Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

非技术背景的产品经理如何快速上手AI

Answer

对于非技术背景的产品经理快速上手 AI ,可以参考以下建议:

  1. 从基础小任务开始:
    • 让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,学会必备的调试技能。
    • 若使用 o1-mini ,可在提示词最后添加“请生成 create.sh 脚本,运行脚本就能直接创建插件所需要的所有文件。请教我如何运行脚本。”(Windows 机器则是 create.cmd),它会为您生成代码并给出提示,方便一次性生成多个目录和文件。
  2. 明确项目需求:
    • 通过和 AI 的对话,逐步明确项目需求。
    • 让 AI 帮助梳理出产品需求文档,包含影响技术方案选择的细节,后续开发时每次新起聊天就把文档发给 AI 并告知在做第几点功能。

此外,在将 AI 大模型能力接入微信等应用场景时,非技术从业者需要注意解决模型存在幻觉、胡乱回答的问题。在配置问答机器人时,要关注左侧的 AI 模型、提示词、知识库这三处配置。

对于 AI 产品经理,个人划分仅供娱乐和参考:

  1. 入门级:能通过 WaytoAGI 等开源网站或一些课程了解 AI 概念,使用 AI 产品并尝试动手实践应用搭建。
  2. 研究级:有技术研究和商业化研究两个路径,能根据需求场景选择解决方案,或利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。
  3. 落地应用级:有成功落地应用的案例并产生商业化价值。

总之,AI 产品经理要懂得技术框架,不一定要了解技术细节,而是对技术边界有认知,最好能知道一些优化手段和新技术的发展。产品经理要关注的还是场景、痛点、价值。

Content generated by AI large model, please carefully verify (powered by aily)

References

超越贪吃蛇——技术纯小白如何用 AI 开发真正的应用

推荐你从一个最最基础的小任务开始让AI先帮你按照best practice写一个say hello的示例程序,并解释每个文件的作用及程序运行的逻辑。这样,你可以通过最基础的绝对不会出错的小任务,来学会必备的调试技能。“我在学习写chrome插件。请选择最适合小白上手的技术栈,按照best practice为我生成一个简单的示范项目,但要包含尽可能全面的典型文件和功能。请为我讲解每个文件的作用和程序运行的逻辑。”此处要求AI按照best practice来写非常重要:文件一开始就有良好的组织,后续功能复杂了才不会乱套。还有一个偷懒小妙招:如果你用的是o1-mini,你可以在prompt最后添加这句:“请生成create.sh脚本,运行脚本就能直接创建插件所需要的所有文件。请教我如何运行脚本。”(如果windows机器则是create.cmd)足够勤勉的的o1-mini会为你生成一段超级长的代码,并给出提示,你只需要复制粘贴并执行,一次性生成十多个目录和文件,超方便。[heading2][heading1]2明确项目需求[content]你可以通过和AI的对话,来逐步明确项目需求。(如果你是训练有素的产品经理,可以忽略这一步)“我想要开发一个XXX。你能否像一个高级别的还懂技术的产品经理指导初级产品经理那样,向我提问,帮我梳理清产品功能,尤其要注意可能会涉及到技术方案选择的关键点。请一问一答,帮我由全局到细节逐步梳理。不要一口气问我太多问题。”来来回回的对话后,你可以让AI帮助你梳理出产品需求文档。这样的文档会包含影响技术方案选择的细节,比直接给AI一段口头的需求描述要准确地多。在后续开发的时候每次新起一个聊天就把文档发给AI并告知你现在在做第几点功能,会非常方便。[heading2]

【AI+知识库】商业化问答场景,让AI回复更准确,一篇专为所有“小白”讲透RAG的实例教程(上篇)

前言在把AI大模型能力接入微信后,发现很多朋友想要落地在类似客服的应用场景。但目前大模型存在幻觉,一不留神就胡乱回答,这在严肃的商用场景下是不可接受的。当我想要解决此问题时,发现虽然资料很多,但是多数太偏“技术向”,对于很多和我一样的非技术从业者来说,犹如天书一般。有落地需求的朋友们,即使完成了通路搭建,也无法真正的应用。落地场景,幻觉是不得不直面的问题。而非技术从业者的小白们,很难找到一个“说人话”的文章,让他们完全了解并应用。而我对此比较感兴趣,同时作为产品经理,有一些用户思维和技术基础。因此我斗胆在整理、学习了多位前辈的成果后,写一篇讲给“小白”们的教程。⚡以下内容,如有错漏,欢迎留言补充、批评、指正。一、对话示例如果我直接讲理论部分,我相信小白强迫自己看了前200字就会关掉窗口。因此,我们先将这个过程具象化。以下是一个问答机器人的界面。这是一个示例,你可以把右侧的对话当做是微信的对话框,这些对话交互是可以在任何一个受支持的窗口下实现的。上方页面左侧画红框的地方,是这个“问答机器人”的配置,右侧是与“机器人”的一轮对话。左侧有三处配置:AI模型提示词知识库。模型、提示词、知识库三者可以想象成:

AI 市场与 AI 产品经理分析——2024 是否是 AI 应用创业的好机会

个人做了一下划分,仅供娱乐和参考。1)入门级能通过WaytoAGI等开源网站或一些课程了解AI的概念,使用AI产品并尝试动手实践应用搭建(对应的画像可能是喜欢听小宇宙APP的播客或浏览AI相关的文章哈哈);以前互联网刚兴起的时候,部分用谷歌的人会比用百度的有优越感,现在可能用AI搜索的更有优越感(当然我感觉都没啥好优越的,都是工具,关键还是看能用工具产出什么)。2)研究级我理解这里有两个路径,一个是技术研究路径,一个是商业化研究路径;对应传统互联网偏功能实现的产品经理和偏商业运营的产品经理,当然最好是同一个人,我一直的理念是产品运营不分家(产品即运营)。这个阶段对应的画像可能是对某一领域有认知,可以根据需求场景选择解决方案,或利用Hugging face等工具手搓出一些AI应用来验证想法;3)落地应用这一阶段我理解的画像就是有一些成功落地应用的案例,如产生商业化价值。对应传统互联网PM也有三个层级:1)负责功能模块与执行细节;2)负责整体系统与产品架构;3)熟悉行业竞争格局与商业运营策略;总结来说,对AI产品经理要求懂得技术框架,不一定要了解技术细节,而是对技术边界有认知,最好能知道一些优化手段和新技术的发展。AI说白了也是工具和手段,我认为产品经理要关注的还是场景、痛点、价值。举一些我们之前做的落地案例(我个人也是在2017年开始关注机器学习,还报了风变的Python课程,不过当时没有深入研究)。

Others are asking
非技术背景的产品经理如何快速掌握AI相关知识
对于非技术背景的产品经理,要快速掌握 AI 相关知识,可以从以下几个方面入手: 1. 理解产品核心技术:了解基本的机器学习算法原理,有助于更好地理解 AI 产品的核心技术,从而做出更合理的产品决策。 2. 与技术团队有效沟通:掌握一定的算法知识,能够与开发团队进行更有效的沟通,减少信息不对称带来的误解。 3. 评估技术可行性:在产品规划阶段,评估某些功能的技术可行性。了解算法知识可以帮助做出更准确的判断。 4. 把握产品发展方向:AI 技术发展迅速,了解算法前沿可以更好地把握产品的未来发展方向。 5. 提升产品竞争力:了解算法可以帮助发现产品的独特优势,提出创新的产品特性,从而提升产品的竞争力。 6. 增强数据分析能力:很多 AI 算法都涉及到数据处理和分析,掌握相关知识可以提升数据分析能力。 在实际应用中,比如在商业化问答场景中,非技术从业者需要了解一些落地的配置,如问答机器人的配置包括 AI 模型、提示词、知识库等。 此外,在成为 AI 摊主方面,不同的人群有不同的优势。技术背景丰富的人具备扎实的技术基础,产品开发与管理经验丰富的人能推动产品落地与优化,AI 爱好者与学习者渴望提升技能,内容创作与营销能力强的人能将 AI 技术与商业化需求结合。
2024-11-06
请给我推荐一个适合非技术人员学习的提示词工程手册,但是我不希望提示词工程手册太实操导向,需要包括背后的原理和逻辑,而不是只像一个公式一样的教给我
以下为您推荐适合非技术人员学习的提示词工程手册: 1. 小七姐:Prompt 喂饭级系列教程 小白学习指南(二) 强调对框架的理解和运用,介绍了多种提示词框架,如情境,并提供了学习的三步走:懂原理、找需求、用框架。 2. 19. RAG 提示工程系列(一) 虽然网络上提示工程资料众多,但 RAG 任务中提示工程的资料相对较少。此系列将带领大家了解 RAG 架构的概念、组成、痛点及提示词工程在其中的应用,并指导实操案例,帮助编写调试符合企业生产级标准的提示词。 3. VIRTUAL Claude 官方文档提示词工程最佳实践@未来力场编译版(中英对照) 指出提示词工程是一门实证科学,需要不断测试和迭代,包括开发测试用例、构建初版提示词、进行用例测试、优化提示词和分享完善后的提示词,同时不要忘记测试边缘情况。
2024-08-15
有没有给非技术人员的提示词工程手册
以下是为您提供的非技术人员的提示词工程相关内容: 提示工程是一门较新的学科,关注提示词开发和优化,帮助用户将大语言模型用于各场景和研究领域。掌握提示工程相关技能有助于用户了解大型语言模型的能力和局限性。 研究人员可利用提示工程提升大语言模型处理复杂任务场景的能力,如问答和算术推理能力。开发人员可通过提示工程设计、研发强大的工程技术,实现和大语言模型或其他生态工具的高效接轨。 提示工程不仅是设计和研发提示词,还包含与大语言模型交互和研发的各种技能和技术,在实现和大语言模型交互、对接,以及理解其能力方面都起着重要作用。用户可以通过提示工程提高大语言模型的安全性,也可以借助专业领域知识和外部工具来增强其能力。 以下是一些相关资源: 小七姐:Prompt Engineering a Prompt Engineer 精读翻译,其中提到就像提示词对最终任务性能的重要性一样,方程 2 中引入的元提示词在新提出的提示词的质量,以及自动提示词工程的整体质量中扮演着重要角色。 一些精选的 Prompt 网站,如: PromptPerfect:帮您自动优化提示词,您可以看到优化前后的对比,网站地址: Prompt Engineering Guide:GitHub 上点赞量非常高的提示工程指南,基于对大语言模型的浓厚兴趣编写,介绍了大语言模型相关的论文研究、学习指南、模型、讲座、参考资料、大语言模型能力以及与其他与提示工程相关的工具,网站地址: 未来力场:OpenAI GPT 最佳实践,对 OpenAI 官方文档非常清晰的解读,文档地址:
2024-08-15
兼职督学岗位,通过飞书平台为高中生服务,包括:1)解答学习方法等疑问;2)发送测试卷;3)提交测试卷后通知后端制作学习计划;4)发送学习计划链接;5)定期推送知识点和打卡提醒;6)查看打卡并反馈。所有文档通过飞书云文档链接发送。现在我想通过利用coze将deepseek等ai接入飞书的形式,制作出产品赋能督学在这一岗位的工作效率,并希望在这一过程中,锻炼我的ai能力,再想办法让上司或者老板为我这个产品支付报酬,请问我可以从哪些角度开发产品?
以下是一些您可以从以下角度开发产品来赋能兼职督学岗位的工作效率,并锻炼您的 AI 能力,以争取上司或老板为产品支付报酬: 1. 利用 Coze 的多语言模型支持,为解答高中生学习方法等疑问提供更准确和全面的回答。 2. 借助插件系统,集成与学习相关的插件,如学习资料查询、学习工具推荐等,丰富服务内容。 3. 运用知识库功能,上传各类学科知识点、优秀学习案例等,方便在服务中快速调用和推送。 4. 利用数据库和记忆能力,记住每个高中生的学习情况和需求,提供个性化服务。 5. 设计工作流,例如自动发送测试卷、自动通知后端制作学习计划、自动推送学习计划链接等流程,提高工作效率。 6. 采用多代理模式,针对不同学科或学习阶段设置专门的代理,提供更精准的服务。 7. 利用 Coze 易于发布和分享的特点,将服务产品推广给更多需要的高中生和督学人员。
2025-02-18
兼职督学岗位,通过飞书平台为高中生服务,包括:1)解答学习方法等疑问;2)发送测试卷;3)提交测试卷后通知后端制作学习计划;4)发送学习计划链接;5)定期推送知识点和打卡提醒;6)查看打卡并反馈。所有文档通过飞书云文档链接发送。现在我想通过利用coze将deepseek等ai接入飞书的形式,制作出产品赋能督学在这一岗位的工作效率,并希望在这一过程中,锻炼我的ai能力,再想办法让上司或者老板为我这个产品支付报酬,请问我可以从哪些角度开发产品?又该如何将它推销给上司?
以下是关于您利用 Coze 和 DeepSeek 等 AI 接入飞书来赋能兼职督学岗位工作效率的一些建议: 开发产品的角度: 1. 智能答疑系统:利用 AI 技术,对高中生常见的学习方法疑问进行自动分析和回答,提高答疑效率和准确性。 2. 个性化测试卷生成:根据学生的学习情况和需求,通过 AI 生成个性化的测试卷。 3. 学习计划优化:基于学生提交的测试卷结果,利用 AI 更精准地制定学习计划。 4. 知识点精准推送:运用 AI 分析学生的学习进度和薄弱环节,定期推送更具针对性的知识点。 5. 打卡提醒优化:通过 AI 实现更灵活、个性化的打卡提醒方式。 推销给上司的方法: 1. 展示效率提升:详细说明产品如何大幅提高兼职督学的工作效率,节省人力和时间成本。 2. 个性化服务优势:强调产品能够为高中生提供更个性化、精准的服务,提升学习效果。 3. 数据支持:提供相关的数据和案例,证明 AI 赋能后的积极效果。 4. 成本效益分析:说明开发和使用该产品的成本相对较低,而带来的收益显著。 5. 未来发展潜力:阐述产品在不断优化和拓展功能方面的潜力,适应更多的教育需求。 另外,Coze 是由字节跳动推出的 AI 聊天机器人和应用程序编辑开发平台,专为开发下一代 AI 聊天机器人而设计。它具有多语言模型支持、插件系统、知识库功能、数据库和记忆能力、工作流设计、多代理模式、免费使用、易于发布和分享等特点。这些特点可以为您的产品开发提供有力支持。
2025-02-18
党校老师或者大学老师备课,用哪一款AI更好用
以下是为党校老师或大学老师备课推荐的一些 AI 工具和相关案例: 1. 语言学习类: ,能够实时交流,并对发音或措辞给予反馈。 2. 学科指导类: 数学方面,像可以指导学生解决数学问题。 历史方面,通过模拟与杰出人物的聊天来教授历史,如。 3. 写作辅助类: 如 Grammarly、等工具帮助学生克服写作难题,并提升写作水平。 处理其他形式内容的产品,如协助创建演示文稿。 4. 减负指南类: 人机智慧学习协作框架,包括个性化学习计划,分析学生表现并根据知识差距和个人学习风格创建定制的学习路径。 课程开发/学习沉浸,生成模型生成图像、文本和视频,转化为补充教育材料、作业和练习题。 社会互动/沟通,与新的 AI 工具(如口语形式的 GPT4o)结合学习。 星火教师助手、知网备课助手。 5. 案例参考: 一个历史老师用 GPT 给学生讲课,通过 GPT 生成一个“沉浸式”历史片段游戏,让学生扮演一个角色“设身处地”地做决策,学生的作业是找出 GPT 的错误。相关链接:https://resobscura.substack.com/p/simulatinghistorywithchatgpt 、https://chat.openai.com/share/86815f4e674c4410893c4ae3f1b7412e/continue 。 需要注意的是,AI 与优秀的人类教师相比仍有差距,如缺乏课时设计,且教学目标设计缺乏合理的梯度。人机融合是大势所趋,AI 的高效率与人类教师的经验相结合。
2025-02-18
哪个ai工具可以根据现有的网站或截图生成源代码
以下是一些可以根据现有的网站或截图生成源代码的 AI 工具: :借助 GPT4 Vision 的能力,能直接将屏幕截图转换为 HTML/Tailwind CSS,并利用 DALLE 3 的图像生成能力生成相似图像。 此外,还有一些与网站制作相关的 AI 工具: Wix ADI 。基于用户提供的信息自动生成定制化网站,提供多个设计选项和布局,集成了 SEO 工具和分析功能。 Bookmark:网址为 。通过询问用户几个简单问题快速生成网站,提供直观的拖放编辑器,包括多种行业模板和自动化营销工具。 Firedrop:网址为 。其 AI 设计助手 Sacha 可根据用户指示创建和修改网站设计,提供实时编辑和预览功能,包含多种现代设计风格和自定义选项。 The Grid:网址为 。其 AI 设计助手 Molly 可以自动调整网站的设计和布局,基于内容和用户互动进行优化,支持多种内容类型。 在 AI 代码生成和开发工具方面: :由 Wingware 开发的专为 Python 编程设计的开发环境,集成了多种功能,年度许可证起价 179 美元/月。 :开源的 AI 开发助手,能根据产品需求生成完整的代码库,遵循 MIT 许可证。 :Sourcegraph 的 AI 工具,作为全面的编程助手能理解整个代码库,个人使用免费。
2025-02-18
生成式AI教育场景应用 项目式学习 中小学案例
以下是一些中小学在生成式 AI 教育场景应用中采用项目式学习的案例: 北京市新英才学校: 开设“AI 创作家”小学课后服务特色课程,12 个五、六年级的学生在老师的引导和帮助下,主导设计一款实用的桌游。 学生们提出解决学校面积大导致新生和访客迷路的问题,决定制作一款学校地图桌游。 课程中,学生有时听老师讲解人工智能知识和工具使用方法,有时自己写 prompt 与大语言模型对话,还使用文生图 AI 工具生成桌游卡牌背后的图案,手绘第一版学校地图,选择游戏机制并梳理游戏流程。 在教育领域,生成式 AI 带来了诸多改变: 解决了教育科技长期以来在有效性和规模之间的权衡问题,可大规模部署个性化学习计划,为每个用户提供“口袋里的老师”,如实时交流并给予发音或措辞反馈的语言老师。 出现了众多辅助学习的产品,如教授新概念、帮助学习者解决各学科问题、指导数学作业、提升写作水平、协助创建演示文稿等。
2025-02-18
生成式AI教育场景应用 中小学案例
以下是北京市新英才学校在中小学教育场景中生成式 AI 的应用案例: 特色课程方面:学校开设了“AI 创作家”小学课后服务特色课程,12 个五、六年级的学生在老师的引导下,用 AIGC 工具设计一款实用的桌游。学生主导从收集需求、定义问题到设计背景、机制、内容、视觉,再到测试、迭代的全过程。例如,为解决学校面积大导致新生和访客迷路的问题,学生决定做一款学校地图桌游。课程中,学生学习人工智能知识、使用工具写 prompt 与大语言模型对话,还使用 OpenInnoLab平台生成桌游卡牌图案、手绘地图、选择游戏机制、梳理游戏流程。此外,还邀请中国传媒大学的吴卓浩教授合作,采用“大学生,小学生同上一节课”的方式,大学生为小学生讲解 AI 工具、试玩桌游。本学期,学生们测试并迭代桌游,使用 3D 打印机打印配件,用 ChatGPT 和 Midjourney 增强视觉设计,用 Kimi 辅助编写说明书,还计划让学生尝试用文生音乐工具 Suno 制作歌曲加入桌游 2.0 版本。 英语主课方面:初中部的英语课也融入了 AIGC 工具。魏一然协助初中部的英文老师杨佳欣和刘奕玚进行探索。在课程初期,更多是老师带着学生使用 AIGC 工具,prompt 由学生提出,老师引导。例如,在研究学校食堂食物浪费问题时,老师带着学生与 ChatGPT 对话,了解处理方法,让 ChatGPT 为学生生成生词解释和例句,形成生词库,并灵活加工生词生成题目、游戏或文章帮助学生复习单词。在关于社交媒体的英语辩论课上,尝试让学生自主使用 AIGC 工具做辩论准备。
2025-02-18
代码小白想要学习上手aiagent 请给我制定高效学习流程
以下是为代码小白制定的学习 AI Agent 的高效流程: 1. 基础了解 度过第一阶段,了解 AI 的基本原理和发展阶段。 2. 选择方向 鉴于您是代码小白,建议从不需要代码基础的 Coze 工作流学起。它适用所有人,只要能发现智能体的需求,就可以用工作流来实现。 3. 学习资源 可以参考《雪梅 May 的 AI 学习日记》,了解在业务运营领域如何通过 Coze 接触大量应用场景和进行 prompt 练习。 阅读安仔的文章,学习如何使用极简未来平台、腾讯云轻量应用服务器、宝塔面板和 Docker 搭建一个 AI 微信聊天机器人,了解相关技术组件的选用、配置步骤、费用和运维问题。 查看元子的分享,如“小白的 Coze 之旅”,深入了解 Coze 平台。 4. 加入社群 可以加入免费的 AI Agent 共学群,基于 WaytoAGI 社区等高质量信息源,分享时下 AI Agent 相关的玩法、经验和前沿资讯。通过微信号 Andywuwu07 或扫描二维码加微信,备注 AI 共学即可加入。 希望以上流程对您有所帮助,祝您学习顺利!
2025-02-05
职场人士想学习AI应该怎么上手?
对于职场人士学习 AI ,可以按照以下步骤上手: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 如果您偏向技术研究方向,学习路径包括: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您偏向应用方向,学习路径包括: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 对于不会代码的职场人士,还可以参考“写给不会代码的你:20 分钟上手 Python+AI”,在接下来的 20 分钟内,循序渐进地完成以下任务: 1. 完成一个简单程序。 2. 完成一个爬虫应用,抓取公众号文章。 3. 完成一个 AI 应用,为公众号文章生成概述。
2025-01-27
coze中的工作流 智能体 应用 bot 分别有什么特点差异共同点,作为新手小白应该如何逐步上手
Coze 中的工作流、智能体、应用 Bot 具有以下特点、差异和共同点: 特点: 工作流:包括图像工作流,可进行图像流分类(如智能生成、智能编辑、基础编辑),按照构架配置工作流,调试效果等。 智能体:设定角色,对工作流有详细描述和调用规则,能实现从简单到复杂的不同流程自动化。 Bot:有不同的运作模式(单智能体模式和多智能体模式),可选择模型,配置技能(如插件、工作流、图像流和触发器等),还有知识区域和记忆区域。 差异: 工作流侧重于具体的任务流程配置和图像处理方面。 智能体更注重角色设定和工作流的调用规则。 Bot 则在运作模式、模型选择和技能配置上有独特之处。 共同点: 都与 Coze 平台相关,相互配合以实现各种功能。 对于新手小白逐步上手的建议: 先了解 Coze 平台的基本操作和界面。 从简单的图像工作流开始尝试,熟悉工作流的创建和配置流程。 逐步学习智能体的设定和工作流的调用规则。 再深入研究 Bot 的模式选择、模型选择和技能配置。 参考平台提供的示例和教程,多进行实践和调试。
2024-12-31
我是AI小白,如何快速上手AI软件啊?
以下是为您提供的快速上手 AI 软件的建议: 对于小白来说,要快速上手 AI 软件,可以参考以下步骤: 使用 Cursor AI 编程软件: 1. 分辨两个模式:Chat 模式可与大模型对话,Composer 模式能即时反馈,直接创建文件和填写代码。 2. 例如在 Composer 模式下输入“给我创建一个 2048 的网页游戏吧”,等待 1 2 分钟生成。 3. 生成后可能会有两个文件,可打开文件夹找到 index.html 双击运行。 4. 若环境报错双击打不开,可截图在 composer 对话框询问解决方法。 对于普通人直观初接触 AI 工具: 1. 了解最低成本能直接上手试的工具以及自己能否尝试。 2. 了解现在最普遍/最好的工具及其能达到的效果。 3. 虽然底层都是大模型,但 AI 工具各有侧重且不同公司有各自优化。 4. 为了更直观上手,可选择聊天工具、绘画工具、视频工具、音乐工具等展开体验。 关于每一种工具的详细入门、讲解和应用,WayToAIG 已经分好了类目。
2024-10-11
可以快速上手一键生成PPT的AI软件
以下是一些可以快速上手一键生成 PPT 的 AI 软件: 1. AiPPT.cn:基于自然语言处理技术的语义分析,帮助用户快速生成演示文稿。具有基于图像识别技术的 AI 插件,能实现智能化的 PPT 模板生成、字体自动化排版等功能;基于数据分析技术的个性化推荐,能根据用户需求和偏好提供量身定制的演示文稿模板和素材。通过了国家网信办 PPT 生成算法备案,同时获得 A 股上市公司视觉中国战略投资,拥有 5 亿+版权素材库,10W+PPT 模板,靠订阅工具业务赚钱,为全岗位职场人提供 10 余款 AIGC 工具,满足工作中的多种内容创作需求。 2. 歌者 PPT:完全免费,智能化程度高,可快速将资料转换成精美 PPT,模板和案例库丰富,支持多语言,几乎无需学习成本就能上手使用。 3. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用科大讯飞在语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能,能提高文档编辑效率。 目前市面上大多数 AI 生成 PPT 按照如下思路完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 推荐 2 篇市场分析的文章供参考: 1. 《》 2. 《》
2024-08-27
如何快速上手AI人工智能,并在工作和生活中熟练应用
以下是快速上手 AI 人工智能并在工作和生活中熟练应用的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块进行深入学习。 4. 学习核心产品链路相关概念: 了解 AI 应用,它是以自然语言为主要交互形式,通常包含一个或多个技能。 熟悉技能(Skills),即 AI 应用所具备的各种能力,如应用问答、数据查询、数据更新等。 掌握数据和知识,这是支撑 AI 技能的数据资产,聚合各类数据,包括数据表、分析表、知识库和数据流。 理解记忆,它是存储和检索信息的能力,用于学习和记忆与用户和环境交互中的经验,为用户提供更定制化更精准的服务。 明确权限,即定义数据可被哪些用户访问和操作。 了解模型配置,包括配置 AI 应用使用的模型及相关参数。 掌握应用发布,将开发好的应用发布到不同渠道,如 Lark Bot 和 My AI 等。 学会应用管理,在应用发布上线后,管理应用的数据、进行角色授权、监控应用使用状态等。 5. 对于 Python + AI 的学习: 继承和多态:了解类之间的继承关系以及如何实现多态。 异常处理:理解异常,学习如何使用 try 和 except 语句来处理程序中可能发生的错误。 文件操作:学习文件读写,理解如何使用 Python 来处理文件路径,以及如何列举目录下的文件。 AI 背景知识:了解人工智能、机器学习、深度学习的定义及其之间的关系,简要回顾 AI 的发展历程和重要里程碑。 数学基础:熟悉统计学基础(如均值、中位数、方差等统计概念)、线性代数(如向量、矩阵等基本概念)、概率论(如条件概率、贝叶斯定理)。 算法和模型:了解监督学习(如线性回归、决策树、支持向量机(SVM))、无监督学习(如聚类、降维等算法)、强化学习的基本概念。 评估和调优:了解如何评估模型性能(包括交叉验证、精确度、召回率等),学习如何使用网格搜索等技术优化模型参数。 神经网络基础。
2024-08-22
角色:你是一名房地产开发公司的总经理 背景:现在要在公司内部推广AI工具的使用,通过具体AI工具解决公司内部各部门具体问题,来提升工作效率。 任务:请你完成年度AI提升工作效率的工作策划, 要求:工作策划要有目标、行动计划、团队人员需求及分工、具体AI工具及对应解决的问题、需要费用明细及资源需求、有哪些风险点
由于您提供的内容中没有具体的相关信息,以下为您生成一份较为通用的房地产开发公司年度 AI 提升工作效率的工作策划示例,您可以根据实际情况进行调整和完善。 一、目标 通过在公司内部推广 AI 工具的使用,在本年度内实现各部门工作效率提升 30%以上,降低人力成本 15%左右,提高项目质量和客户满意度。 二、行动计划 1. 第一季度 进行市场调研,了解适合房地产开发行业的 AI 工具。 组织内部培训,让员工初步了解 AI 工具的应用。 2. 第二季度 针对各部门需求,选择并引入相应的 AI 工具进行试点应用。 建立数据收集和分析机制,为 AI 工具的优化提供支持。 3. 第三季度 对试点部门的应用效果进行评估和总结。 根据评估结果,对 AI 工具进行调整和优化。 4. 第四季度 在全公司范围内推广成熟的 AI 工具应用。 对全年的 AI 应用效果进行总结和评估。 三、团队人员需求及分工 1. 成立 AI 推广小组 组长:负责整体工作的规划和协调。 技术专家:负责 AI 工具的选型、配置和技术支持。 培训师:负责组织员工培训和指导使用。 数据分析师:负责收集和分析数据,为工具优化提供依据。 部门联络人:每个部门指定一名联络人,负责与推广小组沟通本部门的需求和问题。 四、具体 AI 工具及对应解决的问题 1. 智能客服系统 解决客户咨询响应不及时的问题,提高客户满意度。 2. 项目管理 AI 工具 优化项目进度安排和资源分配,提高项目管理效率。 3. 市场分析 AI 工具 精准分析市场趋势和客户需求,为项目定位提供依据。 五、需要费用明细及资源需求 1. 费用明细 AI 工具采购费用:万元。 培训费用:万元。 技术支持和维护费用:万元。 数据采集和分析费用:万元。 2. 资源需求 服务器和存储设备,以支持 AI 工具的运行和数据存储。 足够的网络带宽,确保数据传输的流畅性。 六、风险点 1. 员工对新技术的接受度和适应能力可能较低,需要加强培训和引导。 2. AI 工具的应用效果可能不如预期,需要及时调整和优化。 3. 数据安全和隐私保护可能存在风险,需要建立完善的防护机制。
2025-02-13
产品经理与转变为ai产品经理,需要哪些步骤
产品经理转变为 AI 产品经理,需要以下步骤: 1. 学习技术原理:了解诸如 RAG(检索增强生成)、PAL(程序辅助语言模型)、ReAct 框架等相关技术知识。RAG 是将外部知识库切分成段落后转成向量存在向量数据库,用户提问时段落信息会和问题一起传给 AI,还可搭建企业和个人知识库。PAL 不让 AI 直接生成计算结果,而是借助 Python 解释器等工具。ReAct 框架是 reason 与 action 结合,让模型动态推理并与外界环境互动,可借助 LangChain 等框架简化构建流程。 2. 关注技术脉络:关注或直接阅读技术论文,虽然有难度,但这对于理解技术很重要,同时要完成一定的知识储备。 3. 了解前沿观点:例如 Transformer 是仿生算法的阶段性实现,未来可能不再使用;在端到端算法时代,不应继续使用冯诺依曼架构;在存算一体的芯片上会诞生全新算法等。 总之,转型需要不断学习和积累相关知识,关注行业动态和前沿观点。
2025-02-12
能够模仿产品经理,把我的需求描述整理成格式化的PRD的工具有什么
以下是一些能够模仿产品经理,把您的需求描述整理成格式化 PRD 的工具: 1. 用户研究、反馈分析:Kraftful(kraftful.com) 2. 脑图:Whimsical(whimsical.com/aimindmaps)、Xmind(https://xmind.ai) 3. 画原型:Uizard(https://uizard.io/autodesigner/) 4. 项目管理:Taskade(taskade.com) 5. 写邮件:Hypertype(https://www.hypertype.co/) 6. 会议信息:AskFred(http://fireflies.ai/apps) 7. 团队知识库:Sense(https://www.senseapp.ai/) 8. 需求文档:WriteMyPRD(writemyprd.com) 9. 敏捷开发助理:Standuply(standuply.com) 10. 数据决策:Ellie AI(https://www.ellie.ai/) 11. 企业自动化:Moveworks(moveworks.com)
2025-02-09
我是一名产品经理,希望使用AI工具提高工作效率。你有什么建议么
以下是为您提供的使用 AI 工具提高产品经理工作效率的建议: 根据调研问卷结果,多数产品工作从业者已在使用 AI 工具,但仍有部分用户使用频率不高或认为其对工作效率提升影响不大。 一些相对实用的场景包括: 1. 辅助精读论文,例如利用 https://scispace.com 进行翻译、拆解公式、分析代码等。 2. 写一些小脚本,如写 SQL 查询、Python 脚本、正则表达式、图片批量处理等。 3. 撰写产品宣传文案,根据产品宣传渠道生成营销文案、营销邮件、产品上架文案等。 4. 设计和整理调研问卷,生成调研框架,回收非结构化问卷并按指定框架生成指定表头表格。 5. 进行竞品分析,使用 BingChat 或 ChatGPT Browsering 插件,按指定框架对比各项数据,如 DAU、用户结构、市场占比等。 6. 解释专业名词,可通过 ChatGPT 解释垂直领域的缩写或行业黑话,并举例、给场景说明。 另外,写完 PRD 后,可以让 GPT 从产品和研发两个视角写逻辑代码,既能发现产品逻辑表达问题,也方便 QA 同学测试。 银海分享了 10 个 Prompt 提示词,效果可平替 PMAI。PMAI 是一款面向产品经理的生产力工具,具有一键生成 PRD、输出解决方案、生成 SQL 等实用功能。您可以通过以下链接了解更多: 工具的视频演示: 产品体验地址:https://www.pmai.cn/?utm_source=qoZaR5O 创业团队或负责出海产品的产品经理使用 AI 工具的价值可能会更大。
2025-02-08
我想入门AI产品经理,有推荐的学习方案吗
以下是为您推荐的入门 AI 产品经理的学习方案: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,个人做了一下划分,仅供娱乐和参考: 1. 入门级: 能通过 WaytoAGI 等开源网站或一些课程了解 AI 的概念,使用 AI 产品并尝试动手实践应用搭建。 2. 研究级: 有两个路径,一个是技术研究路径,一个是商业化研究路径。 这个阶段对应的画像可能是对某一领域有认知,可以根据需求场景选择解决方案,或利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 3. 落地应用: 这一阶段的画像就是有一些成功落地应用的案例,如产生商业化价值。 对 AI 产品经理的要求: 1. 懂得技术框架,不一定要了解技术细节,而是对技术边界有认知,最好能知道一些优化手段和新技术的发展。 2. 关注场景、痛点、价值。 观察目前行业的 AI 提示词工程师岗位的招聘技能要求情况: 1. 本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 2. 熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,并具有实际应用经验。 3. 熟练掌握 ChatGPT、Midjourney 等 AI 工具的使用及原理。 4. 负责制定和执行 AI 项目,如 Prompt 设计平台化方法和模板化方法。 5. 了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略(例如 CoT、Fewshot 等)。 6. 对数据驱动的决策有深入的理解,能够基于数据分析做出决策。 7. 具有创新思维,能够基于业务需求提出并实践 AI first 的解决方案。 8. 对 AIGC 领域有深入的理解与实际工作经验,保持对 AI 技术前沿的关注。 9. 具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 10. 具有一定的编程基础,熟练使用 Python、Git 等工具。 产品经理的工作内容(仅作参考):
2025-02-06
我想从普通的功能型产品经理转变为AI应用产品经理,应该怎么进阶,需要掌握什么能力?
要从普通的功能型产品经理转变为 AI 应用产品经理,可以从以下几个方面进阶并掌握相应能力: 一、不同阶段的能力要求 1. 入门级 能通过 WaytoAGI 等开源网站或一些课程了解 AI 的概念。 使用 AI 产品并尝试动手实践应用搭建。 2. 研究级 技术研究路径或商业化研究路径。 对某一领域有认知,能根据需求场景选择解决方案。 利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 3. 落地应用级 有一些成功落地应用的案例,产生商业化价值。 二、AI 产品经理与传统互联网产品经理层级对应 传统互联网产品经理层级: 1. 负责功能模块与执行细节。 2. 负责整体系统与产品架构。 3. 熟悉行业竞争格局与商业运营策略。 三、AI 产品经理需掌握的能力 1. 懂得技术框架,对技术边界有认知,最好能知道一些优化手段和新技术的发展。 2. 理解产品核心技术,了解基本的机器学习算法原理,做出更合理的产品决策。 3. 与技术团队有效沟通,掌握一定的算法知识,减少信息不对称带来的误解。 4. 评估技术可行性,在产品规划阶段做出更准确的判断。 5. 把握产品发展方向,了解算法前沿。 6. 提升产品竞争力,发现产品的独特优势,提出创新的产品特性。 7. 具备数据分析能力,很多 AI 算法都涉及到数据处理和分析。 四、其他能力 1. 语言学能力,锻炼语言表述能力,更精准地用语言描述问题。 2. 业务理解和 AI 嵌入能力,找到业务中需要应用大模型的场景,将业务和大模型算法结合,理解模型在业务中的边界。 3. 维度转换能力,将各种问题、业务数据转化为语言描述,将通用模块问题转化为通用问题模块。 总之,AI 产品经理要关注场景、痛点、价值,不断提升自身能力,以适应市场需求。
2025-02-06