直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

如何用大模型做销量预测

回答

用大模型做销量预测可以从以下几个方面考虑:

  1. 数据收集:销量预测需要大量相关数据,包括历史销售数据、市场趋势、经济指标、消费者行为等。
  2. 模型选择:选择适合的大模型,例如基于深度学习的神经网络模型。
  3. 特征工程:对收集到的数据进行处理和特征提取,以便模型能够更好地理解和学习。
  4. 训练与优化:使用合适的算法和技术对模型进行训练,并不断优化模型参数以提高预测准确性。
  5. 考虑国情和政策:不同国家和地区的国情和政策会对销售情况产生影响,模型应进行相应的优化和调整。
  6. 可解释性:追求模型的可解释性,以便更好地理解预测结果和做出决策。

关于大模型相关的模型下载和安装:

  1. 模型下载:
  2. 模型安装:
    • 大模型(Ckpt):放入 models\Stable-diffusion
    • VAE 模型:一些大模型需要配合 vae 使用,对应的 vae 同样放置在 models\Stable-diffusion 或 models\VAE 目录,然后在 webui 的设置栏目选择。
    • Lora/LoHA/LoCon 模型:放入 extensions\sd-webui-additional-networks\models\lora,也可以在 models/Lora 目录
    • Embedding 模型:放入 embeddings 目录

若下载的模型不知类型,可使用秋叶的模型解析工具 https://spell.novelai.dev/ ,将模型拖动到空白处即可查看模型信息。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

预训练大模型与金融量化

很多Global的量化基金到了中国都会水土不服。同时,国家政策也规定了很多Global的量化基金没法在中国大规模开展业务。这就给了国内的很多量化基金崛起的机会,即使交易系统比国外顶尖机构有一些差距,但是只要在中国能保持领先,整体就会有不错的收益。大模型也是如此,OpenAI、Google、Meta的模型一方面中文能力比较一般,远没有英文能力强大,二没有对中国国情进行优化,不符合政策要求。这给了国内的大模型公司做大模型预训练的机会,只要做到国内第一,即使和世界领先的模型有一个代际差,也是不小的市场。当然,这样的情况,不止在中国,在世界很多国家都会存在。所以,面向各国政府做基础大模型本土化预训练是个不小的市场。由此引申的另一个相似之处就是受政策影响极大。国内量化基金的几个大起大落基本都和政策有关,大模型的发展也和国家的相关办法息息相关。同时,两者都需要收到有效监管才能健康发展。[heading2]其他[content]除了上面几个感受比较深刻的,大模型预训练和金融量化还有不少相似之处,就不一一展开了少数精英的人赚大量的钱。做大模型不用很多人,但每个人都必须绝顶聪明。核心问题一样。下一个token预测和下一个股价预测其实是一个问题。都需要大量数据。都追求可解释性。。。。。。。最后,希望大模型能和量化金融一样,市场足够大到几家头部机构是不能完全吃下的,能给多个大模型公司机会。现在国内有上百家量化基金,规模有大有小,大模型公司也能百花齐放。

教程:超详细的Stable Diffusion教程

除了链接里面给大家分享的模型,大家肯定还想去找更多更好看的模型而大多数的模型都是在Civitai(C站)这个网站里面https://civitai.com/现在就给大家说一下C站的使用方法:01.科学上网这个没法教,大家只能自己想办法了02.点击右上角的筛选按钮,在框框里面找到自己需要的模型类型Checkpoint=大模型LoRA=Lora常用的就是这两个03.看照片,看到感兴趣的就点进去点击右边的“Download”,也就是下载,保存到电脑本地,文件保存到哪里在这一节的第二部分另外,我们还可以点击左上角的“Images”这里就是看别人已经做好的图片,找到喜欢的点进去点进去之后的页面我们就可以看到这张图的全部信息,直接点击Lora和大模型,可以直接跳转到下载页面下面的就是照片关键词和其他信息点击最下面的“Copy...Data”就可以复制图片的所有信息回到SD,粘贴到关键词的文本框,点击右边的按钮这些信息就会自动分配要注意的就是,大模型是需要我们手动去换的!这样我们就可以生成出跟大神几乎一样的照片了!(电脑网络配置的不同,出来的照片有细微差别)[heading2]2.模型下载到哪里[content]这里大家就直接看我文件的保存地址,找到自己电脑里的01.大模型这里的SD根目录就是大家在下载时,存放SD的那个文件夹02.Lora03.VAE[heading2]3.如何分辨模型[content]如果我们下载了一个模型,但不知道它是哪个类型的,不知道要放到哪个文件夹我们就可以用到这个秋叶的模型解析工具https://spell.novelai.dev/把模型拖动到空白处接着就会自动弹出模型的信息在模型种类里面就可以看到是什么模型啦!

SD新手:入门图文教程

模型能够有效地控制生成的画风和内容。常用的模型网站有:[Civitai | Stable Diffusion models,embeddings,hypernetworks and more](https://link.zhihu.com/?target=https%3A//civitai.com/)>[Models - Hugging Face](https://link.zhihu.com/?target=https%3A//huggingface.co/models)>[SD - WebUI资源站](https://link.zhihu.com/?target=https%3A//www.123114514.xyz/models/ckpt)>[元素法典AI模型收集站- AI绘图指南wiki(aiguidebook.top)](https://link.zhihu.com/?target=https%3A//aiguidebook.top/index.php/model/)>[AI绘画模型博物馆(subrecovery.top)](https://link.zhihu.com/?target=https%3A//aimodel.subrecovery.top/)[heading3]模型安装[content]下载模型后需要将之放置在指定的目录下,请注意,不同类型的模型应该拖放到不同的目录下。模型的类型可以通过[Stable Diffusion法术解析](https://link.zhihu.com/?target=https%3A//spell.novelai.dev/)检测。大模型(Ckpt):放入models\Stable-diffusionVAE模型:一些大模型需要配合vae使用,对应的vae同样放置在models\Stable-diffusion或models\VAE目录,然后在webui的设置栏目选择。Lora/LoHA/LoCon模型:放入extensions\sd-webui-additional-networks\models\lora,也可以在models/Lora目录Embedding模型:放入embeddings目录

其他人在问
siri是不是使用大模型技术
Siri 目前并非使用大模型技术。苹果公司的 Siri 概念虽好,但由于技术限制,其表现未达到人工智能的水平,常被称为“人工智障”。不过,随着技术发展,未来可能会用大模型重新改造 Siri,将手机上的所有功能控制起来,使其成为真正的智能助理。例如,苹果公司在手机算力的芯片发展到能够支撑大模型上手机的情况下,可能会推出大模型的小数据量、专业的版本来替代 Siri。同时,苹果公司若 All in 手机,其大模型可能会是本地化的,以重视个人数据保护和隐私。
2024-11-21
sairi是不是使用大模型技术
Sora 是使用大模型技术的。周鸿祎认为 Open AI 训练这个模型会阅读大量视频,大模型加上 Diffusion 技术需要对世界进一步了解,学习样本以视频和摄像头捕捉到的画面为主。Sora 在训练数据上采用在原始尺寸上进行训练的策略,避免了传统 AI 对人为抽象的依赖。此外,Sora 还采用了一些数据预处理技术,如将视觉图块压缩成低维潜在表示,并将其排列成序列,注入噪声后输入扩散变换器的输入层,同时采用时空分块化来降低后续对时间信息建模的复杂性。这种对原始视频和图像特征的细腻处理标志着生成模型领域的重大进步。
2024-11-21
在调用大模型的过程中,将token设置最大值,大模型回答还是会出现中断的情况,应该怎么避免和解决
在调用大模型的过程中,将 token 设置最大值但回答仍出现中断的情况,可以从以下几个方面避免和解决: 1. 调整相关参数: Max_output_tokens:根据具体需求设置合适的值。若需要更短响应,设为较低值;若希望更长回答,设为较高值。但注意设置过低可能导致回答在奇怪位置截断。 Temperature:值越小,模型返回结果越确定;值调高,可能更随机和具创造性。对于质量保障等任务设低,诗歌生成等创造性任务可适当调高。 Top_p:用于控制模型返回结果的真实性,需要准确和事实答案时调低,想要更多样化答案时调高。一般改变 Temperature 和 Top_p 其中一个参数即可。 Max Length:调整以控制大模型生成的 token 数,有助于防止生成冗长或不相关响应并控制成本。 Stop Sequences:指定字符串,模型生成文本遇到时停止,可控制响应长度和结构。 Frequency Penalty:对下一个生成的 token 进行惩罚,与 token 在响应和提示中出现次数成比例,减少单词重复。 2. 利用插入文本的最佳实践: 使用 max_tokens > 256,模型插入较长完成时效果更好,且只按实际生成 token 数收费。 优先选择 finish_reason == "stop",表明模型成功连接后缀且完成质量良好。 重新采样 3 5 次,温度较高以增加多样性。若所有返回示例的 finish_reason 都是“length”,可能 max_tokens 太小,需考虑增加再重试。 尝试给出更多线索,通过提供示例帮助模型确定自然停顿处。
2024-11-18
我需要用知识库与通用大模型结合的方式满足博物馆的导览助手,请提出完整的实施方案。
目前知识库中没有关于用知识库与通用大模型结合来满足博物馆导览助手的完整实施方案。但以下是为您初步构思的一个可能的方案: 首先,需要对博物馆的展品、历史背景、文化内涵等相关信息进行全面而系统的梳理和整理,形成详细准确的知识库。 然后,选择适合的通用大模型,例如具备强大语言理解和生成能力的模型。 接下来,通过技术手段将知识库与通用大模型进行有效连接和融合。这可能涉及到数据的预处理、模型的训练与优化,以确保模型能够准确理解和运用知识库中的信息。 在实际应用中,为导览助手设计友好的用户界面,方便游客进行交互。例如,可以是语音交互、触摸屏操作等方式。 同时,要不断对导览助手进行测试和改进,根据游客的反馈和实际使用情况,优化知识库和模型的性能,提升导览助手的服务质量和用户体验。
2024-11-08
如何用大模型做mv
要用大模型做 MV,您可以按照以下步骤进行: 1. 模型下载: 常用的模型网站有: 在 Civitai 网站使用方法: 科学上网(需自行解决)。 点击右上角筛选按钮,找到所需模型类型,如 Checkpoint=大模型、LoRA=Lora 等。 看照片,感兴趣的点进去,点击右边“Download”保存到电脑本地。还可点击左上角“Images”,找到喜欢的图片点进去,查看全部信息,复制图片信息。 2. 模型安装: 下载模型后放置在指定目录: 大模型(Ckpt):放入 models\\Stablediffusion VAE 模型:一些大模型需要配合 vae 使用,对应的 vae 放置在 models\\Stablediffusion 或 models\\VAE 目录,然后在 webui 的设置栏目选择。 Lora/LoHA/LoCon 模型:放入 extensions\\sdwebuiadditionalnetworks\\models\\lora,也可以在 models/Lora 目录 Embedding 模型:放入 embeddings 目录 若不知道下载的模型类型,可使用秋叶的模型解析工具 https://spell.novelai.dev/,将模型拖动到空白处查看模型信息。 不会科学上网的,也可在启动器界面直接下载模型,大模型放在根目录的【……\\models\\Stablediffusion】文件夹,VAE 放在根目录的【……\\models\\VAE】文件夹,Embedding 放在根目录下的 embeddings 文件夹。
2024-11-07
如何用大模型和数据接口对话
以下是关于如何用大模型和数据接口对话的相关内容: 大模型入门指南 动手实验 由于作者使用的是 macOS 系统,因此采用 GGML 量化后的模型。官方开源出来的模型大都以 Python 为主,效率一般。作者通常会采用社区内的其他实现,比较有名的项目有: ggerganov/llama.cpp:Port of Facebook's LLaMA model in C/C++ ggerganov/whisper.cpp:Port of OpenAI's Whisper model in C/C++ LLama 首先是编译,为了利用 Metal 的 GPU,可以用如下命令编译。之后需要去 Llama27BChatGGML中下载模型,3G 到 7G 不等,读者可以按需尝试。此外,llama.cpp 还提供了 WebUI 供用户使用,首先启动 server,它默认监听 8080 端口,打开浏览器就可以对话。 Whisper 和 llama 类似,采用 make 命令编译,之后去 ggerganov/whisper.cpp下载量化好的模型,然后转换音频即可,目前只接受 wav 格式,可以用 ffmpeg 转化。输出的 srt 文件如下所示: |Size|Parameters|Englishonly model|Multilingual model|Required VRAM|Relative speed| ||||||| |tiny|39 M|tiny.en|tiny|~1 GB|~32x| |base|74 M|base.en|base|~1 GB|~16x| |small|244 M|small.en|small|~2 GB|~6x| |medium|769 M|medium.en|medium|~5 GB|~2x| |large|1550 M|N/A|large|~10 GB|1x| 一般来说,英文的音频 small 模型就足够了,但是如果是中文,最好用最大的模型。 数据库 通过在工作流中添加数据库节点对数据表进行操作。在工作流中可通过 NL2SQL 方式和代码方式进行调用,支持完整读写模式。 参考以下操作,在工作流中添加并配置工作流节点。在工作流中配置数据库节点前,确保已经搭建了一个 Bot,并在这个 Bot 中创建好了数据表。 1. 单击页面顶部的工作流页签,然后单击创建工作流。 2. 输入工作流名称和工作流的使用描述,然后单击确认。工作流名称和描述可以帮助大语言模型理解什么场景下需要调用该工作流。 1. 在基础节点页签下,将数据库节点拖入到工作流配置画布区域。 2. 根据以下信息配置数据库节点。 2.1. 输入:添加 SQL 执行中需要的参数,可以是一个变量,也可以是一个固定值。 2.2. SQL:输入要执行的 SQL 语句,可以直接使用输入参数中的变量。 可单击自动生成使用大模型生成 SQL。在弹出的页面中,选择这个数据库工作流生效的 Bot 和数据表,然后使用自然语言描述要执行的操作,单击自动生成生成 SQL 语句,最后单击使用。 不支持 Select语法。不支持多表 Join 操作。最多返回 100 行数据。 手把手教你本地部署大模型以及搭建个人知识库 通过 Open WebUI 使用大模型 使用 Open WebUI 1. 首先访问如下网址。当打开这个页面的时候,会让你登陆,这个时候随便使用一个邮箱注册一个账号即可。 1. 和本地大模型进行对话。登陆成功之后,如果已经使用过 ChatGPT 等类似的大模型对话网站,对这个页面应该不陌生。Open WebUI 一般有两种使用方式:第一种是聊天对话;第二种是 RAG 能力,也就是可以让模型根据文档内容来回答问题。这种能力就是构建知识库的基础之一。如果要求不高的话,已经搭建了一个本地大模型了,并且通过 Web UI 实现了和大模型进行对话的功能。 相信通过这么一通折腾,就理解了 ChatGPT 的信息流。至于为什么 ChatGPT 的访问速度比我们自己的要快,而且回答效果要好,有两个原因:快是因为 GPT 大模型部署的服务器配置高;好是因为 GPT 大模型的训练参数多,数据更优以及训练算法更好。如果想要更加灵活的掌握知识库,请接着往下看。
2024-10-21
学习大模型的路径
学习大模型的路径主要包括以下几个步骤: 1. 收集海量数据:就像教孩子成为博学多才的人需要让其阅读大量书籍、观看纪录片、与人交谈一样,对于大模型,要收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。 2. 预处理数据:如同为孩子整理学习资料,AI 研究人员需要清理和组织收集到的数据,包括删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段。 3. 设计模型架构:如同为孩子设计学习计划,研究人员要设计大模型的“大脑”结构,通常是一个复杂的神经网络,例如 Transformer 架构,这种架构擅长处理序列数据如文本。 4. 训练模型:如同孩子开始阅读和学习,大模型开始“阅读”提供的数据,通过反复尝试预测句子中的下一个词,不断重复这个过程,逐渐学会理解和生成人类语言。 此外,关于大模型的底层原理,计算机科学家/工程师以大脑神经元细胞结构为灵感,在计算机上利用概览模型实现对人脑结构的模仿,不过计算机的神经元节点更为简单,本质上只是进行一些加法和乘法运算而后输出。大模型内部如同人类大脑是一个混沌系统,即使是 OpenAI 的科学家也无法解释其微观细节。
2024-11-22
现在哪几家的大模型支持通过手机视频多模态实时交流?
以下几家的大模型支持通过手机视频多模态实时交流: 1. PandaGPT:能够理解不同模式的指令并根据指令采取行动,包括文本、图像/视频、音频、热、深度和惯性测量单位。 2. VideoLLaMA:引入了多分支跨模式 PT 框架,使语言模型能够在与人类对话的同时处理给定视频的视觉和音频内容。 3. 视频聊天 GPT:专门为视频对话设计,能够通过集成时空视觉表示来生成有关视频的讨论。 4. NExTGPT:端到端、通用的 anytoany 多模态语言模型,支持图像、视频、音频、文本的自由输入输出。
2024-11-22
模型微调怎么解决多轮对话容易受到上轮对话的影响问题
在解决模型微调中多轮对话容易受到上轮对话影响的问题时: 对于多轮对话,现实中常伴随指代问题,如使用“它”“他们”“我们”等代词。若仅依据原始提问检索知识片段,可能导致结果不精确或无法检索到信息。同时,对模型回复内容的限制可能影响多轮对话流畅性甚至中断。 为提升对话系统性能和用户体验,需开发提示词解决多轮对话中的指代消解问题,确保模型能在连续交流中提供准确连贯回答。但由于“指代消解”需多轮对话完成,单次交互无法达成,所以要转换测试形式,先解决“指代消解”问题再进行下一轮答复。 首先准备指代消解所需提示词,这里使用的“指代消解”提示词是用 CoT 写出的思维链,列举不同推理情景,让模型适应并推理出需消解的代词,再根据结果重新组织问题。 接着复现指代消解步骤,如进行第一轮对话,提出问题“尼罗河是什么?”,系统召回相关知识片段并回复,然后开始指代消解。 另外,聊天模型通过一串聊天对话输入并返回生成消息输出。聊天格式虽为多轮对话设计,但对单轮任务也有用。会话通过 messages 参数输入,包含不同角色和内容的消息对象数组。通常会话先有系统消息设定助手行为,再交替使用用户和助手消息。当指令涉及之前消息时,包含聊天历史记录有帮助,若超出模型限制需缩减会话。
2024-11-21
企业做自己的小模型,需要用到的工具及工具背后的公司都有哪些?
企业做自己的小模型,可能会用到以下工具及背后的公司: 1. 在编排(Orchestration)方面,涉及的公司如 DUST、FIAVIE、LangChain 等,其提供的工具可帮助管理和协调各部分及任务,确保系统流畅运行。 2. 部署、可扩展性和预训练(Deployment, Scalability, & PreTraining)类别中,像 UWA mosaicm、NMAREL、anyscale 等公司提供的工具,有助于部署模型、保证可扩展性及进行预训练。 3. 处理上下文和嵌入(Context & Embeddings)的工具,相关公司有 TRUDO、Llamalndex、BerriAI 等,能帮助模型处理和理解语言上下文,并将词语和句子转化为计算机可理解的形式。 4. 质量保证和可观察性(QA & Observability)方面,例如 Pinecone、drant、Vald 等公司提供的工具,可确保模型表现并监控其性能和状态。 此外,还有以下工具和相关公司: 1. 图片生成 3D 建模工具,如 Tripo AI(由 VAST 发布)、Meshy、CSM AI(Common Sense Machines)、Sudo AI、VoxCraft(由生数科技推出)等。 企业还可能涉及具身智能、3D 眼镜、AI 绘本、AI 图书、学习机、飞书的多维表格、蚂蚁的智能体、Coze 的智能体、Zeabur 等云平台、0 编码平台、大模型(通义、智谱、kimi、deepseek 等)、编程辅助、文生图(可灵、即梦等)等方面,可能需要相应资质。
2024-11-20
机器学习模型怎么做销量分析
以下是关于如何使用机器学习模型进行销量分析的分步骤介绍: 第一步:安装运行需要的依赖项。 第二步:准备数据集。 用于实验可以尝试用模拟数据集,模拟数据的批次是 117,跑出来的形状是 117 组数据,训练集占 78%(91 组),测试集占 22%(26 组)。 也可以使用自己的数据集。若本地运行,可让 GPT 改成遍历本地文件地址。 第三步:拆分数据。 第四步:数据预处理。 由于实际数据绝对值落差很大,比如点击率(CTR)通常只有 1%,而媒体花费可能上百万,会影响模型对于每个因素的贡献率判断,因此要做缩放处理(归一化),让每个变量之间的关系对等。 第五步:初始化模型。 这一步数据集训练最费时间,取决于数据量大小和训练步长。 第六步:运算可视化。 自由度较高,常用的例子有: 损失值(预测数值和实际数值的差异,用于辨别模型的准确性,曲线越一致,模型性能越好,极端情况可能有模型过拟合,此时可通过非线性函数处理)。 绘制残差图(评估拟合性)。 所有单一变量对最终销售的贡献。 Baseline 预测(在没有任何外因干预的情况下,销售额的走势,这里用的是模拟数据,趋势不准)。 所有外因对销售的贡献度。
2024-10-21
有什么AI 分析工具可以用来研究市场趋势、消费者行为和竞争对手情况,快速识别受欢迎的产品、价格区间、销量等关键信息。
以下是一些可用于研究市场趋势、消费者行为和竞争对手情况,快速识别受欢迎的产品、价格区间、销量等关键信息的 AI 分析工具: 1. 市场分析方面:有能够处理大量数据的工具,可帮助您快速了解市场动态,比如识别哪些产品受欢迎、价格区间以及销量等关键信息。 2. 关键词优化:部分 AI 工具可以分析和推荐高流量、高转化的关键词,以优化产品标题和描述,提高搜索排名和可见度。 3. 产品页面设计:一些 AI 设计工具能根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 4. 内容生成:AI 文案工具能够撰写有说服力的产品描述和营销文案,从而提高转化率。 5. 图像识别和优化:借助 AI 图像识别技术可以选择或生成高质量的产品图片,更好地展示产品特点。 6. 价格策略:某些 AI 工具可以分析不同价格点对销量的影响,协助制定有竞争力的价格策略。 7. 客户反馈分析:通过 AI 分析客户评价和反馈,了解客户需求,优化产品和服务。 8. 个性化推荐:利用 AI 可根据用户的购买历史和偏好提供个性化的产品推荐,增加销售额。 此外,汽车公司也会使用 AI 来分析市场趋势、消费者行为和销售数据,以便更好地理解客户需求,制定营销策略和优化产品定价。中小企业还能通过使用 AI 工具分析大量的客户和市场数据,为营销、产品开发等部门提供基于数据的建议和指导,形成数据驱动决策的闭环,不断优化业务。
2024-08-18
大模型预测文本
大模型的构建过程通常包括以下步骤: 1. 收集海量数据:如同教孩子成为博学多才的人,让其阅读大量书籍、观看纪录片、与人交谈一样,对于 AI 模型,要收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。 2. 预处理数据:就像为孩子整理学习资料,AI 研究人员需要清理和组织收集到的数据,如删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段。 3. 设计模型架构:如同为孩子设计学习计划,研究人员要设计 AI 模型的“大脑”结构,通常是一个复杂的神经网络,比如 Transformer 架构,这种架构擅长处理序列数据如文本。 4. 训练模型:如同孩子开始阅读和学习,AI 模型开始“阅读”提供的数据,反复尝试预测句子中的下一个词,通过不断重复这个过程,逐渐学会理解和生成人类语言。 大模型存在一些问题: 1. 输出结果具有不可预测性,静态的训练数据导致知识存在截止日期,无法即时掌握最新信息,通用的基础大模型无法满足实际业务需求。 2. 知识具有局限性,模型自身的知识源于训练数据,对于实时性、非公开或离线的数据无法获取。 3. 存在幻觉问题,会在没有答案时提供虚假信息、过时或通用的信息,从可信度低非权威来源提供结果等。 4. 数据安全性是企业关注的重点,企业不愿承担数据泄露风险,将私域数据上传第三方平台训练。 而 RAG 是解决上述问题的有效方案,它能让大模型从权威、预先确定的知识来源中检索、组织相关信息,更好地控制生成的文本输出,用户也能深入了解 LLM 生成最终结果的过程。RAG 可与微调结合使用,两者不冲突。RAG 类似于为模型提供教科书,适用于回答特定询问或解决特定信息检索任务,但不适合教模型理解广泛领域或学习新语言、格式或样式。微调类似于让学生内化知识,适用于模型需要复制特定结构、样式或格式的情况。参考资料:《RetrievalAugmented Generation for Large Language Models:A Survey》(https://arxiv.org/pdf/2312.10997.pdf)
2024-11-05
科学问题二:XXX(小标题) 问题挑战:如何通过构建合理的先验知识或模型假设,刻画出数据中的可变性?如何利用从少量样本中提取到的变化信息来预测未见数据的表现? XXX XXX(问题挑战一的方法) XXX)问题挑战二的方法) 请将XXX补充完整,重点在预测,如何刻画和利用数据分布的“变化性”
以下是为您补充完整的内容: 对于如何通过构建合理的先验知识或模型假设,刻画出数据中的可变性,以及如何利用从少量样本中提取到的变化信息来预测未见数据的表现,我们可以参考以下方法: 在准备 LLM 数据方面,对于制作 LLM 微调数据集,首先获取文本格式非结构式和网络式结构式的数据。对于 QA 数据集,主要依靠已有的大语言模型生成,根据不同文本设定不同的提示词以获取尽可能多且信息量丰富的 QA。先对文件中的文本进行切割,将每一大部分放进一个约 200 字的 txt 文件里,然后设定提示词模板。例如对于公司产品手册,模板可以是:“你是一个聪明的 xxx 公司的 xxx 产品的产品经理。给你一段 xxxxx 有限公司 xx 产品相关的文本,你必须依据文本想出十个不同的问题和这十个问题对应的答案。你想出的问题可以被用来测试公司内部 xxx 职员的专业能力。你想出的问题可以是使用公司产品的用户会想到的问题。你想出的问题和答案必须和所给文本相关。你回答得答案必须可以让使用产品的用户理解。当你想出问题和答案后,你必须用以下格式回复:```
2024-10-21
我是一名研究生,我想利用python实现机器学习,对碳排放进行预测,需要你帮我写出代码,我应该问你哪些问题或者给你哪些前提条件
在您希望利用 Python 实现机器学习对碳排放进行预测并让我为您编写代码时,您需要向我提供以下关键信息和问题: 1. 您所拥有的碳排放相关数据的格式和特征,例如数据的类型(数值型、分类型等)、数据的字段(如时间、能源消耗、生产活动等)。 2. 您对预测模型的性能要求,比如预测的精度、召回率等指标的期望。 3. 您是否有特定的机器学习算法倾向,或者是否希望我根据数据特点为您推荐合适的算法。 4. 数据的规模和分布情况,这会影响模型的训练时间和复杂度。 5. 您是否有可用的预处理步骤,例如数据清洗、特征工程的想法或已经完成的部分。 6. 对于模型的可解释性是否有要求。 7. 您的计算资源情况,例如内存、CPU 核心数等,以便选择适合的模型和训练策略。
2024-10-10
AI对于政府预算编制与预测的影响
AI 对于政府预算编制与预测具有多方面的影响: 案例方面:摩根大通用 AI 创建金融模型,通过处理大量数据集、检测模式并整合多个变量,完善经济和货币预测,使中央银行和政府能从更准确的通胀、国内生产总值增长和失业率等指标预测中受益,为政策选择提供信息,改善利率、流动性管理和宏观审慎措施的决策。 美国政府行动方面:拜登签署的 AI 行政命令指出,AI 能帮助政府为美国人民提供更好的结果,能扩大机构的监管、治理和福利分配能力,降低成本并增强政府系统的安全性。同时,总统指示采取一系列行动,包括为机构使用 AI 发布指导,帮助机构更快速、更便宜、更有效地获取特定 AI 产品和服务,加速招聘 AI 专业人员等。此外,美国《2024 财年预算申请》专门划拨总统预算中的一部分用于人工智能开发和部署,白宫科技政策办公室呼吁获得人工智能资助的机构将人工智能在执行任务时的公平性与可信度作为首要目标,并保护权利和隐私的技术研发。还发布了信息征集,以帮助制定国家 AI 战略。
2024-10-10
AI对于预算编制与预测的影响
AI 对于预算编制与预测具有多方面的影响: 更动态的预测和报告: 生成式 AI 能够帮助编写 Excel、SQL 和 BI 工具中的公式和查询,实现分析自动化,还能发现模式,从更广泛、更复杂的数据集中为预测建议输入,例如考虑宏观经济因素,并建议如何适应模型以支持公司决策。 可以自动创建文本、图表、图形等内容,并根据不同示例调整报告,无需手动整合数据和分析到外部和内部报告中。 对于会计和税务团队,能帮助综合、总结,并就税法和潜在扣除项提出可能答案。 能帮助自动生成和调整采购和应付账款方面的合同、采购订单、发票以及提醒。 挑战: 使用金融数据训练 LLMs:新进入者可能先使用公开金融数据优化模型,再用自身收集的数据;现有参与者虽可利用现有专有数据,但往往过于保守,这给新进入者带来竞争优势。 模型输出准确性:金融问题答案影响重大,新的 AI 模型需尽可能准确,初期人类常作为最终验证环节。 以下是一些相关案例: “工作流:成为生产力工具”,介绍了个人如何用 ChatGPT 提升生产力。 “金融:摩根大通用 AI 创建金融模型”,人工智能可完善经济和货币预测,使中央银行和政府受益。 “工作:人类和 AI 协作效率探讨”,表明使用 AI 的被测试者在任务完成量、速度和结果质量上有显著提升。
2024-10-10
有很多通过学习易经的卦象来预测未来,通过AI能不能学习易经来占卦,要怎么做
目前关于通过 AI 学习易经来占卦的相关内容较为复杂和多样。 一方面,有案例如“问事屋一个摇签算卦 Bot”,其创建者原本打算做基于六爻周易解卦的 bot,但因 AI 对结果的分析和推理存在不足,后转换思路,以庙里摇签抽签的经历为灵感,收集整理相关签文并搭建工作流。 另一方面,从理论角度来看,AI 模型具有一定的灵活性和学习能力,但如同简单神经网络在预测未来时可能失败一样,AI 在学习易经占卦这类复杂且具有深厚文化内涵和哲学思考的领域,仍面临诸多挑战和限制。 需要注意的是,易经占卦更多是一种文化和哲学的表达方式,其结果并非具有科学可验证性的准确预测。
2024-10-06