Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

科学问题二:XXX(小标题) 问题挑战:如何通过构建合理的先验知识或模型假设,刻画出数据中的可变性?如何利用从少量样本中提取到的变化信息来预测未见数据的表现? XXX XXX(问题挑战一的方法) XXX)问题挑战二的方法) 请将XXX补充完整,重点在预测,如何刻画和利用数据分布的“变化性”

Answer

以下是为您补充完整的内容:

对于如何通过构建合理的先验知识或模型假设,刻画出数据中的可变性,以及如何利用从少量样本中提取到的变化信息来预测未见数据的表现,我们可以参考以下方法:

在准备 LLM 数据方面,对于制作 LLM 微调数据集,首先获取文本格式非结构式和网络式结构式的数据。对于 QA 数据集,主要依靠已有的大语言模型生成,根据不同文本设定不同的提示词以获取尽可能多且信息量丰富的 QA。先对文件中的文本进行切割,将每一大部分放进一个约 200 字的 txt 文件里,然后设定提示词模板。例如对于公司产品手册,模板可以是:“你是一个聪明的 xxx 公司的 xxx 产品的产品经理。给你一段 xxxxx 有限公司 xx 产品相关的文本,你必须依据文本想出十个不同的问题和这十个问题对应的答案。你想出的问题可以被用来测试公司内部 xxx 职员的专业能力。你想出的问题可以是使用公司产品的用户会想到的问题。你想出的问题和答案必须和所给文本相关。你回答得答案必须可以让使用产品的用户理解。当你想出问题和答案后,你必须用以下格式回复:```[[ "问题 1":"$你想出的问题放在这", "答案 1":"$你想出的答案放在这", "问题 2":"$你想出的问题放在这", "答案 2":"$你想出的答案放在这", "问题 3":"$你想出的问题放在这", "答案 3":"$你想出的答案放在这", "问题 4":"$你想出的问题放在这", "答案 4":"$你想出的答案放在这" ]

Content generated by AI large model, please carefully verify (powered by aily)

References

巧妇还要种米来炊:怎么准备LLM的数据?很接地气的经验总结

[title]巧妇还要种米来炊:怎么准备LLM的数据?很接地气的经验总结[heading1]Part 03.制作LLM微调数据集对于以上文本进行如上处理后,下面我们要生成LLM所需的格式。经过以上的过程,我们现在已经得到了文本格式非结构式的数据还有网络式结构式的数据。我的需求现阶段还算比较简单,主要以QA数据集和dialogue数据集为主。对于QA数据集,我的方法主要靠已有的大语言模型生成,根据不同文本设定不同的提示词,进行尽可能地信息量大的获取QA。首先,先得对文件中的文本进行切割,我是将每一大部分放进一个txt文件里,一个txt文件大约200字(私密马赛,我的场景初步阶段还没有那么复杂),然后设定提示词模板。对于公司产品手册:template = f"""你是一个聪明的xxx公司的xxx产品的产品经理。给你一段xxxxx有限公司xx产品相关的文本,你必须依据文本想出十个不同的问题和这十个问题对应的答案。你想出的问题可以被用来测试公司内部xxx职员的专业能力。你想出的问题可以是使用公司产品的用户会想到的问题。你想出的问题和答案必须和所给文本相关。你回答得答案必须可以让使用产品的用户理解。当你想出问题和答案后,你必须用以下格式回复:```["问题1":"$你想出的问题放在这","答案1":"$你想出的答案放在这","问题2":"$你想出的问题放在这","答案2":"$你想出的答案放在这","问题3":"$你想出的问题放在这","答案3":"$你想出的答案放在这","问题4":"$你想出的问题放在这","答案4":"$你想出的答案放在这",

Others are asking
适合ai展位的口号,风趣的,如“想你的风又吹到了XXX"
很抱歉,暂时没有适合 AI 展位的风趣口号相关内容,不过我可以为您现创几个,比如:“AI 的魅力风,又迷倒了众人”“AI 的智慧风,再次席卷而来”“AI 的神奇风,又吹进你心怀”
2024-11-13
雪梅挑战 100 天和 AI 做朋友
雪梅 May 挑战 100 天和 AI 做朋友的相关情况如下: 作者介绍:适合纯 AI 小白参考,学习模式为输入→模仿→自发创造。学习内容不建议直接复用,可去 waytoAGI 社区发现感兴趣的领域学习最新内容。学习时间并非每天依次进行,有空时学习即可。学习状态良好,2024 年保持较好状态,还看了 33 本书。学习资源免费开源。 第一阶段: DAY5 2024.5.26:开始研究使用 kimi,抱着每天向 kimi 问 100 个问题的心态调整思考模式。 DAY6 2024.5.31:应朋友推荐学习吴恩达生成式人工智能课程,在 B 站搜索对应关键词有课程资源,抽空陆续 3 天学完。 DAY7 2024.6.1:探索用 AI 解决一个真实问题,如团队写行业研究报告。 2024 年 12 月 31 日历史更新(归档):记录了雪梅的挑战过程,分为系统性学习、模仿实践使用 AI 工具、研究 Prompt 提示词三个阶段,其学习路线图适合新人参考。同时还包括 Meta 首席 AI 科学家 LeCun 访谈以及《少卿:AI 帮你赢,谈双重主体性》相关内容。
2025-02-23
对于中小企业而言,ai转型的落地过程中有什么风险和挑战?请分别回答风险和挑战是什么
对于中小企业而言,AI 转型的落地过程中存在以下风险和挑战: 风险: 1. 管理风险:使用 AI 工具评估和管理企业面临的各种风险时,可能存在对风险评估不准确、应对策略不恰当等问题,导致企业无法有效应对潜在挑战,造成不必要的损失。 2. 网络安全风险:引入 AI 驱动的网络安全解决方案时,若安全系统配置不当、软件和 AI 模型未及时更新、员工网络安全意识不足等,可能导致企业网络系统遭受网络威胁和攻击,造成数据泄露、业务中断等严重后果。 挑战: 1. 任务自动化挑战:在评估和识别日常重复性高的任务时,可能存在对任务分析不准确、目标设定不清晰的情况,影响后续自动化工具的引入和效果。同时,选择合适的自动化工具并进行有效配置和测试也具有一定难度。 2. 网络安全挑战:选择适合企业网络环境和安全需求的 AI 驱动的网络安全解决方案并非易事,需要充分了解各种方案的特点和适用性。此外,定期更新和维护安全系统、进行网络安全演练以及对员工进行培训等工作也需要投入大量的时间和精力。
2025-02-19
人工智能的场景应用及其对社会治理的新挑战,注意场景应用和社会治理的对应,同时突出新挑战
以下是关于人工智能的场景应用及其对社会治理新挑战的相关内容: 场景应用: 医疗领域:如利用 AI 技术预测蛋白质结构,加速科学研究和救命药物的开发,在对抗疟疾、抗生素耐药性和塑料垃圾等方面取得巨大进展。 气候领域:通过 AI 技术应对气候变化。 对社会治理的新挑战: 可能产生新的风险,如使用 AI 可能带来的未知问题。 复杂的 AI 技术可能引发公众的不安。 涉及数据获取、计算能力、可持续性以及内容生产者和 AI 开发者权利平衡等重要问题,需要综合考虑。 需确保在保护权利持有者和支持 AI 开发者获取所需数据之间保持恰当平衡。
2025-01-23
AI应用的挑战之一,数据,可以展开讲讲吗
在 AI 应用中,数据是至关重要但也面临诸多挑战: 1. 高质量数据短缺:传统互联网数据已难以满足需求,AI 模型需要更高质量的“前沿数据”,包括复杂推理过程、专业知识和人类思维模式等,以提升推理能力和整体性能。 2. 数据标注角色转变:从简单的画边界框变为需要证明复杂数学定理或批判性审查 AI 生成的多种解决方案。 3. 合成数据的应用与风险:合成数据成为解决真实数据获取难、隐私保护成本高等问题的途径,但也存在与真实数据分布不一致导致模型偏差、隐藏误导性模式影响模型可靠性等风险。 4. 数据与需求不匹配:产品从业者使用 AI 工具时,面临默认知识库和能力与需求不匹配的问题,且市场上 AI 工具大多功能相似、生成内容质量不稳定。 5. 选择和学习成本高:用户存在不知如何找到适用的 AI 工具、因产品同质化严重不知如何选择以及学习成本高等困扰。 6. 潜在的偏见和歧视:AI 训练依赖大量数据,若数据集存在偏见,可能在招聘等应用场景中复制甚至加剧对特定社会群体或性别的偏见,导致无意的歧视,带来法律责任。 7. 数据隐私问题:使用 AI 招聘系统收集大量个人数据,若被滥用会侵犯候选人隐私。
2024-12-16
企业在构建AI智能体问答助手可能会遇到哪些挑战及痛点?
企业在构建 AI 智能体问答助手时可能会遇到以下挑战及痛点: 1. 私有化部署方面:在金融、医疗和法律等对数据私密性要求极高的中小型行业,私有化部署场景需求大,增加了企业培训的难度。 2. 模型接入方面:访问 GPT 存在门槛,国企类、体制类合作伙伴受限,需寻找更易于接入的国产模型替代,如智谱等。 3. 工程化落地方面:企业知识库大多卡在工程问题上,真正能落地的不多,数据清理难度大,技术能力要求高于预期。对于规模不大且无数字化系统的企业,实际落地成本可能不比传统人力成本节省更多。 4. 对企业了解不足:在品牌卖点提炼中,AI 对企业的主要产品、解决的用户需求、产品独特之处、所获认可、核心渠道、核心购买人群、营销手段、新渠道期望结果等了解程度接近于 0,难以直接给出有效卖点,更适合作为引导型的灵感提问助手。 以下是一些 Agent 构建平台供您参考: 1. Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具,拓展 Bot 能力边界。 2. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 6. 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景方面表现出色。 请注意,以上信息由 AI 大模型生成,请仔细甄别。
2024-12-05
企业在构建AI智能问答助手可能会遇到哪些挑战及痛点?
企业在构建 AI 智能问答助手可能会遇到以下挑战及痛点: 1. 私有化部署的挑战:在金融、医疗和法律等许多中小型行业,对数据私密性要求极高,需要私有化部署,这大大增加了企业培训的难度。 2. 模型接入的限制:访问 GPT 有门槛,国企类、体制类的合作伙伴往往被拦截在外,需要寻找更易于接入的国产模型作为替代方案。 3. 工程化落地困难:企业知识库大部分卡在工程问题上,真正能落地的不多,数据清理部分难度较大,技术能力要求比想象中更高。 4. 成本问题:对于规模不大且没有数字化系统的企业,私有化部署的实际落地成本可能不比传统人力成本节省更多。
2024-12-05
如果你是一个AI学习者,你会提出哪些问题?让自己的学习更有策略?
以下是作为 AI 学习者可能会提出的一些问题,以使学习更有策略: 1. 如何评估不同 AI 模型的性能和适用场景? 2. 怎样选择适合自己需求的 AI 工具和技术? 3. 在 AI 领域,哪些基础知识是必须牢固掌握的? 4. 如何将 AI 应用于实际项目中,以获得更好的效果? 5. 对于 AI 产生的结果,如何进行有效的评估和验证? 6. 怎样跟上 AI 领域快速发展的步伐,及时更新知识? 7. 在学习 AI 时,如何避免常见的错误和陷阱? 8. 如何培养自己在 AI 方面的创新思维和解决问题的能力? 9. 对于不同学习水平(如高中生、大学生、专业人士),学习 AI 的重点和方法有何不同? 10. 在 AI 学习中,如何平衡理论学习和实践操作?
2025-02-17
你会使用DeepSeek来回答问题吗
DeepSeek 是一款具有独特特点和优势的深度推理模型。其核心是推理型大模型,与指令型大模型不同,不需要用户提供详细步骤指令,而是通过理解用户真实需求和场景来提供答案。它能够理解用户用“人话”表达的需求,无需用户学习特定提示词模板。在回答问题时能够进行深度思考,并非简单罗列信息。还可以模仿不同作家的文风进行写作,适用于多种文体和场景。 DeepSeek R1 不同于先前的普通模型,如 ChatGPT4、Claude 3.5 sonnet、豆包、通义等,它与 OpenAI 现在最先进的模型 o1、o3 同属基于强化学习 RL 的推理模型。在回答用户问题前,R1 会先进行“自问自答”式的推理思考,以提升最终回答的质量。这种“自问自答”并非简单自言自语,而是模拟人类的深度思考。从用户初始问题出发,唤醒所需推理逻辑与知识,进行多步推导,为最终回答提供更完备的思考准备。DeepSeek R1 的“聪明”源于其独特的“教育方式”,在其他 AI 模型还在接受“填鸭式教育”时,它已率先进入“自学成才”新阶段。 更多提示词技巧请查看 。
2025-02-17
你是用什么模型来回答问题的?
我使用多种模型和相关知识来回答您的问题,包括但不限于以下内容: 2023 年度中文大模型基准测评报告中提到的 GPT4Turbo 和 gpt3.5turbo 等模型,并对其在准确性、相关性等方面的表现进行了评估。 智谱·AI 开源模型列表中的 WebGLM10B、WebGLM2B、MathGLM2B、MathGLM500M、MathGLM100M、MathGLM10M、MathGLMLarge 等模型,介绍了它们的特点和相关链接。 OpenAI 官方指南中提到的一些战术,如指示模型使用参考文本回答,包括提供参考文本和使用参考文本中的引文来回答等策略。 但具体回答您的问题所依据的模型和知识来源会根据问题的性质和需求而定。
2025-02-17
角色:你是一名房地产开发公司的总经理 背景:现在要在公司内部推广AI工具的使用,通过具体AI工具解决公司内部各部门具体问题,来提升工作效率。 任务:请你完成年度AI提升工作效率的工作策划, 要求:工作策划要有目标、行动计划、团队人员需求及分工、具体AI工具及对应解决的问题、需要费用明细及资源需求、有哪些风险点
由于您提供的内容中没有具体的相关信息,以下为您生成一份较为通用的房地产开发公司年度 AI 提升工作效率的工作策划示例,您可以根据实际情况进行调整和完善。 一、目标 通过在公司内部推广 AI 工具的使用,在本年度内实现各部门工作效率提升 30%以上,降低人力成本 15%左右,提高项目质量和客户满意度。 二、行动计划 1. 第一季度 进行市场调研,了解适合房地产开发行业的 AI 工具。 组织内部培训,让员工初步了解 AI 工具的应用。 2. 第二季度 针对各部门需求,选择并引入相应的 AI 工具进行试点应用。 建立数据收集和分析机制,为 AI 工具的优化提供支持。 3. 第三季度 对试点部门的应用效果进行评估和总结。 根据评估结果,对 AI 工具进行调整和优化。 4. 第四季度 在全公司范围内推广成熟的 AI 工具应用。 对全年的 AI 应用效果进行总结和评估。 三、团队人员需求及分工 1. 成立 AI 推广小组 组长:负责整体工作的规划和协调。 技术专家:负责 AI 工具的选型、配置和技术支持。 培训师:负责组织员工培训和指导使用。 数据分析师:负责收集和分析数据,为工具优化提供依据。 部门联络人:每个部门指定一名联络人,负责与推广小组沟通本部门的需求和问题。 四、具体 AI 工具及对应解决的问题 1. 智能客服系统 解决客户咨询响应不及时的问题,提高客户满意度。 2. 项目管理 AI 工具 优化项目进度安排和资源分配,提高项目管理效率。 3. 市场分析 AI 工具 精准分析市场趋势和客户需求,为项目定位提供依据。 五、需要费用明细及资源需求 1. 费用明细 AI 工具采购费用:万元。 培训费用:万元。 技术支持和维护费用:万元。 数据采集和分析费用:万元。 2. 资源需求 服务器和存储设备,以支持 AI 工具的运行和数据存储。 足够的网络带宽,确保数据传输的流畅性。 六、风险点 1. 员工对新技术的接受度和适应能力可能较低,需要加强培训和引导。 2. AI 工具的应用效果可能不如预期,需要及时调整和优化。 3. 数据安全和隐私保护可能存在风险,需要建立完善的防护机制。
2025-02-13
如何进入AI时代,如何寻找和使用AI工具来提高工作和学习效率,以及如何解决个性化和专业化需求的问题
进入 AI 时代并利用 AI 工具提高工作和学习效率、解决个性化和专业化需求问题,可参考以下要点: 1. 对于 AI 发展的态度:不盲目跟风(FOMO),也不消极对待(JOMO)。 2. 成功的 AI 公司可能需要打造自身的数据飞轮,尤其是在 ToC 场景中寻求突破,因为 C 端能带来的数据飞轮效应在 AI 早期可能是决胜关键。 3. 有专业壁垒的垂直模型可能是机会所在,很多高价值、特定领域的工作流程依赖于丰富的专有数据集。 4. 大模型产品的两个方向: 个性化:给 AI 装上“记忆”,使其成为工作助理或陪伴者。 场景化:给 AI 装上“手”和“眼睛”。 5. 在工作中使用 AI 工具的情况: 最常用的是通过自然语言对话完成一次性任务,90%的产品从业者用其辅助文本信息处理生成。 63%的用户用其辅助搜索,甚至优先用 AI 搜索信息。 45%的用户借助其生成图片以及音视频用于快速制作 demo 演示效果,也有少部分用于制作最终产品。 29%的用户将其作为工作创意助手以及数据报告的处理。 6. AI 工具的改进方向: 提高创新性和创新辅助能力,关注产品从业者的工作模式和思维习惯。 提升个性化和智能化程度,理解并适应用户的个性化需求。 更精准识别合适场景,满足不同场景的使用需求。 7. 使用 AI 完成任务时: 对于简单需求,给 AI 下达明确命令完成一次性任务。 了解 AI 编程的边界和限制。 遵循编程准则,能不编尽量不编。优先找线上工具、其次找插件、最后是本地应用;对于 API 功能,先找现成开源工具,然后考虑付费服务,实在找不到才考虑自己编程,且编程要以终为始,聚焦目标。 总之,在 AI 时代,要积极拥抱 AI,用起来并有效迭代,形成正确的底层工作逻辑,设计合理流程,按节奏确定目标和复盘。同时,把握好融资节奏,适应对创始人更高、更全面的要求。
2025-02-11
我几乎是一个AI小白,只能日常跟AI对话,让AI回答我的问题,我希望能系统的了解AI,认识AI,学会正确使用AI,让AI帮助我提高效率,希望你能给出学习建议
以下是为您提供的系统学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 与大语言模型交流的技巧: 对话尽量具体、丰富、少歧义,多说有用的。 假想特定场景,明确希望获得的内容。 把大模型当作大学生,指明方向,拆解任务,教其一步一步操作。 7. AI 教育方面: 以 Khanmigo AI 为例,AI 教师应具有友善和支持的性格,语言简明,不直接给答案,而是通过适当提问帮助学生独立思考,根据学生知识水平调整问题,检查学生是否理解,警惕学生滥用帮助等。
2025-02-10