用大模型做销量预测可以从以下几个方面考虑:
关于大模型相关的模型下载和安装:
若下载的模型不知类型,可使用秋叶的模型解析工具 https://spell.novelai.dev/ ,将模型拖动到空白处即可查看模型信息。
很多Global的量化基金到了中国都会水土不服。同时,国家政策也规定了很多Global的量化基金没法在中国大规模开展业务。这就给了国内的很多量化基金崛起的机会,即使交易系统比国外顶尖机构有一些差距,但是只要在中国能保持领先,整体就会有不错的收益。大模型也是如此,OpenAI、Google、Meta的模型一方面中文能力比较一般,远没有英文能力强大,二没有对中国国情进行优化,不符合政策要求。这给了国内的大模型公司做大模型预训练的机会,只要做到国内第一,即使和世界领先的模型有一个代际差,也是不小的市场。当然,这样的情况,不止在中国,在世界很多国家都会存在。所以,面向各国政府做基础大模型本土化预训练是个不小的市场。由此引申的另一个相似之处就是受政策影响极大。国内量化基金的几个大起大落基本都和政策有关,大模型的发展也和国家的相关办法息息相关。同时,两者都需要收到有效监管才能健康发展。[heading2]其他[content]除了上面几个感受比较深刻的,大模型预训练和金融量化还有不少相似之处,就不一一展开了少数精英的人赚大量的钱。做大模型不用很多人,但每个人都必须绝顶聪明。核心问题一样。下一个token预测和下一个股价预测其实是一个问题。都需要大量数据。都追求可解释性。。。。。。。最后,希望大模型能和量化金融一样,市场足够大到几家头部机构是不能完全吃下的,能给多个大模型公司机会。现在国内有上百家量化基金,规模有大有小,大模型公司也能百花齐放。
除了链接里面给大家分享的模型,大家肯定还想去找更多更好看的模型而大多数的模型都是在Civitai(C站)这个网站里面https://civitai.com/现在就给大家说一下C站的使用方法:01.科学上网这个没法教,大家只能自己想办法了02.点击右上角的筛选按钮,在框框里面找到自己需要的模型类型Checkpoint=大模型LoRA=Lora常用的就是这两个03.看照片,看到感兴趣的就点进去点击右边的“Download”,也就是下载,保存到电脑本地,文件保存到哪里在这一节的第二部分另外,我们还可以点击左上角的“Images”这里就是看别人已经做好的图片,找到喜欢的点进去点进去之后的页面我们就可以看到这张图的全部信息,直接点击Lora和大模型,可以直接跳转到下载页面下面的就是照片关键词和其他信息点击最下面的“Copy...Data”就可以复制图片的所有信息回到SD,粘贴到关键词的文本框,点击右边的按钮这些信息就会自动分配要注意的就是,大模型是需要我们手动去换的!这样我们就可以生成出跟大神几乎一样的照片了!(电脑网络配置的不同,出来的照片有细微差别)[heading2]2.模型下载到哪里[content]这里大家就直接看我文件的保存地址,找到自己电脑里的01.大模型这里的SD根目录就是大家在下载时,存放SD的那个文件夹02.Lora03.VAE[heading2]3.如何分辨模型[content]如果我们下载了一个模型,但不知道它是哪个类型的,不知道要放到哪个文件夹我们就可以用到这个秋叶的模型解析工具https://spell.novelai.dev/把模型拖动到空白处接着就会自动弹出模型的信息在模型种类里面就可以看到是什么模型啦!
模型能够有效地控制生成的画风和内容。常用的模型网站有:[Civitai | Stable Diffusion models,embeddings,hypernetworks and more](https://link.zhihu.com/?target=https%3A//civitai.com/)>[Models - Hugging Face](https://link.zhihu.com/?target=https%3A//huggingface.co/models)>[SD - WebUI资源站](https://link.zhihu.com/?target=https%3A//www.123114514.xyz/models/ckpt)>[元素法典AI模型收集站- AI绘图指南wiki(aiguidebook.top)](https://link.zhihu.com/?target=https%3A//aiguidebook.top/index.php/model/)>[AI绘画模型博物馆(subrecovery.top)](https://link.zhihu.com/?target=https%3A//aimodel.subrecovery.top/)[heading3]模型安装[content]下载模型后需要将之放置在指定的目录下,请注意,不同类型的模型应该拖放到不同的目录下。模型的类型可以通过[Stable Diffusion法术解析](https://link.zhihu.com/?target=https%3A//spell.novelai.dev/)检测。大模型(Ckpt):放入models\Stable-diffusionVAE模型:一些大模型需要配合vae使用,对应的vae同样放置在models\Stable-diffusion或models\VAE目录,然后在webui的设置栏目选择。Lora/LoHA/LoCon模型:放入extensions\sd-webui-additional-networks\models\lora,也可以在models/Lora目录Embedding模型:放入embeddings目录