Navigate to WaytoAGI Wiki →
Home/question.detail.breadcrumb.questionList/question.detail.breadcrumb.questionDetail

我拥有很多的行业资料,我想构建一个自己的知识库,然后通过向AI助手提问,帮我快速找到资料和解决方案,这个知识库应该怎么建立?按什么格式?

Answer

以下是建立自己的知识库的步骤和相关格式:

  1. 选择工具:以 Coze 为例,来到个人空间,找到知识库导航栏,点击创建知识库。
    • 需注意知识库是共享资源,多个 Bot 可以引用同一个知识库。
  2. 选择格式并填写信息:
    • 目前(2024.06.08)Coze 支持三种格式,分别是文档、表格(CSV、Excel 等)、图片(上传图片并填写图片文字说明)。
    • 格式并非关键,重要的是理解影响 RAG 输出质量的因素。
    • 例如可以选择本地文档(问答对可选择表格)。
    • 参考购买后新人常见问题汇总.txt
    • 选择自定义的文档切割,数据处理完成后,一个问答对会被切割成一个文档片。
  3. 使用知识库:关于使用知识库,可以查看教程大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库
Content generated by AI large model, please carefully verify (powered by aily)

References

这可能是讲 Coze 的知识库最通俗易懂的文章了

讲了一大堆,终于到了实战的环节了。这里我虽然使用Coze举例子,但是我希望可以帮助你举一反三,未来在接触到FastGPT、Dify等等AI Agent工具的时候都能快速的上手知识库组件。因为你了解了RAG的本质之后,无论什么知识库工具,本质都是一个皮而已!这些也是写这篇文章的目的:让你做到知其然,知其所以然[heading2]创建知识库[content]1.来到个人空间,找到知识库导航栏,点击创建知识库这里我想说明的是,知识库是共享资源,也就是你的多个Bot可以引用同一个知识库1.选择知识库的格式,填写一些信息目前(2024.06.08)Coze支持三种格式文档表格(CSV、Excel等)图片(其实就是上传一张图片,然后填写个图片文字说明)这里格式并不重要,重要的是你要看懂上个章节讲的:影响RAG输出质量的因素1.我这里选择本地文档(问答对可以选择表格)[购买后新人常见问题汇总.txt](https://bytedance.feishu.cn/space/api/box/stream/download/all/FNqobmfgBo5eGHxfZJ1cbOJ9n1H?allow_redirect=1)1.选择自定义的文档切割1.数据处理完成当数据处理完成后,你会发现,一个问答对被切割成一了一个文档片[heading2]使用知识库[content]关于使用知识库,大家可以看这篇教程:[大圣:胎教级教程:万字长文带你使用Coze打造企业级知识库](https://waytoagi.feishu.cn/wiki/CT3UwDM8OiVmOOkohPbcV3JCndb),这篇文章已经讲的很详细了,这里就不再赘述了

Others are asking
想制作个人的知识库国内有什么好的AI工具么
以下是一些国内可用于制作个人知识库的 AI 工具: 1. Kimi 智能助手:是 ChatGPT 的国产平替,上手体验好,适合新手入门学习和体验 AI。不用科学上网、不用付费、支持实时联网,是国内最早支持 20 万字无损上下文的 AI,对长文理解表现出色,能一次搜索几十个数据来源,无广告,能定向指定搜索源(如小红书、学术搜索)。PC 端可通过下载。 2. 飞书:汇集了各类 AI 优质知识库、AI 工具使用实践,助力人人成为效率高手。可通过下载。 此外,学习使用国内大语言模型工具可以从提示词开始。一些国产大模型如智谱和文心可以实现文生图的功能。
2024-12-24
想建立个人知识库使用什么AI工具更好一些
以下是为您推荐的用于建立个人知识库的 AI 工具: 1. AnythingLLM:包含所有 Open WebUI 的能力,额外支持选择文本嵌入模型、选择向量数据库。安装地址:https://useanything.com/download 。安装完成后需进行配置,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。在使用时,可创建独有的 Workspace 与其他项目数据隔离,包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式会综合训练数据和上传文档给出答案,Query 模式仅依靠文档数据给出答案),配置完成后即可进行对话测试。 2. LlamaIndex:是更高一层 LangChain 的抽象,简化了 LangChain 对文本分割、查询的接口,提供了更丰富的 Data Connector。只针对 GPT Model 做 Index,参考 https://gptindex.readthedocs.io/en/latest/ 。 3. ExoBrain 的集成软件 Maimo.ai:作为外脑的主要记忆空间,能捕获多种数字内容并随时随地访问,可挂接和导入外部记忆,能快速理解捕获内容、灵活创作笔记、生成创作建议,可与外脑知识库对话并自动做外部检索完善答案。今年十一月将开放第一个体验版,关注获取最新信息。
2024-12-24
如何构建自己的知识库和数据集
构建自己的知识库和数据集可以参考以下几种方法: 使用 Dify 构建知识库的具体步骤: 1. 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式。对数据进行清洗、分段等预处理,确保数据质量。 2. 创建数据集:在 Dify 中创建一个新的数据集,并将准备好的文档上传至该数据集。为数据集编写良好的描述,描述清楚数据集包含的内容和特点。 3. 配置索引方式:Dify 提供了三种索引方式供选择,包括高质量模式、经济模式和 Q&A 分段模式。根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。 4. 集成至应用:将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用。在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。 5. 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。定期更新知识库,增加新的内容以保持知识库的时效性。 创建并使用知识库(上传表格数据): 1. API 方式: 获取在线 API 的 JSON 数据,将 JSON 数据上传至知识库。 在表格格式页签下,选择 API,然后单击下一步。 单击新增 API。 输入网址 URL 并选择数据的更新频率,然后单击下一步。 输入单元名称或使用自动添加的名称,然后单击下一步。 配置数据表信息后,单击下一步。 确认表结构:系统已默认获取了表头的列名,您可以自定义修改列名,或删除某一列名。 指定语义匹配字段:选择哪个字段作为搜索匹配的语义字段。在响应用户查询时,会将用户查询内容与该字段内容的内容进行比较,根据相似度进行匹配。 查看表结构和数据,确认无误后单击下一步。 完成上传后,单击确定。 2. 自定义方式: 在表格格式页面下,选择自定义,然后单击下一步。 输入单元名称。 在表结构区域添加字段,单击增加字段添加多个字段。 设置列名,并选择指定列字段作为搜索匹配的语义字段。在响应用户查询时,会将用户查询内容与该字段内容的内容进行比较,根据相似度进行匹配。 单击确定。 单击创建分段,然后在弹出的页面输入字段值,然后单击保存。 从零开始,用 GPT 打造个人知识库: 要搭建基于 GPT API 的定制化知识库,涉及到给 GPT 输入(投喂)定制化的知识。但 GPT3.5(当前免费版的 ChatGPT)一次交互(输入和输出)只支持最高 4096 个 Token,约等于 3000 个单词或 2300 个汉字。这点容量对于绝大多数领域知识根本不够。为了使用 GPT 的语言能力来处理大量的领域知识,OpenAI 提供了 embedding API 解决方案。embeddings 是一个浮点数字的向量(列表),两个向量之间的距离衡量它们的关联性。小距离表示高关联度,大距离表示低关联度。向量是数学中表示大小和方向的一个量,通常用一串数字表示。在计算机科学和数据科学中,向量通常用列表(list)来表示。向量之间的距离是一种度量两个向量相似性的方法,最常见的是欧几里得距离。在 OpenAI 词嵌入中,靠近向量的词语在语义上相似。文档上给了创建 embeddings 的示例,上面的命令访问 embeddings API 接口,将 input 语句,转化成下面这一串浮点数字。
2024-12-23
在WAY TO AGI 知识库有没有适合老师备课用的AI?请推荐
以下是为老师备课推荐的一些 AI 相关内容: B 站 up 主 Nally 的课程,免费且每节 15 分钟,内容很棒。 14、15 号左右白马老师和麦菊老师将带大家用 AI 做生图、毛毡字、光影字、机甲字等。 16 号晚上中老师将带大家动手操作炼丹,炼丹可能需要准备一些图,后续会让中老师提前发布内容方便大家准备。 工程生产有很多可控性,AI 视频相关内容丰富,文档会列出工具优劣及操作。很多工具每天有免费积分,共学课程基本不用花钱。每周有 AI 视频挑战赛。 有 AI 音乐的流派和 prompt 电子书,格林同学做了翻译。 此外,还有以下相关信息: 高效 PB 及相关案例:高效 PB 投入力度大,有厉害的伙伴,案例在社区,有多种 battle 方式,会有菩萨老师专门介绍。 11 月 2 号左右将开展博物馆奇妙日主题活动,在各地博物馆进行新创意。 关于 AI 知识库及学习路径的介绍,包括时代杂志评选的领军人物、AI 相关名词解释、知识库的信息来源、社区共创项目、学习路径、经典必读文章、初学者入门推荐、历史脉络类资料等。
2024-12-20
我想用coze搭建一个智能体,关于自然语言课程的期末复习指南,要将我的教材导入扣子作为知识库,智能体支持用户提问,搜索知识点,结合知识库和互联网搜索的内容给出问答,需要使用多智能体或工作流,使用卡片功能进行显示,请给出我搭建这个智能体的步骤
以下是使用 Coze 搭建一个关于自然语言课程期末复习指南智能体的步骤: 1. 访问 Coze 官网(https://www.coze.cn),注册并登录。 2. 点击页面左上角的⊕,通过【标准创建】填入智能体的基本信息。 3. 了解 Bot 开发调试界面: 人设与回复逻辑(左侧区域):设定智能体的对话风格、专业领域定位,配置回复的逻辑规则和限制条件,调整回复的语气和专业程度。 功能模块(中间区域): 技能配置: 插件:扩展智能体的专业能力,如计算器、日历等工具。 工作流:设置固定的处理流程和业务逻辑。 图像流:处理和生成图像的相关功能。 触发器:设置自动化响应条件。 知识库管理: 文本:存储文字类知识材料。 表格:结构化数据的存储和调用。 照片:图像素材库。 记忆系统: 变量:存储对话过程中的临时信息。 数据库:管理持久化的结构化数据。 长期记忆:保存重要的历史对话信息。 文件盒子:管理各类文档资料。 交互优化(底部区域): 开场白:设置初次对话的问候语。 用户问题建议:配置智能推荐的后续问题。 快捷指令:设置常用功能的快速访问。 背景图片:自定义对话界面的视觉效果。 预览与调试(右侧区域):实时测试智能体的各项功能,调试响应效果,优化交互体验。 4. 设定智能体的人设与回复逻辑后,为智能体配置对应的技能,以保证其可以按照预期完成目标任务。例如,以获取 AI 新闻的智能体为例,需要为它添加一个搜索新闻的接口来获取相关新闻。具体操作如下: 在智能体编排页面的技能区域,单击插件功能对应的+图标。 在添加插件页面,选择相关功能,然后单击新增。 修改人设与回复逻辑,指示智能体使用相应插件来搜索所需内容。 (可选)为智能体添加开场白,让用户更好地了解智能体的功能。开场白功能目前支持豆包、微信公众号(服务号)。 5. 配置好智能体后,在预览与调试区域中测试智能体是否符合预期。可单击清除图标清除对话记录。 6. 完成测试后,将智能体发布到社交渠道中使用。具体操作如下: 在智能体的编排页面右上角,单击发布。 在发布页面输入发布记录,并勾选发布渠道。 单击发布。 更多内容,请访问 Coze 官方文档: 英文版:https://www.coze.com/docs/welcome.html 中文版:https://www.coze.cn/docs/guides/welcome
2024-12-20
怎么构建个人本地知识库
构建个人本地知识库可以按照以下步骤进行: 1. 了解 RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。 大模型训练数据有截止日期,RAG 可解决依靠不在训练集中的数据的问题。 RAG 应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载可从多种来源加载,如 PDF 等非结构化数据、SQL 等结构化数据和代码等。 文本分割将文档切分为指定大小的块。 存储涉及将文档块嵌入转换为向量形式并存储到向量数据库。 检索通过算法找到与输入问题相似的嵌入片。 输出是将问题和检索出的嵌入片提交给 LLM 生成答案。 文本加载器将用户提供的文本加载到内存以便后续处理。 2. 准备软件: 需要一个额外的软件 AnythingLLM,它包含所有 Open WebUI 的能力,并额外支持选择文本嵌入模型和向量数据库。 3. 安装和配置: 安装地址:https://useanything.com/download 。 安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 4. 构建本地知识库: 在 AnythingLLM 中创建自己独有的 Workspace 与其他项目数据隔离。 首先创建一个工作空间。 上传文档并在工作空间中进行文本嵌入。 选择对话模式,AnythingLLM 提供 Chat 模式(大模型根据训练数据和上传文档综合给出答案)和 Query 模式(大模型仅依靠文档中的数据给出答案)。 完成配置后进行测试对话。 本文的思路来源于视频号博主黄益贺,作者按照其视频进行了实操并附加了一些关于 RAG 的额外知识。
2024-12-19
AI提示词的意思是指训练自己的AI智能体吗
AI 提示词并非仅仅指训练自己的 AI 智能体。 智能体大多建立在大模型之上,其发展从基于符号推理的专家系统逐步演进而来。基于大模型的智能体具有强大的学习能力、灵活性和泛化能力。智能体的核心在于有效控制和利用大型模型以达到设定目标,这通常涉及精确的提示词设计,提示词的设计直接影响智能体的表现和输出结果。 设计提示词本质上是对模型进行“编程”,通常通过提供指令或示例完成。与多数其他 NLP 服务不同,补全和聊天补全几乎可用于任何任务,包括内容或代码生成、摘要、扩展、对话、创意写作、风格转换等。 我们的模型通过将文本分解为标记来理解和处理文本,在给定的 API 请求中处理的标记数量取决于输入和输出长度。对于英文文本,1 个标记大约相当于 4 个字符或 0.75 个单词,文本提示词和生成的补全合起来不能超过模型的最大上下文长度。
2024-12-25
最好用的会计AI
以下是关于会计 AI 的相关信息: 生成式 AI 在金融服务领域,包括会计方面,具有多方面的应用和优势: 1. 预测方面:能够帮助编写 Excel、SQL 和 BI 工具中的公式和查询,实现分析自动化,发现模式,从更广泛、更复杂的数据集中为预测建议输入,并适应模型为公司决策提供依据。 2. 报告方面:可以自动创建文本、图表、图形等内容,并根据不同示例调整报告,无需手动整合数据和分析到外部和内部报告中。 3. 会计和税务方面:能够帮助综合、总结,并就税法和潜在的扣除项提出可能的答案。 4. 采购和应付账款方面:能够帮助自动生成和调整合同、采购订单和发票以及提醒。 金融服务公司利用历史金融数据微调大型语言模型或从零开始训练模型,能够迅速回答几乎任何金融问题。金融服务行业准备使用生成式人工智能实现个性化的消费者体验、成本效益高的运营、更好的合规性、改进的风险管理以及动态的预测和报告这五个目标。 目前没有专门针对“最好用的会计 AI”的明确推荐,但您可以参考以上生成式 AI 在金融和会计领域的应用特点,结合自身需求进行选择。同时,营销领域有一些常用的 AI 工具,如 Synthesia、HeyGen、Jasper AI、Copy.ai、Writesonic 等,更多相关产品可查看 WaytoAGI 网站:https://www.waytoagi.com/sites?tag=8 。但请注意内容由 AI 大模型生成,请仔细甄别。
2024-12-25
可以对数据进行分析,生成报表的AI工具或网站
以下是一些可以对数据进行分析并生成报表的 AI 工具或网站: 1. 在金融服务领域,生成式 AI 能够帮助金融服务团队从更多数据源获取数据,并自动化突出趋势、生成预测和报告的过程。例如,它可以帮助编写 Excel、SQL 和 BI 工具中的公式和查询以实现分析自动化,自动创建文本、图表、图形等报告内容,还能在会计和税务、采购和应付账款等方面提供帮助。 2. 对于撰写专业区域经济报告,可利用 AI 搜索与权威网站结合获取关键数据,将报告内容拆分处理,借助传统工具如 Excel 结合 AI 指导操作数据筛选与图表生成,利用 AI 辅助分析后撰写报告初稿,但最终内容需人工主导校验。 3. 一些具体的工具和网站包括: PandasAI:将 Pandas DataFrame 转换为“聊天机器人”,用户可以以自然语言提问,它会以自然语言、表格或图表形式回答,目前仅支持 GPT 模型,需自备 OpenAI API key。网址:https://github.com/gventuri/pandasai DataSquirrel:自动进行数据清理并可视化执行过程,帮助用户在无需公式、宏或代码的情况下快速将原始数据转化为可使用的分析/报告,平台符合 GDPR/PDPA 标准。网址:https://datasquirrel.ai/
2024-12-25
如何做面向高中生,专注于AI应用的培养项目
以下是一些面向高中生专注于 AI 应用的培养项目的建议: 1. 课程开发:包括 K12、本科和社区学院的人工智能相关领域的课程开发,以及技术伦理方面的课程开发。 2. 支持非正式教育活动:为 K12 学生提供参与人工智能系统的非正式教育活动支持。 3. 实现教育公平:努力为传统上在人工智能领域代表性不足的人群和地理区域提供公平的 K12 人工智能教育。 4. 教师培训:为 K12 教师提供人工智能及相关领域的培训和专业发展项目。 5. 提高研究人员留存率:努力提高专注于人工智能系统的研究人员在高等院校和其他非营利研究机构的留存率。 6. 公众教育:开展普及人工智能用途及其社会影响的宣传项目。 7. 评估活动:对开展的相关活动进行评估。 在教学中,要注意以下几点: 1. 对于写作等方面,如果让学生使用 AI,要先让他们了解什么是好的写作,找到自己的创造性声音。 2. 决定使用 AI 时,要根据学习任务来考虑,以学习目标驱动 AI 的使用,而非相反。 3. 例如在编程教学中,可能先让学生手动编码,掌握语言后再将 AI 生成的代码作为节省时间的工具;而在健康课程中,重点可能在于帮助学生设计健康活动,对使用生成式 AI 编写代码的限制可能不同。
2024-12-25
最好的制作ppt的ai是谁?
目前在制作 PPT 方面表现出色的 AI 工具包括以下几种: 1. GPT4:可以帮助生成 PPT 大纲,但生成符合要求的大纲可能较为耗时。 2. WPS AI:能够基于大纲快速生成 PPT,还可以进行二次修改,如修改主题配色和字体等。 3. Gamma:免费版本就能生成质量较高的 PPT,在内容组织、设计美观度和整体专业感方面表现卓越。 您可以根据自己的需求和使用习惯选择适合的工具来制作 PPT。
2024-12-25
“GPT-4o”是什么软件,可以给ai生图提示词
GPT4o 是 OpenAI 新推出的产品。 其具有以下特点和功能: 1. 协作写作与编程新体验:提供写作方面的建议编辑、调整文章长度和阅读级别、添加表情符号、语法润色等功能;在编程方面,让用户轻松跟踪代码修改,支持代码审查、错误修复、添加注释、以及多语言代码移植。 2. ChatGPT Plus 和 Team 用户可立即使用,企业和教育版用户下周开放,计划后续向免费用户推出。 3. 在一些测试中展现出不同的能力,如文本理解能力更强、一次性出 10 个分镜速度极快等,但也存在一些不足,例如中文画图能力有限、某些任务的实际效果不太理想等。 关于 GPT4o 的提示词优化技巧: 1. 在 Playground 的 API 策略中,通过在输入前加上“Task,Goal,or Current Prompt:\\n”来避免误解为指令。 2. 翻译 GPT 案例中,在翻译提示词前加上“Now please translate the content below:”来避免混淆。 相关资源: 1. 相关博客汇总了提示词优化的完整策略,帮助避免指令与输入内容的冲突。 2. 相关测试链接: 。
2024-12-25
ai如何变革文化传媒游戏行业的生产关系与生产资料
AI 正在对文化传媒游戏行业的生产关系和生产资料带来多方面的变革: 1. 生成式 AI 为游戏创建 2D 艺术、纹理、3D 模型,并协助关卡设计,在营销中也有望取代部分传统内容。其应用已拓展至网页、室内和景观设计等领域,只要涉及创造性内容生成,AI 都可能成为流程的一部分甚至颠覆整个流程。 2. 游戏行业中,学会有效使用生成式 AI 将成为一项有市场价值的技能。懂得与 AI 工具最有效、最协同地合作的艺术家会变得稀缺,使用生成式 AI 进行生产艺术作品面临连贯性和风格统一等挑战。 3. 降低门槛将导致更大的冒险和创造性的探索,进入游戏开发的新“黄金时代”,更低的准入门槛将促使更具创新性和创造性的游戏大量涌现。 4. AI 辅助“微型游戏工作室”的崛起,配备生成式 AI 工具和服务,由 1 或 2 名员工组成的“微型工作室”能生产更多具有商业可行性的游戏。 5. 在 AIGC 的新世界,游戏开发变得更简单,互联网浪潮推动游戏产业分工成熟,门槛降低,GPT 等技术使编程等基础工作被替代,内容生产效率提高,想象力和热情成为新的杠杆力。
2024-12-19
我完全没有AI基础,请帮我推荐一些资料学习
以下是为完全没有 AI 基础的您推荐的学习资料: 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅:在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有可能获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。同时,建议您一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 如果希望继续精进,对于 AI,可以尝试了解以下内容作为基础: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
2024-12-19
最新ai资料网站在哪
以下是为您推荐的一些获取最新 AI 资料的网站: 原文地址:https://a16z.com/2023/05/25/aicanon/ ,其中包含对现代 AI 的精选资源列表。 GitHub 合集:https://github.com/bleedline/aimoneyhunter ,汇总了 AI 创业或副业的相关资料。 此外,您还可以通过以下途径获取最新 AI 资料: 订阅赛博蝉星公众号、国外优质博主的 blog 或 Twitter 等,获取最新信息。 关注 Xiaohu.AI 日报,例如:https://x.com/xiaohuggg/status/ ,其中包含多方面的 AI 最新动态。 希望这些信息对您有所帮助。
2024-12-18
我需要一个工具 让我能够把看到的资料汇总到里面,慢慢的他就成为了我的一个智能助理,但凡我阅读过的东西,只要我能想到一点点相关内容,都能通过这个工具在里面找到汇总答案,同时还能链接到原来的文章或知识点,有这样的AI工具么
以下是为您整理的相关信息: 目前有一些工具和方法可以满足您的需求。例如: 1. 在“让机器理解世界/GPT 时代人类再腾飞·译者序”中提到,人类要学会深刻理解 AI 系统的工作方式与它的边界,AI 可以作为伙伴帮助我们充分发挥潜力。 2. 7 月 16 日 Jimmy Wong &吕立青的相关内容中,提到可以通过输入端输入不同模态的内容,包括音频、文本、视频等并消化,在输出端借助自己的知识或让 AI 助理基于收藏或保存的知识点来完成某些事情,如写文章、输出代码等。 3. 在“VIRTUAL”中,提到可以用 AI 搜索引擎如 felo.ai/search 搜索并归纳内容,用 AI 可视化工具 napkin.ai 转成图示。还提到可以像编程一样预先写好咒语(prompts),将日常工作中固定输入输出的部分写成“智能体”并不断迭代优化。很多 AI 网站都可以创建“智能体”,您可以手搓各种机器人为您工作,如出试题、找资料、画插图、专业翻译等,还能设置“常用语”“小助手”“bot”,如 Kimi.ai 。 综合来看,目前有多种方式和工具可以帮助您实现将资料汇总并成为智能助理的需求。
2024-12-14
ai是如何把·各种资料整理成合乎情理的文章的
AI 把各种资料整理成合乎情理的文章通常可以通过以下步骤: 1. 收集相关资料:可以借助如 Perplexity.AI 等工具,利用其强大的搜索功能获取信息。启用 Pro 功能能获得更专业和深入的搜索结果,还可通过输入具体的 Prompt 来定位相关资讯。同时,微软的 Bing 搜索引擎等具备联网搜索功能的工具也能帮助快速搜集大量资料。 2. 整理资料:通常会使用月之暗面开发的 Kimi 这个 AI 会话助手。Kimi 具备读取网页内容并生成一定内容的能力,但有阅读能力的限制,可能无法一次性处理大量资讯或读取某些网站内容,可分批次提供资料以确保其有效读取和理解。 3. 处理文档和数据:对于处理文本特别是 PDF,Claude 2 表现出色。可以将整本书粘贴到 Claude 的前一版本中取得不错的结果,新模型更强大。还可要求其总结复杂的学术文章,并通过询问后续问题来审问材料,但需注意这些系统仍可能产生幻觉,要检查结果以确保准确性。 4. 转化成文章:在完成资料整理和处理后,让 AI 将其转化成一篇吸引人的文章。
2024-12-10
给ai喂资料
以下是关于给 AI 喂资料的相关内容: 在 AI 发展过程中,给 AI 提供合适的数据资料至关重要。 回顾 2015 年,当时的 AI 系统较为狭窄和专门化,每次开发新应用都需训练全新模型,且过程艰难。2017 年,《Attention is All You Need》论文介绍的 Transformer 架构改变了格局,其能处理未标记和混乱数据,效率更高。OpenAI 的伊利亚认识到 Transformer 潜力,推动基于此架构的实验,特别是在自然语言处理领域,开发了 GPT 系列模型,收集了海量文本数据,如格雷格所说“给 AI 喂食整个互联网”。 在学习笔记“AI for everyone 吴恩达”中提到,AI 分为 ANI 和 AGI,ANI 有较大发展,AGI 进展不大。ANI 只能做一件事,如智能音箱等应用。机器学习中的监督学习从输入到输出。数据是数据集的集合,可通过手动标注、观察行为、网络下载获取。使用数据时可展示或喂给 AI 团队,数据不一定多就有用,需处理不正确和缺少的数据,同时分为结构化和非结构化数据,机器处理非结构化数据更难。 在“AGI 万字长文(下)| 2024,分叉与洪流”中,提到服务 AI 的商业模式确定性可能更高。合成数据可喂给 AI 模型提高效果,“大量的质量一般的数据”用于模型初始训练,“质量很高数量较少有行业特性”的数据用于模型后期精调。做数据的传统核心竞争力在于获取独特数据和低成本清洗标注,新兴的是 AI 合成数据。此外,新的数据种类如 3D 空间和物理规则相关的传感器数据也值得思考。同时,模型市场/平台中,HuggingFace 提供模型市场服务,在 AI Agent 出现时模型互相调用可能会用到其服务和规则,但也存在闭源寡头的风险。
2024-12-05
我想做图片相似度比对,是否有解决方案
以下是关于图片相似度比对的一些解决方案: 在 Stable Diffusion 中,可以使用【X/Y/Z plot】脚本来做参数对比。将 X 轴设置为提示词相关性,取值范围是 1 30(每次增加 5);Y 轴设置为重绘幅度,取值范围是 0 1(每次增加 0.2)。通过生成多张图片进行对比,发现提示词相关性在 6 11 中间为最佳,重绘幅度的大小可控制生成图与原图的相似度,如 0.4 时与原图较接近。还可以利用绘图功能进行局部修改,如增加红色眼镜、去掉衣服图案、更换人物头部等。 对于 MJ 绘图,加上简单的相机参数和写实风格,使用 MJ v 6.0 绘图,可根据需求调整图片比例。 图片裁剪可使用 PS 等工具,选择能完整分割所需部分的图片。 使用 InsightFaceSwap 处理图片时,输入“/saveid”上传原图,换脸操作输入“/swapid”,选择效果较好的图片,但注意插件每日免费使用次数。 最后利用 PS 把处理好的图片拼接回来。
2024-12-25
AI应用解决方案
以下是为您提供的 AI 应用解决方案: AI 应用主要涉及以下几个方面: 1. 辅助创作与学习: AI 智能写作助手,如 Grammarly、秘塔写作猫,利用自然语言处理技术辅助用户进行高质量写作,可检查语法、拼写错误并提供改进建议,进行智能润色和内容创作辅助。 语言学习助手、诗歌创作助手、书法字体生成器、漫画生成器等为用户的学习和创作提供支持。 2. 推荐与规划: AI 图像识别商品推荐,如淘宝拍照搜商品,通过图像识别和机器学习为用户推荐相似商品。 美食推荐平台,如大众点评智能推荐,基于用户口味偏好推荐美食。 旅游行程规划器、时尚穿搭建议平台、智能投资顾问等,根据用户的需求和偏好为其推荐合适的产品、服务或制定个性化的计划。 3. 监控与预警: AI 宠物健康监测设备、家居安全监控系统、天气预报预警系统、医疗诊断辅助系统等,实时监测各种情况并提供预警。 4. 优化与管理: 办公自动化工具、物流路径优化工具、家居清洁机器人调度系统、金融风险评估工具等,利用数据分析和机器学习提高工作效率和管理水平。 5. 销售与交易: AI 艺术作品生成器、书法作品销售平台、摄影作品销售平台、汽车销售平台、房地产交易平台等,为各类产品和服务提供销售渠道。 此外,还有以下具体的 AI 应用: 1 20 中的部分应用: 小爱同学、Siri 等 AI 语音助手定制开发,通过语音识别和自然语言理解技术,为不同需求定制专属语音助手,可控制智能家居、回答问题等。 Keep 智能训练计划,利用数据分析和机器学习技术,根据用户数据制定个性化健身方案。 81 100 中的部分应用: AI 菜谱口味调整工具,如下厨房口味调整功能,通过自然语言处理和数据分析,根据用户反馈调整菜谱口味。 AI 语言学习纠错平台,如英语流利说纠错功能,利用自然语言处理和机器学习技术,帮助语言学习者纠正错误。 总之,这些 AI 应用为创业者提供了丰富的选择和广阔的发展前景,创业者可以根据自己的兴趣、技能和市场需求,选择适合自己的项目进行创业。
2024-12-21
有做企业工作助手智能体的解决方案吗?结合企业内部数据+外部市场环境,做企业工作助手和客服助手
以下是关于企业工作助手智能体的一些解决方案: 职业规划导师(校招版): 职业趋势分析:基于最新市场数据和行业报告,协助分析自身专业或职业的前景,了解未来职业趋势。 技能评估与提升:通过测评工具评估当前职业兴趣,提供针对性学习资源和课程建议,提升专业技能。 职业匹配与推荐:根据兴趣、技能和职业目标,推荐适合的职业路径和职位,提供个性化职业建议。 职业发展规划:结合个人情况和市场需求,制定详细的短、中、长期职业发展计划,帮助在 AI 时代找到职业定位。 智能客服助手搭建思路: 利用企业已有的知识积累,结合大模型的能力,为用户提供准确简洁的答案。 创建企业私有知识库,收录企业过去的问答记录和资料。 利用大模型处理用户咨询问题,确保回答的准确性和一致性,必要时提供原回答的完整版。 对接人工客服,在智能助手无法解决问题时,用户可快速转接,确保问题及时解决,提升整体服务质量和客户满意度。 Agent 构建平台: Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具,拓展 Bot 能力边界。 Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据需求打造产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 用 Coze 在微信里搭建机器人并挖掘销售线索: 目的:训练公司自有数据,让机器人提供客服功能;将机器人与企业微信绑定提供客服功能;进阶版可根据客户咨询信息收集用户联系方式形成销售线索。 使用工具:字节旗下的 Coze AI 智能机器人工具,需要有微信公众号订阅号或服务号的管理权。 功能体验:扣子画小二智能小助手:https://www.coze.cn/store/bot/7371793524687241256?panel=1&bid=6cjksvpbk000a ;B站公开视频
2024-12-21
企业级的ai服务或者解决方案有哪些
以下是一些企业级的 AI 服务或解决方案: 1. 美国的 Zephyr AI 公司,于 2024 年 3 月 13 日完成 A 轮融资,融资金额 1.11 亿美元,主营 AI 药物发现和精准医疗。 2. Together AI 公司,2024 年 3 月 13 日完成 A 轮融资,融资金额 1.06 亿美元,从事 AI 基础设施和开源生成。 3. Glean 公司,2024 年 2 月 27 日完成 D 轮融资,融资金额 2.03 亿美元,专注于 AI 驱动企业搜索。 4. Figure 公司,2024 年 2 月 24 日完成 B 轮融资,融资金额 6.75 亿美元,业务为 AI 机器人。 5. Abridge 公司,2024 年 2 月 23 日完成 C 轮融资,融资金额 1.5 亿美元,从事 AI 医疗对话转录。 6. Recogni 公司,2024 年 2 月 20 日完成 C 轮融资,融资金额 1.02 亿美元,提供 AI 接口解决方案。 在 AI 应用方面: 1. AI 智能写作助手,如 Grammarly、秘塔写作猫,利用自然语言处理技术,市场规模达数十亿美元。 2. 淘宝拍照搜商品,通过图像识别和机器学习技术,市场规模达数百亿美元。 3. 小爱同学、Siri 等 AI 语音助手定制开发,运用语音识别和自然语言理解技术,市场规模在百亿美元以上。 4. Keep 智能训练计划,基于数据分析和机器学习,市场规模达数十亿美元。 5. 大众点评智能推荐,借助数据挖掘和自然语言处理,市场规模达百亿美元规模。 6. 阿里小蜜等电商客服,采用自然语言处理和机器学习技术,市场规模达数十亿美元。 影刀 RPA + AI Power 具有以下特点: 1. 功能亮点:集成丰富的 AI 组件及各种技能组件,拓展 AI 服务的能力边界,打造 AI Agent,如搜索引擎组件可让 AI 接入互联网获取实时信息,RPA 组件可直接调用影刀 RPA 客户端应用实现 AI 自动化操作。 2. 无缝多样的使用方式:提供网页分享、对话助理、API 集成等嵌入方式,方便企业在不同业务场景下灵活选择接入方式,打通分散的系统,实现便捷的 AI 交互。 3. 贴身的企业级服务支持:提供教学培训、技术答疑、场景共创等贴身服务,帮助企业把产品用起来,把 AI 落地下去,找到最佳实践,助力业务成功。
2024-12-19
售后技术支持的AI解决方案
以下是为您提供的售后技术支持的 AI 解决方案: 在汽车售后场景中,主要存在以下问题: 1. 服务顾问缺少专业知识,无法提前协助车主评估车辆问题,并反馈标准化解决方案。 2. 维修技师在车辆检查和车辆故障分析方面依赖经验水平,缺少辅助分析的工具和直观的辅助指引。 3. 维修方案由技术支持人工编写,输出标准无法保障。 针对这些问题,AI 解决方案具有以下功能: 1. 解答问题:当用户提出问题,它像专业的售后顾问,通过询问细节给出初步判断,涵盖问题原因、维修方向、价格与时间预估。然后转变为技术维护人员角色,分析问题原因,列出具体检查步骤,等待工程师反馈结果后,给出精准解决方案及操作视频。 2. 文档输出:问题解决后,生成维修报告给用户,以及案例归档文档,并将其存入 AI 知识库,丰富知识库内容,方便后续查询和提供更专业的回答。 3. 智能录入:AI 知识库功能强大,不仅支持单独文本录入还支持链接录入。通过识别一篇文章,能智能解析分解出多个知识点并录入知识库,对归档文档的解析录入进一步丰富了知识库。 此外,还有以下 AI 产品案例和投稿与工作场景相关: 1. 销售:定制销售解决方案,涉及企业产品和服务内容、客户需求和参数、营销方案和推广策略、数据处理和模型训练、客户满意度和营销效率、往期营销方案。 2. 客服:定制客服话术,包含产品知识、使用方法、售后服务、售后维修、支付方式、支付流程、产品购买、产品配送、客户投诉、客户建议、政策法规、使用注意事项、客服身份等关键词库。 3. HR:团队绩效管理,根据团队和个人的绩效的往期数据,分析员工绩效排名,输出绩效考评和迭代改进建议。 4. HR:面试工具,开发了一个使用 GPT4 技术的实时转录工具,帮助求职者在面试中生成完美的回答。 5. 科学:研制采摘机器人,荷兰代尔夫特大学和瑞士洛桑联邦理工学院(EPFL)科学家借助 ChatGPT 设计并研制出了一款番茄收割机器人。
2024-10-29
LLM解决方案报告
以下是关于 LLM 解决方案的相关内容: 对抗性提示的防御策略:可利用 LLM 检测对抗提示并过滤,如 Armstrong 和 Gorman(2022)提出的方案,需先定义提示评估器,已准备相关笔记本供尝试。 Apple Intelligence 中智能应用的提示词:包括帮助回复邮件的提示词和总结邮件的提示词,其中 Apple 解决 LLM 幻觉问题的方式是在提示词中加“Do not hallucinate”,其效果存疑。 LLM 应用程序的新兴架构:原文地址为 https://a16z.com/2023/06/20/emergingarchitecturesforllmapplications/,发表于 2023 年 6 月 20 日。文中分享了新兴 LLM 应用程序堆栈的参考架构,此工作基于与相关人员的对话。
2024-10-21