库导航栏,点击创建知识库。
    • 需注意知识库是共享资源,多个 Bot 可以引用同一个知识库。
  2. 选择格式并填写信息:
    • 目前(2024.06.08)Coze 支持三种格式,分别是文档、表格(CSV、Excel 等)、图片(上传图片并填写图片文字说明)。
    • 格式并非关键,重要的是理解影响 RAG 输出质量的因素。
    • 例如可以选择本地文档(问答对可选择表格)。
    • 参考购买后新人常见问题汇总.txt
    • 选择自定义的文档切割,数据处理完成后,一个问答对会被切割成一个文档片。
  3. 使用知识库:关于使用知识库,可以查看教程大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库
Content generated by AI large model, please carefully verify (powered by aily)

References

这可能是讲 Coze 的知识库最通俗易懂的文章了

讲了一大堆,终于到了实战的环节了。这里我虽然使用Coze举例子,但是我希望可以帮助你举一反三,未来在接触到FastGPT、Dify等等AI Agent工具的时候都能快速的上手知识库组件。因为你了解了RAG的本质之后,无论什么知识库工具,本质都是一个皮而已!这些也是写这篇文章的目的:让你做到知其然,知其所以然[heading2]创建知识库[content]1.来到个人空间,找到知识库导航栏,点击创建知识库这里我想说明的是,知识库是共享资源,也就是你的多个Bot可以引用同一个知识库1.选择知识库的格式,填写一些信息目前(2024.06.08)Coze支持三种格式文档表格(CSV、Excel等)图片(其实就是上传一张图片,然后填写个图片文字说明)这里格式并不重要,重要的是你要看懂上个章节讲的:影响RAG输出质量的因素1.我这里选择本地文档(问答对可以选择表格)[购买后新人常见问题汇总.txt](https://bytedance.feishu.cn/space/api/box/stream/download/all/FNqobmfgBo5eGHxfZJ1cbOJ9n1H?allow_redirect=1)1.选择自定义的文档切割1.数据处理完成当数据处理完成后,你会发现,一个问答对被切割成一了一个文档片[heading2]使用知识库[content]关于使用知识库,大家可以看这篇教程:[大圣:胎教级教程:万字长文带你使用Coze打造企业级知识库](https://waytoagi.feishu.cn/wiki/CT3UwDM8OiVmOOkohPbcV3JCndb),这篇文章已经讲的很详细了,这里就不再赘述了

Others are asking
知识库框架
以下是关于知识库框架的相关内容: 智能体的目标和框架: 智能体的交互能力:包括大模型本身的交互能力、多 Agent 的灵活性、workflow 的妙用(如引导用户输入车辆信息便于大模型理解和分析)以及上下文说明。 智能体的知识体量:涵盖豆包大模型本身的行业数据和语料库、知识库(包括结构化数据与非结构化数据),以及创建知识库的步骤和参赛用知识库,还涉及大模型 RAG 检索、大模型的选择和参数设定以及新模型的调用方法。 智能体的记忆能力:包含变量、数据库和信息记录。 知识: 外置知识是由外部数据库提供,能动态更新和调整。涉及多种数据存储和组织方式,如向量数据库(常用于处理和索引非结构化数据)、关系型数据库(适用于事务性数据存储)、知识图谱(适合复杂语义分析和知识推理)。在实际应用中,外置知识的集成和管理常采用 RAG 架构,能结合检索和生成,增强模型生成能力,实时检索和整合最新外部信息。 陈财猫团队的提示词相关知识库文章索引:
2025-02-18
对作为知识库的数据进行预处理,用哪个软件比较哈
以下是一些可用于对作为知识库的数据进行预处理的软件和方法: 1. LangchainchatGLM:对于知识库内容的组织要求较高,无需微调训练,适合有结构、界限分明的数据。可使用langchain库比对字典的关键词keys部分,找到相似度最高的相关keys对应的内容文本,送进提示词模板(prompt_template),然后送到LLM进行后处理。 2. 在检索原理方面,可通过嵌入模型(如Word2Vec、GloVe、BERT)将问题文本转化为向量,用于后续检索。例如,在商业化问答场景中,会对接收的问题进行预处理和向量化。 3. 在创建知识库并上传表格数据时,可通过API获取在线API的JSON数据上传,或手动自定义创建数据表结构和数据。需注意指定语义匹配字段,在响应用户查询时,将用户查询内容与该字段内容进行比较,根据相似度进行匹配。
2025-02-17
我手里有一个文件知识库,想锻炼一个ai,按照这个文件知识库的习惯帮我改写新的文件
以下是为您整理的内容: 南瓜博士:平生第一次写小说获奖,是 AI 帮我的! 三、丰富细化 接下来要让 AI 一段一段进行细节描写。为确保文章前后一致,先让 AI 帮助写故事概要和角色背景介绍,并按自己的审美略做修改。使用了一个重要技巧,让 AI 以表格形式输出细节描述,这样有三个好处: 1. 打破 AI 原本的叙事习惯,避免出现陈词滥调。 2. 按编号做局部调整容易,指哪改哪,其他内容能稳定不变。 3. 确保内容都是具体细节,避免整段输出时因缩减而丢光细节只剩笼统介绍。 四、串联成文 把上一步生成的五个表格依次复制粘贴,AI 就照着写文章了,偶尔需要帮忙给点建议。 五、失败的局部修改 小说大赛要求最后的作品必须是 AI 直接吐出来的,不能有任何改动且不能超过 2000 字,而自己的小说 2300+字,只好让 GPT4 做修改,一开始它表现不错,但很快暴露出记性不好的缺点。还没来得及高兴,就发现它失忆得很彻底。眼看截止时间快到了,只能求助 Claude,把文章和 GPT 生成的修改意见都给它,让它生成作品,匆匆截图提交。没想到,Claude 把关键情节改没了,如马克偷偷看艾拉、无名猫受伤的原因等。 熊猫 Jay:AI 编程 Cursor 来了,你没理由说不会写代码了 四、初体验:Cursor 的安装和使用 三、新增/修改代码、文字 选中代码,使用 Command+K 打开窗口,并输入修改要求。不选中代码打开窗口,可要求 AI 实现新功能,比如让 AI 增加一个广告位。当然,除了代码,也可选中文字进行修改,如改写、翻译等。 四、自动补全代码、注释、文字 输入代码或注释,Cursor 会自动补全代码,按 Tab 生效。除补全代码外,还能补全文字,可尝试。 五、对话窗口 Mac 使用 Shift+Command+L 打开聊天窗口,输入优化页面的需求,AI 能提供不同方案。比如倾向于使用好看的配色方案,点击 Apply,再点击 Accept 生效。要记得保存文件,Mac 的快捷键是 Command+S。这不是成品,若要做完整功能,需不停和 Cursor 对话,在案例部分会介绍完整制作过程。 六、全局搜索 还可把它当作简易的 AI 搜索工具,让它根据现有文件夹下的内容回答问题,比如问到基于文件内容,温度值设置的误区在哪里,回答准确度很高,甚至能定位到具体文件的行。
2025-02-17
给我flux的提示词结构的知识库我以他作为知识库
以下是关于 Flux 提示词结构的相关知识: 大语言模型就像一个学过无数知识、拥有无穷智慧的人,但在工作场景中,需要通过提示词来设定其角色和专注的技能,使其成为满足需求的“员工”。知识库则相当于给“员工”发放的工作手册,提供特定的信息。 提示词可以设定 Bot 的身份及其目标和技能,例如产品问答助手、新闻播报员、翻译助理等,决定 Bot 与用户的互动方式。详情可参考。 学习提示词可以分为五个维度,从高到低依次是思维框架、方法论、语句、工具和场景。但舒适的学习顺序应反过来,先从场景切入,直接了解在不同场景下提示词的使用及效果对比;然后使用提示词工具,如 Meta Prompt、Al 角色定制等;接着学习有效的提示语句,包括经典论文中的相关语句;再学习有效的方法论,将有效语句及其背后的原理整合成稳定可控的方法;最后掌握思维框架。 此外,还可以通过插件、工作流、记忆库等功能定制 AI Bot。插件可通过 API 连接集成各种平台和服务扩展 Bot 能力,详情参考。
2025-02-16
知识库RAG方案
RAG(检索增强生成)是一种在 AI 领域中用于处理知识库的方案。 大模型的训练数据有截止日期,当需要依靠不包含在大模型训练集中的数据时,RAG 是主要方法之一。 RAG 的应用可以抽象为以下 5 个过程: 1. 文档加载:从多种不同来源加载文档,如 PDF 等非结构化数据、SQL 等结构化数据以及代码等。 2. 文本分割:把文档切分为指定大小的块,称为“文档块”或“文档片”。 3. 存储:包括将切分好的文档块进行嵌入转换成向量形式,并将向量数据存储到向量数据库。 4. 检索:通过某种检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示生成更合理的答案。 基于 Coze 的知识库问答是典型的 RAG 方案,其重要一环是文档切片。但 RAG 方案存在一些缺点,如跨分片总结和推理能力弱、文档有序性被打破、表格解析失败等。 相关的海外官方文档:https://www.coze.com/docs/zh_cn/knowledge.html ,国内官方文档:https://www.coze.cn/docs/guides/use_knowledge 。 在实际操作中,如使用外贸大师产品的帮助文档创建知识库时,要注意文档的分片策略会严重影响查询结果。
2025-02-16
你的知识库架构是怎样的,普通人如何迅速找到目标靶向,比如我想学ai绘画
以下是关于您想学习 AI 绘画的相关内容: 1. 知识库提到明天银海老师将详细讲解 AI agent,同时表示知识库内容丰富,您可挑选感兴趣的部分学习,比如较轻松的 AI 绘画等。 2. 强调 AI 绘画是视觉基础,还介绍了针对 AI 绘画学社做的关键词词库精选活动。 3. 讲述了 AI 绘画中的 stable diffusion 扩散模型的运作方式,是通过加噪和去噪,随机生成种子来形成最终图像,还提到生成式 AI 做高清放大可增加细节的原理。 您可以根据以上信息,逐步深入了解 AI 绘画的相关知识。
2025-02-15
我想创业,花多少钱,能够搭建一个视频领域的AI模型
在视频领域搭建 AI 模型的成本因多种因素而异。对于创业者或小公司来说,这个领域存在一定的挑战。 腾讯的混元 AI 视频模型目前只支持文生视频,且已开源免费。 在模型供应商方面,不同供应商的特点和成本有所不同: 智谱 GLM4V 是通用视觉类大模型,为拍立得最早使用的模型,接口响应速度快,指令灵活性差一些,调用成本为 0.05 元/千 tokens。 阿里云百炼 qwenvlplus 也是通用视觉类大模型,是拍立得目前使用的模型,指令灵活性比较丰富,接口调用入门流程长一些,密钥安全性更高,调用成本为 0.008 元/千 tokens,训练成本为 0.03 元/千 tokens。 阶跃星辰是通用视觉类大模型,响应速度快,支持视频理解,输入成本为 0.005 0.015 元/千 tokens,输出成本为 0.02 0.07 元/千 tokens。 百度 PaddlePaddle 是 OCR 垂直小模型,文本识别能力补齐增强,私有化部署有服务费,API 调用在 0.05 0.1 元/次。 此外,获取高质量数据的难度较高,大厂在该领域的护城河深厚。大公司在争取大模型 API 客户方面更具优势,且开源大模型的发展可能会影响创业公司的业务。去年为大客户定制一个大模型的最高订单额可达 1000 万元,而今年则快速降到了百万元级别乃至更低。
2025-02-18
英文文章重点总结的AI
以下是为您总结的相关英文文章重点: 1. 每周一更新的 AIGC 领域内容,包括谷歌开源的新语言模型 Gemma 2B 和 Gemma 7B,采用与 Gemini 相同技术且质量更高;Stability AI 发布的新图像生成模型 Stable Diffusion 3,可生成图像和视频;Groq 公司利用新型硬件实现语言模型每秒 500 个 Token 的高速输出,速度比顶级运营商快 18 倍;还介绍了新的 AI 产品如视频风格转换平台 GoEnhance、将 Figma 设计转为 React 组件的插件、用于项目管理的工具 Kraftful 等,以及精选的几篇英文文章,如优化 Stable Diffusion XL 的方法、构建语言模型 Tokenizer 的教程、新模型 Sora 和 LAVE 等的应用。 2. 常见的文章润色 AI 工具包括:Wordvice AI 集校对、改写转述和翻译等功能于一体,基于大型语言模型提供全面的英文论文润色服务;ChatGPT 由 OpenAI 开发,可用于多方面写作辅助;Quillbot 是人工智能文本摘要和改写工具;HyperWrite 是基于 AI 的写作助手和大纲生成器;Wordtune 是 AI 驱动的文本改写和润色工具;Smodin 提供 AI 驱动的论文撰写功能。这些工具涵盖了文章润色的各个环节,科研人员和学生可根据自身需求选择。 3. 除聊天内容外,可让 AI 总结整理各种文章(不超过 2 万字),如复制文章给 GPTs 总结。对于 B 站有字幕的视频,可通过安装油猴脚本获取字幕,将字幕文字内容复制给 GPTs 进行总结,总结完还可继续提问或探讨。
2025-02-18
AI 绘画提示词
以下是一些 AI 绘画常用的提示词: 画面构图方面: 人物拍摄:Chest Shot、headshot 爆头。 视角:Wideangle view 广角镜头、CloseUp的横截面图、cinematic shot 电影镜头。 相机相关:canon 5d,1fujifilm xt100,Sony alpha 相机型号焦段光圈。 其他:scenery shot 风景照、bokeh 背景虚化、foreground 前景、background 背景、Detail Shot。 画面氛围和情绪方面:moody 暗黑的、happy 鲜艳的,浅色的、dark 黑暗的、epic detail 超细节的、Brutal 残酷的,破碎的、dramatic contrast 强烈对比的、hopeful 充满希望的、anxious 焦虑的、depressed 沮丧、elated 高兴地、upset 难过的、fearful 令人恐惧的、hateful 令人憎恨的、happy 高兴、excited 兴奋、angry 生气、afraid 害怕。
2025-02-18
有必要考取有关AI的证书吗
考取有关 AI 的证书是否有必要,取决于个人的具体情况和目标。以下为您提供一些参考: 从经验来看,像 MQ 老师这样的知乎 AI 讲师,考取了国家工信部、微软、讯飞三个初级人工智能工程师证书。如果您在教育行业工作,拥有相关证书可能会有一定的帮助。 对于新手学习 AI,如果您希望通过在线教育平台(如 Coursera、edX、Udacity)上的课程系统学习,这些课程可能会提供获得证书的机会,这有助于证明您的学习成果。 然而,证书并不是衡量您在 AI 领域能力的唯一标准。更重要的是您对 AI 知识的掌握和实践能力。建议您: 了解 AI 基本概念,熟悉术语和基础概念,包括主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 选择感兴趣的模块深入学习,比如图像、音乐、视频等,并掌握提示词的技巧。 进行实践和尝试,使用各种产品做出作品。 体验 AI 产品,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 总之,是否考取证书要综合考虑您的职业规划、学习需求和个人兴趣等因素。
2025-02-18
小白怎样学习ai工具 熟练运用于工作生活
以下是为小白提供的学习 AI 工具并运用于工作生活的建议: 一、从菜鸟到达人的进阶之路 可以参考元子的进化史: 1. Day 1:懵懵懂懂,只会说“你好,帮我写个报告”。 2. Day 7:学会表达,比如“帮我写一份周报,重点说明项目进度”。 3. Day 14:熟练掌握,例如“我需要一份项目总结,包含数据分析和改进建议”。 4. Day 30:把常规 AI 工具都试过一遍,并选定自己要持续玩的方向,比如 AI Agent。 5. Day 60:组队参加 AI Agent 比赛并有幸得奖。 这里推荐一个社区小伙伴的 100 天 AI 之路,每天都有记载,大家可以感受一下进境: 元子的心得: 1. 不要怕问“笨”问题,但要多直接问 AI。 2. 解决一个小问题也是进步,不积跬步,无以至千里。 3. 多试多练才是王道,来社区共学,一群人走得更远。 4. 融入生活和工作才能持久,学完就用才是王道,不要纯靠意志力。 二、工作中的 AI 小帮手 1. 需要快速生成报告,AI 来帮忙。 2. 需要快速整理数据,AI 来处理。 3. 需要快速翻译文件,AI 来翻译。 4. 需要快速优化文案,AI 来优化。 三、参与制作 AI 动画短片的经验分享 在参与设计 AI 动画短片时,比如负责“刺猬菠萝”角色的图片和视频制作,即使没有相关经验,在他人指导下也能逐渐掌握基本技巧,并通过 MJ 和 RunWayAI 工具提高效率。 为了做好这件事,可以: 1. 利用 WaytoAGI 社群中的入门资料,快速了解动画制作的基本流程和技术。 2. 积极参与团队讨论,向有经验的大佬请教,多多参与「共创活动」,不仅能快速学习,还能收获伙伴。 四、AI 与生活 对于超出自己理解范围的事情,最简单的方法就是试一试。学习新东西,百闻不如一练。在面向父母的“AI 布道”活动中会发现,AI 工具虽强大,但与普通人之间存在一定距离。AI 是未来必然的方向,其科普还有很长的路要走,但尽可能简单地试用它,能让普通人更快受益。 如果想要跟元子交朋友、一起在 AI 路上探寻,欢迎戳这里:
2025-02-18
飞书ai的提示词
以下是关于飞书 AI 提示词的相关内容: 提示词模板和资源: Majinai: 词图: Black Lily: Danbooru 标签超市: 魔咒百科词典: AI 词汇加速器: NovelAI 魔导书: 鳖哲法典: Danbooru tag: AIBooru: 在星流一站式 AI 设计工具中的提示词: 提示词用于描绘您想生成的画面。 输入语言方面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),支持中英文输入。 提示词优化方面,启用提示词优化后,可帮助扩展提示词,更生动地描述画面内容。 写好提示词的要点包括:内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,如一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量;调整负面提示词,点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可帮助 AI 理解不想生成的内容;利用“加权重”功能,让 AI 明白重点内容,可在功能框增加提示词,并进行加权重调节,权重数值越大越优先。此外,还有预设词组供小白用户选择,以及辅助功能,如翻译功能可一键将提示词翻译成英文,删除所有提示词可清空提示词框,会员加速可提升图像生图速度。 在 AI 商用级问答场景中的提示词: 提示词是告诉全知全能的大语言模型,它是一个什么样的角色、要专注于哪些技能,使其能够按照您的想法变成所需的“员工”。例如设定角色为“美嘉”,按照其人设、背景和对话风格做设定。
2025-02-18
deepseek相关的资料
以下是关于 DeepSeek 的相关资料: 集合·DeepSeek 提示词方法论:https://waytoagi.feishu.cn/wiki/ISVZwe05Tio9hEkFSF5cIjZ7nVf?from=from_copylink DeepSeek 从入门到精通.pdf:https://waytoagi.feishu.cn/wiki/EfWpw8arIiEoOKkjSalcMVZZnme?from=from_copylink DeepSeek 13 大官方提示词通俗解读,让新手也能用出高手的效果:https://waytoagi.feishu.cn/wiki/YIGKwXlgUi8RKlkkklxclpDYnbg?from=from_copylink 【今晚 8 点】聊聊你怎么使用 DeepSeek!2025 年 2 月 6 日:https://waytoagi.feishu.cn/wiki/MKfgwiN2FigRp1knbxJcdj4lnAf?from=from_copylink Deepseek"4+1"黄金提问法——情境化:https://waytoagi.feishu.cn/wiki/JZu4wrdsSi9gNSktaPCcgDNNnvf?from=from_copylink Deepseek"4+1"黄金提问法——迭代优化:https://waytoagi.feishu.cn/wiki/R56OwQb4KiP9klk5CPbcR49yn9f?from=from_copylink 如果您的 DeepSeek 一直显示服务器繁忙,可尝试以下替代搜索: 秘塔搜索:https://metaso.cn 360 纳米 Al 搜索:https://www.n.cn/ 硅基流动:https://siliconflow.cn/zhcn/ 字节跳动火山擎:https://console.partner.volcengine.com/auth/login?redirectURI=%2Fpartner%2F5. 百度云千帆:https://login.bce.baidu.com/ 英伟达:https://build.nvidia.com/deepseekai/deepseekr1 Groq:https://groq.com/ Chutes:https://chutes.ai/app 阿里云百炼:https://api.together.ai/playground/chat/deepseekai/DeepSeekR1 Github:https://github.com/marketplace/models/azuremldeepseek/DeepSeekR1/playground POE:https://poe.com/DeepSeekR1 Cursor:https://cursor.sh/ Monica:https://monica.im/invitation?c=ACZ7WJJ9 Lambda:https://lambdalabscom/6 Cerebras:https://cerebras.ai Perplexity:https://www.perplexity.ai 阿里云百炼:https://api.together.ai/playground/chat/deepseekai/DeepSeekR1 【今晚 8 点】聊聊你怎么使用 DeepSeek!2025 年 2 月 6 日的智能纪要: DP 模型的使用分享: 功能:能进行自然语言理解与分析、编程、绘图,如 SVG、MA Max 图表、react 图表等。 使用优势:可以用更少的词让模型做更多事,思维发散,能给出创意思路和高级内容。 存在问题:思维链长不易控制,可能输出看不懂或胡编乱造的内容,增加纠错成本。 审核方法:可以用其他大模型来解读 DP 模型给出的内容。 使用建议:使用时要有自己的思维雏形,多看思考过程,避免被模型冲刷原有认知。 使用场景:包括阅读、育儿、写作、随意交流等方面。 案例展示:通过与孩子共读时制作可视化互动游戏,以及左脚踩右脚式的模型交互来展示 DP 模型的应用。 音系学和与大模型互动的分享: 音系学研究:对音系学感兴趣,通过对比不同模型的回答来深入理解,如 bug 和 DIFF SIG,探讨语言概念在音系学下的心理印象等。 大模型取队名:与大模型进行多轮对话来取队名,通过不断约束和披露喜好,最终得到满意的队名及相关内容。 Deepseek 的介绍与活动预告: Deepseek 文档分享:在 3 群和 4 群分享了 Deepseek 的相关文档,也可在 v to a gi 的飞书知识库中搜索获取。 Deepseek 使用介绍:介绍了 Deepseek 的模型、收录内容、提示词使用技巧和好玩的案例等。 未来活动预告:明天后天在摩纳社区提供免费算力资源带大家学习炼丹,周一晚上学习多维表格中接入 Deepseek。
2025-02-14
需要一些ai入门科普资料
以下是为您提供的 AI 入门科普资料: 一、技术原理相关 1. RAG(检索增强生成):外部知识库切分成段落后转成向量,存在向量数据库。用户提问并查找到向量数据库后,段落信息会和原本的问题一块传给 AI,可搭建企业知识库和个人知识库。 2. PAL(程序辅助语言模型):2022 年一篇论文中提出,对于语言模型的计算问题,不让 AI 直接生成计算结果,而是借助 Python 解释器等工具作为计算工具。 3. ReAct:2022 年一篇《React:在语言模型中协同推理与行动》的论文提出了 ReAct 框架,即 reason 与 action 结合,让模型动态推理并采取行动与外界环境互动,比如用搜索引擎对关键字进行搜索,观察行动得到的结果,可借助 LangChain 等框架简化构建流程。 二、关于未来的想象 1. Transformer 是仿生算法的阶段性实现,10 年、20 年后可能不再使用。 2. 在端到端算法的时代,不应继续使用冯诺依曼架构。 3. 在存算一体(在存储单元里做计算)的芯片之上,一定会诞生全新的算法。 个人总结:很多大佬认为要关注或直接阅读技术论文,比如产品经理转型 AI 产品经理需要懂技术脉络。但小白直接看技术论文有难度,虽可让 AI 辅助阅读,仍需一定知识储备。林粒粒呀的相关视频是很好的科普入门。 此外,安克创新的 CEO 阳萌的一些观点也很有启发,比如之前对安克创新的印象是卖充电宝和安防设备,但看了访谈后会被其认知震撼。
2025-02-12
deepseek 小说的资料在哪一页
以下是关于 DeepSeek 小说的相关资料所在位置: 此外,还有以下智能纪要中的相关内容: ,包括旧模型文学创作弊端与 Deepseek 使用建议等章节。 ,围绕如何用 deepseek 写小说展开。 ,介绍 Deepseek R1 大模型的特点与创作表现。 ,讲解 Deepseek re 提示词写法及相关理论探讨。 ,围绕 Deepseek REE 提示词展开讨论。 ,探讨 AI 辅助下的小说创作及对好文字、文学创作方式。
2025-02-11
deepseek资料
以下是关于 DeepSeek 的相关资料: 2025 年 2 月 6 日的智能纪要中,DP 模型能进行自然语言理解与分析、编程、绘图(如 SVG、MA Max 图表、react 图表等),使用优势是可以用更少的词让模型做更多事,思维发散,能给出创意思路和高级内容,但存在思维链长不易控制,可能输出看不懂或胡编乱造的内容,增加纠错成本。审核方法可以用其他大模型来解读其给出的内容。使用时要有自己的思维雏形,多看思考过程,避免被模型冲刷原有认知。使用场景包括阅读、育儿、写作、随意交流等方面,还有案例展示,如通过与孩子共读时制作可视化互动游戏,以及左脚踩右脚式的模型交互。此外,还分享了音系学和与大模型互动的内容,如通过对比不同模型的回答来深入理解音系学,与大模型进行多轮对话来取队名。 1 月 27 日的宝玉日报中,包括拾象关于 DeepSeek r1 闭门学习讨论,讨论了其在全球 AI 社区的意义,如技术突破与资源分配策略,突出了长上下文能力、量化商业模式及对 AI 生态系统的影响,分析了创新路径及中国在 AI 追赶中的潜力与挑战。还有转自 Archerman Capital 关于 DeepSeek 的研究和思考,深入解析其在架构和工程上的创新,如 MoE、MLA、MTP 和 FP8 混合精度训练,强调不是简单模仿,对开源与闭源竞争进行了反思,并指出 AI 生态未来发展方向。 集合·DeepSeek 提示词方法论中,提供了一些相关文章和链接,如南瓜博士的相关文章,以及 DeepSeek 官方提示词和最新文章观点学术报告及业界评论的链接。同时还有 R1 模型的一些使用建议。 DeepSeek 的相关文档在 3 群和 4 群有分享,也可在 v to a gi 的飞书知识库中搜索获取。未来活动预告包括明天后天在摩纳社区提供免费算力资源带大家学习炼丹,周一晚上学习多维表格中接入 DeepSeek。
2025-02-08
deepseek学习资料
以下是关于 DeepSeek 的学习资料: 2025 年 2 月 6 日的智能纪要中,分享了 DP 模型的使用,其功能包括自然语言理解与分析、编程、绘图等。使用优势是能用更少的词让模型做更多事,思维发散,能给出创意思路和高级内容,但存在思维链长不易控制,可能输出看不懂或胡编乱造的内容,增加纠错成本的问题。审核方法可以用其他大模型来解读其给出的内容。使用时要有自己的思维雏形,多看思考过程,避免被模型冲刷原有认知。使用场景包括阅读、育儿、写作、随意交流等方面,还有案例展示,如与孩子共读时制作可视化互动游戏,以及左脚踩右脚式的模型交互。此外,还分享了音系学和与大模型互动的内容,如通过对比不同模型的回答来深入理解音系学,与大模型进行多轮对话来取队名。DeepSeek 的相关文档在 3 群和 4 群有分享,也可在 v to a gi 的飞书知识库中搜索获取,介绍了 DeepSeek 的模型、收录内容、提示词使用技巧和好玩的案例等,未来活动预告有明天后天在摩纳社区提供免费算力资源带大家学习炼丹,周一晚上学习多维表格中接入 DeepSeek。 1 月 27 日的宝玉日报中,包括拾象关于 DeepSeek r1 闭门学习讨论,讨论了其在全球 AI 社区的意义,如技术突破与资源分配策略,突出了长上下文能力、量化商业模式及对 AI 生态系统的影响,分析了创新路径及中国在 AI 追赶中的潜力与挑战。还有转关于 DeepSeek 的研究和思考,深入解析其在架构和工程上的创新,如 MoE、MLA、MTP 和 FP8 混合精度训练,强调不是简单模仿,对开源与闭源竞争进行了反思,并指出 AI 生态未来发展方向。 非技术人角度的研究总结,主要围绕天才养成记、“填鸭”之困、自学成才、纯强化学习等话题,力求帮助非技术读者深度理解 Deepseek R1,更好开展工作与生活。
2025-02-07
帮我收集deepseek的使用资料
以下是关于 DeepSeek 的使用资料: 相关文章: 南瓜博士的《当你惊呼 DeepSeek 成精时,请警惕前方的陷阱》,链接:https://mp.weixin.qq.com/s/ppt89GozeYo7hR99pEFrkA 南瓜博士的《让 DeepSeek 成为全家人的脑洞外挂》,链接:https://mp.weixin.qq.com/s/BBh8GTrdhb8Qyqgz8SufwQ 奥的《让 DeepSeek 进行脱口秀创作,幽默程度虽然大幅提升,但仍有进步空间》,链接:https://mp.weixin.qq.com/s/3nZERD5H5wPCGCT1_A46Sw DeepSeek 最新文章观点学术报告及业界评论:https://waytoagi.feishu.cn/wiki/D9McwUWtQiFh9sksz4ccmn4Dneg 社区动态: 华尔街分析师对 DeepSeek 的反应:DeepSeek 以小成本实现媲美领先 AI 产品的性能,并在全球主要市场 App Store 登顶。高盛认为 DeepSeek 或改变科技格局,降低 AI 行业的进入门槛。详情:https://www.xiaohu.ai/c/xiaohuai/deepseek DeepSeek 的实际使用体验:中文场景表现优秀,日常写作和表达习惯贴近人类,但专业论文总结略弱。数学能力不错,编程能力逊于 GPT。采用 GRPO 算法替代传统 PPO,提升语言评价灵活性与训练速度。更多信息:https://x.com/imxiaohu/status/1883843200756170873 ,GRPO 详情:https://www.xiaohu.ai/c/ai/grpodeepseekr18c6cff0cdeb84937a4197066af987e43 工具使用: 网址:https://www.deepseek.com/zh ,新手推荐,国内能访问,网页登录方便,目前完全免费。使用时点击开始对话,左边选择代码助手。 在生成 2048 游戏上,DeepSeek 和晓颖 AI 助手更为简便准确。
2025-02-05
TTS的最佳解决方案
以下是关于 TTS 的一些最佳解决方案: 在线 TTS 工具推荐: Eleven Labs:https://elevenlabs.io/ ,是一款功能强大且多功能的 AI 语音软件,能高保真地呈现人类语调和语调变化,并能根据上下文调整表达方式。 Speechify:https://speechify.com/ ,是一款人工智能驱动的文本转语音工具,可作为多种平台的应用使用,用于收听网页、文档、PDF 和有声读物。 Azure AI Speech Studio:https://speech.microsoft.com/portal ,提供了支持 100 多种语言和方言的语音转文本和文本转语音功能,还提供了自定义的语音模型。 Voicemaker:https://voicemaker.in/ ,可将文本转换为各种区域语言的语音,并允许创建自定义语音模型。 TTS 音库制作和文本前端: 录音文本收集:在一个语种的语音合成建设之初,可同步收集该语种对应的大文本。录音文本的选择一般遵循以下原则: 音素覆盖:构建基础的文本前端,确保录音文本的音素或音素组合尽可能覆盖全。 场景定制:根据通用或特定场景需求,确保相关内容有所覆盖,并与需求方紧密沟通。 文本正确性:确保录音文本拼写无误,内容正确。 照片数字人工作流及语音合成(TTS)API 出门问问 Mobvoi: 接口请求域名:https://open.mobvoi.com/api/tts/v1 。 接口请求频率限制:5 次/秒。 可以将任意文本转化为语音,应用场景广泛,提供多种方言、发音人和风格,实时合成支持 SSML。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-07
在中国国内,AI编程最好的解决方案
在中国国内,以下是一些关于 AI 编程的较好解决方案: 1. 字节发布的全新 AI IDE:Trae。它具有免费无限量使用 Claude 的特点,但目前存在一些小问题,如无法及时调整 Prompt 模块等,不过随着产品的快速迭代有望得到修复。其官网为:https://www.trae.ai/ 。 2. MCP 理念:工具应适应 AI 的认知方式,让 AI 理解要做的事,然后自主寻找合适的工具和方法,而非按固定步骤执行。 3. 中国的一些模型在 LMSYS 排行榜上表现优异,如 DeepSeek、零一万物、知谱 AI 和阿里巴巴开发的模型,在数学和编程方面有出色表现。中国模型更注重计算效率,以弥补 GPU 访问限制,并有效利用资源。例如 DeepSeek 在推理过程中通过多头隐式注意力减少内存需求,改进 MoE 架构;零一万物更关注数据集建设。
2025-01-22
大模型应用解决方案
以下是关于大模型应用解决方案的相关内容: 零跑汽车基于百炼实现大模型落地零跑座舱 客户介绍:零跑汽车成立于 2015 年 12 月 24 日,是一家创新型的智能电动汽车品牌,拥有智能电动汽车完整自主研发能力,2023 年已位列新能源品牌销量前三。从 2017 年起,零跑汽车便与阿里云展开深度合作。近日,零跑汽车已对 OTA 功能完成大规模升级,携手阿里云首次在座舱场景中增加“语音大模型”功能,用于聊天、基础知识问答、文生图等场景,提升用户驾驶体验。 阿里云的解决方案: 接入通义大模型实现开放式语音交互:改变了传统的固定形式的问答模式,支持用户与零跑智能座舱进行开放式语音交互(闲聊场景),进行自然、连贯的多轮对话,可秒级响应,同时结合企业知识库和互联网知识库,满足用户多元化的需求。 基于语音调用通义万相实现秒级作图:零跑采用语音助手调用云端通义系列大模型,帮助用户通用语音调用通义万相实现文生图换壁纸,实现秒级作图,提升娱乐互动;支持语音查找如何使用汽车功能、规划路径等功能,丰富用户操作体验;知识库内容覆盖了零跑全系汽车知识和其他汽车品牌开放领域的信息。 基于百炼构建大模型应用架构:基于百炼平台,零跑汽车构建了开放、可扩展的大模型应用架构,基于统一的大模型底座,实现了零跑座舱大模型应用场景的快速扩展与迭代,降低大模型应用的创新门槛与成本。 RAG 提示工程(一):基础概念 大语言模型应用于实际业务场景存在的问题: 知识的局限性:模型自身的知识完全源于训练数据,对于实时性、非公开或离线的数据无法获取。 幻觉问题:大模型基于数学概率的文字预测,存在提供虚假、过时或通用信息等问题。 数据安全性:企业担心数据泄露,不愿将私域数据上传第三方平台训练。 RAG 的优势:可以让大模型从权威、预先确定的知识来源中检索、组织相关信息,更好地控制生成的文本输出,用户可深入了解 LLM 生成结果的过程。并且,RAG 可以和微调结合使用,两者并不冲突。 七大行业的商业化应用 企业解决大模型落地难问题: 算力方面:国产芯片在软件适配度、稳定性方面不足,与英伟达显卡解耦能力弱。可以从协同化、模型小型化、再训练、融合计算四方面来解决算力矛盾问题。 价格方面:训练成本高、数据筛选难度大,千亿参数模型报价高昂,让很多客户望而却步。垂直大模型的数据生成规模小、场景易用、Chat 思维能力高。
2025-01-12
怎样利用自己现有的培训文档,制作一个AI agent可以担任系统分析员的工作,从文档中抽丝剥茧找出系统问题的根本原因和解决方案?
目前没有相关的培训文档内容可参考。但一般来说,要利用现有的培训文档制作一个能担任系统分析员工作的 AI agent 并从文档中找出系统问题的根本原因和解决方案,您可以考虑以下步骤: 1. 对培训文档进行详细的梳理和分类,提取关键信息,例如系统常见问题的特征、根本原因的类型以及可能的解决方案模式。 2. 利用自然语言处理技术,对提取的信息进行标注和训练,使 AI agent 能够理解和识别这些模式。 3. 设计有效的交互方式,让用户能够向 AI agent 清晰地描述系统问题,以便它能够准确地匹配和应用所学知识。 4. 不断测试和优化 AI agent 的性能,根据实际应用中的反馈,调整训练数据和算法,提高其准确性和实用性。
2025-01-10
人工智能在中小学教育中的解决方案
以下是人工智能在中小学教育中的一些解决方案: 课程内容设计: 对于三年级的孩子,在讲解“什么是 AI”时,先与学生互动,倾听他们对 AI 的理解,再用学生能理解的语言引出概念,比如“简单地说,就是让计算机或机器能像我们人类一样思考和学习的技术”,旨在激发学生的兴趣和好奇心。 设计 Q&A 环节,例如: 询问学生最喜欢哪一个 AI 应用及原因。 探讨 AI 能不能替代人类的艺术家或者作家,引导学生思考人类创造力与机器效率之间的关系。 想象是否想要一个 AI 机器人朋友及希望它帮忙做什么,讨论友谊的意义和 AI 能否模拟人类情感互动。 假设 AI 可以帮忙完成家庭作业,希望它完成哪部分及原因,同时讨论依赖技术的潜在风险。 个性化学习计划: AI 可以大规模部署个性化的学习计划,为每个学生提供一个“口袋里的老师”,理解他们独特的需求,并回答问题或测试技能。例如,有像 Speak、Quazel 和 Lingostar 这样的应用已经在做实时交流并给予发音或措辞反馈的语言教学。 学科学习辅助: 有像 Photomath 和 Mathly 这样的应用指导学生解决数学问题。 PeopleAI 和 Historical Figures 通过模拟与杰出人物的聊天来教授历史。 作业辅助: 像 Grammarly、Orchard 和 Lex 这样的工具帮助学生克服写作难题,提升写作水平。处理其他形式内容的产品如 Tome 和 Beautiful.ai 协助创建演示文稿。 您可以通过了解更多相关内容。
2024-12-30
我想做图片相似度比对,是否有解决方案
以下是关于图片相似度比对的一些解决方案: 在 Stable Diffusion 中,可以使用【X/Y/Z plot】脚本来做参数对比。将 X 轴设置为提示词相关性,取值范围是 1 30(每次增加 5);Y 轴设置为重绘幅度,取值范围是 0 1(每次增加 0.2)。通过生成多张图片进行对比,发现提示词相关性在 6 11 中间为最佳,重绘幅度的大小可控制生成图与原图的相似度,如 0.4 时与原图较接近。还可以利用绘图功能进行局部修改,如增加红色眼镜、去掉衣服图案、更换人物头部等。 对于 MJ 绘图,加上简单的相机参数和写实风格,使用 MJ v 6.0 绘图,可根据需求调整图片比例。 图片裁剪可使用 PS 等工具,选择能完整分割所需部分的图片。 使用 InsightFaceSwap 处理图片时,输入“/saveid”上传原图,换脸操作输入“/swapid”,选择效果较好的图片,但注意插件每日免费使用次数。 最后利用 PS 把处理好的图片拼接回来。
2024-12-25