直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

AI对于预算编制与预测的影响

回答

AI 对于预算编制与预测具有多方面的影响:

  • 更动态的预测和报告:
    • 生成式 AI 能够帮助编写 Excel、SQL 和 BI 工具中的公式和查询,实现分析自动化,还能发现模式,从更广泛、更复杂的数据集中为预测建议输入,例如考虑宏观经济因素,并建议如何适应模型以支持公司决策。
    • 可以自动创建文本、图表、图形等内容,并根据不同示例调整报告,无需手动整合数据和分析到外部和内部报告中。
    • 对于会计和税务团队,能帮助综合、总结,并就税法和潜在扣除项提出可能答案。
    • 能帮助自动生成和调整采购和应付账款方面的合同、采购订单、发票以及提醒。
  • 挑战:
    • 使用金融数据训练 LLMs:新进入者可能先使用公开金融数据优化模型,再用自身收集的数据;现有参与者虽可利用现有专有数据,但往往过于保守,这给新进入者带来竞争优势。
    • 模型输出准确性:金融问题答案影响重大,新的 AI 模型需尽可能准确,初期人类常作为最终验证环节。

以下是一些相关案例:

  • “工作流:成为生产力工具”,介绍了个人如何用 ChatGPT 提升生产力。
  • “金融:摩根大通用 AI 创建金融模型”,人工智能可完善经济和货币预测,使中央银行和政府受益。
  • “工作:人类和 AI 协作效率探讨”,表明使用 AI 的被测试者在任务完成量、速度和结果质量上有显著提升。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

金融服务业将比你想象得更快地接纳生成式 AI

[title]金融服务业将比你想象得更快地接纳生成式AI[heading2]更动态的预测和报告除了能够帮助回答财务问题外,LLMs还可以帮助金融服务团队改进自己的内部流程,简化财务团队的日常工作流程。尽管金融的几乎每个其他方面都取得了进展,但现代财务团队的日常工作流程仍然依赖于像Excel、电子邮件和需要人工输入的商业智能工具这样的手动流程。由于缺乏数据科学资源,基本任务尚未被自动化,CFO及其直接报告人因此在繁琐的记录和报告任务上花费太多时间,而他们应该专注于[金字塔顶端](https://a16z.com/2020/04/15/new-cfo-tools/)的战略决策。总体而言,生成式AI可以帮助这些团队从更多的数据源中获取数据,并自动化突出趋势、生成预测和报告的过程。以下是一些例子:预测:生成式AI可以帮助编写Excel、SQL和BI工具中的公式和查询,从而实现分析的自动化。此外,这些工具可以帮助发现模式,并从更广泛、更复杂的数据集中为预测建议输入(例如,考虑宏观经济因素),并建议如何更容易地适应这些模型,以便为公司决策提供依据。报告:生成式AI可以帮助自动创建文本、图表、图形等内容,并根据不同的示例调整此类报告,而无需手动将数据和分析整合到外部和内部报告中(例如,董事会材料、投资者报告、周报表)。会计和税务:会计和税务团队需要花时间咨询规则并了解如何应用它们。生成式AI可以帮助综合、总结,并就税法和潜在的扣除项提出可能的答案。采购和应付账款:生成式AI可以帮助自动生成和调整合同、采购订单和发票以及提醒。

金融服务业将比你想象得更快地接纳生成式 AI

[title]金融服务业将比你想象得更快地接纳生成式AI[heading2]更动态的预测和报告也就是说,需要注意的是,生成式AI在这里的输出当前仍有局限性,特别是在需要判断或精确答案的领域,这常常是财务团队所需的。生成式AI模型在计算方面持续改进,但目前尚不能完全依赖于其准确性,或者至少需要人工审查。随着模型的快速改进、额外的训练数据和与数学模块的整合能力,它的使用将展现新的可能性。–Seema Amble挑战在这五个趋势中,新进入者和现有参与者在将生成式AI的未来变为现实时面临两个主要的挑战。1.使用金融数据训练LLMs:LLMs目前是在互联网上训练的。金融服务用例将需要使用特定于用例的金融数据来微调这些模型。新进入者可能会开始使用公开的公司财务数据、监管文件和其他易于获取的公开金融数据来优化他们的模型,然后最终在随着时间的推移使用他们自己收集的数据。现有的参与者,如银行或具有金融服务业务的大型平台(例如,Lyft),可以利用他们现有和专有的数据,这可能会给他们带来初步的优势。然而,现有的金融服务公司在接受大型平台转变时往往过于保守。在我们看来,这给了无拖累的新进入者竞争优势。2.模型输出准确性:考虑到金融问题的答案可能对个人、公司和社会产生的影响,这些新的AI模型需要尽可能准确。它们不能产生幻觉或编造错误但听起来自信的答案来回应关于个人税收或财务状况的关键问题,它们需要比流行文化查询或通用高中作文的大致答案更准确。一开始,人类经常会作为AI生成答案的最终验证环节。生成式AI的出现对金融服务公司来说是一个巨大的平台变革,有潜力催生个性化客户解决方案、更加成本高效的运营、更好的合规和改进的风险管理,以及更具动态的预测和报告。现有参与者和初创公司将争夺我们上面概述的两个关键挑战的掌控权。虽然我们还不知道谁将最终胜出,但我们已经知道有一个明确的赢家:未来金融服务的消费者。

AI 产品案例严选

|标题|简介|作者|分类|前往查看👉|封面|入库时间|<br>|-|-|-|-|-|-|-|<br>|工作流:成为生产力工具|介绍了自己平时是怎么用ChatGPT帮助成为生产力工具的|进击的盖茨比|工作|[工作流:成为生产力工具](https://waytoagi.feishu.cn/wiki/VuhJwClKBiY3Dyk98yWcSdeNnlb?table=tblwdvsWICkId67f&view=vewm6DMY99)||2023/10/31|<br>|金融:摩根大通用AI创建金融模型|通过处理大量数据集、检测模式并整合多个变量,人工智能可以完善经济和货币预测。中央银行和政府将从对通胀、国内生产总值增长和失业率等指标的更准确预测中受益。这些增强的模型可以为政策选择提供信息,改善利率、流动性管理和宏观审慎措施的决策。|摩根大通|工作|[金融:摩根大通能否凭借AI突出重围?](https://waytoagi.feishu.cn/wiki/CbcfwHdyciJTWSkueeQcWFkwnbd?table=tblwdvsWICkId67f&view=vewm6DMY99)||2023/11/09|<br>|工作:人类和AI协作效率探讨|使用AI的被测试者比没有使用AI的被测试者平均多完成了12.2%的任务,完成任务的速度提高了25.1%,并且产生的结果质量提高了40%。||工作|[工作:人类和AI协作效率探讨](https://waytoagi.feishu.cn/wiki/JendwV98qiYBhak3fodcoYITnBe)||2023/11/09|

其他人在问
目前,有没有能替代My GPT这种功能的外国ai?
目前,在国外有一些能够替代 My GPT 功能的 AI 产品。例如,ChatGPT 是由 OpenAI 开发的知名 AI 助手,它在全球范围内具有广泛的影响力。ChatGPT 具有开创性,是首批向公众开放的大规模商用 AI 对话系统之一,改变了人们对 AI 的认知,为技术发展指明了方向。其界面简洁直观,交互流畅自然,降低了使用门槛。从技术角度看,背后的 GPT 系列模型性能和能力处于行业领先地位。但它也有局限性,且对于国内用户可能存在网络连接等问题。 此外,Google 的 Bard 也是一种选择。在写代码领域,GitHub 的 Copilot 有一些替代品,如 Tabnine、Codeium、Amazon CodeWhisperer、SourceGraph Cody、Tabby、fauxpilot/fauxpilot 等。 Meta 在 2023 年 2 月开源了 LLaMA 1,并在 7 月发布了进阶的 Llama 2 且允许商用,此举推进了大模型的发展。
2024-12-20
类似 characterai的虚拟对话
以下是为您整理的类似 CharacterAI 的虚拟对话相关内容: 一、Character.ai 1. 创建:创建角色的功能简洁,主要依赖用户编写的 Description(基础信息)和 Definition(复杂背景),已支持上传声音片段实现语言克隆。 2. 聊天:用户通过一问一答的多轮对话方式与角色进行交互,支持回复重新生成、回滚至指定位置。 二、筑梦岛 1. 聊天: 单人聊天是用户与 AI 角色交互的基本模式,本质是一问一答的多轮对话,支持重新生成。 多人聊天是伪群聊,通过指定某个角色对用户的话进行回复,但 AI 角色之间不能对话。 2. AI 角色: 设定是每一个角色最核心的人设属性,产品侧是一段角色介绍,背后往往对应着一段高质量 Prompt,甚至有其他工程、模型层面的优化措施。 梦境是用户分享的与 AI 角色聊天的片段,其他用户可以基于此对话片段继续参与聊天。 小剧场是【人设+场景】的对话聊天模式,同样的角色处于不同的场景背景,会展开不同的故事。 3. 创建:创建梦中人即捏崽,需要用户提供各类信息,其中最核心的是完整设定这样的人设背景信息;创建梦屋即拉群,用户可以添加多个 AI 角色创建一个群聊。 三、其他相关 1. 游戏方面:游戏是满足我们原始需求的模拟,游戏引擎发展了模拟方式,但无法有效模拟人类思想等的复杂性和突发性,直到 LLM 和 Agent 框架的突破,使得在游戏中拥有“具有真实目标、行动和对话的现实角色“成为可能。预计 2024 年游戏能模拟现实生活中的多种社交动态,每一个原始需求都可以获得模拟满足。 2. 从聊天机器人到拟人形象:如果 2023 年是我们与 AI 伴侣发短信的一年,那么 2024 年将可以直接跟 3D 拟人形象实时交谈,与 AI 同伴的对话将变得越来越具有洞察力、呈现力和个性化,娱乐将从被动体验转向主动体验,有线电视和互动游戏之间的界限将变得模糊。 3. GPTs、中间层、Chatbot 虚拟社交、AI Agent 方面:Replika 做重虚拟角色定制过程,强调角色唯一性;Cai、Talike、星野、筑梦岛等一众产品提供众多 Bot 供用户选择,并支持 UGC 创建 Bot 并分发;Aura 进入后虽然只有单个角色,但支持开启多个剧本的角色扮演,并且剧本由 AI 生成(降低了重复性)可以体验和较长文本的对话,但在整体体验上存在不足。
2024-12-20
ai可以为我做什么
AI 能为您做很多事情,包括但不限于以下方面: 1. 写作相关: 草拟各种类型的初稿,如博客文章、论文、宣传材料、演讲、讲座、剧本、短篇小说等。 改进您已有的文本,提供针对特定受众的更好建议。 以不同风格创建多个草稿,使内容更生动,添加例子等。 帮助完成如写邮件、创建销售模板、提供商业计划下一步等任务。 2. 激发创作灵感:通过与 AI 系统互动,激发您在写作方面做得更好。 3. 提供动力:当您在任务中遇到困难挑战而分心时,AI 能为您提供动力。 总之,AI 在写作和协助完成任务方面具有很大的潜力,能为您的工作和学习带来便利。
2024-12-20
照片ai软件
以下为一些与照片相关的 AI 软件信息: 在 100 个 AI 应用中,涉及照片的有: AI 摄影参数调整助手,使用图像识别、数据分析技术,常见于摄影 APP 中,能根据场景自动调整摄影参数,市场规模达数亿美元。 全球 AI APP 增长榜图像类中: Retake AI,6 月 APP 下载量为 795,相对 5 月变化为 0.159。 DaVinci,6 月 APP 下载量为 751,相对 5 月变化为 0.049。 Viggle AI,6 月 APP 下载量为 741,相对 5 月变化为 822.333。 PhotoApp AI Photo Enhancer,6 月 APP 下载量为 688,相对 5 月变化为 0.186。 AI Mirror,6 月 APP 下载量为 676,相对 5 月变化为 0.432。 ToonMe,6 月 APP 下载量为 640,相对 5 月变化为 0.042。 图片增强 Top10 中: Cutout pro,4 月访问量为 1608 万,相对 3 月变化为 0.023。 Upscale media,4 月访问量为 432 万,相对 3 月变化为 0.073。 ZMO AI,4 月访问量为 338 万,相对 3 月变化为 0.161。 Neural.love Art,4 月访问量为 283 万,相对 3 月变化为 0.072。 Topaz Photo AI,4 月访问量为 247 万,相对 3 月变化为 0.047。 VanceAI,4 月访问量为 247 万,相对 3 月变化为 0.078。 bigjpgAI 图片无损放大,4 月访问量为 203 万,相对 3 月变化为 0.06。 Img Upscaler,4 月访问量为 203 万,相对 3 月变化为 0.042。 Let's Enhance,4 月访问量为 167 万,相对 3 月变化为 0.046。 Akool,4 月访问量为 122 万,相对 3 月变化为 0.173。
2024-12-20
什么是ai
AI(人工智能)是一门令人兴奋的科学,它是指某种模仿人类思维,可以理解自然语言并输出自然语言的东西。 对于没有理工科背景的人来说,可将其当成一个黑箱,只需要知道它能理解自然语言就行。AI 技术再发展,其生态位仍是似人而非人的存在。 从历史角度看,最初计算机由查尔斯·巴贝奇发明,用于按明确程序运算。现代计算机虽先进,但仍遵循相同受控计算理念。有些任务无法明确编程让计算机完成,比如根据照片判断人的年龄,而这类任务正是 AI 感兴趣的。 在应用方面,AI 健身是利用 AI 技术辅助或改善健身训练和健康管理的方法,能为用户提供个性化指导。例如 Keep、Fiture、Fitness AI、Planfit 等都是不错的 AI 健身工具。
2024-12-20
现在在国内有想要做这个AI方面的这个创业,我能做一些什么呢?
在国内进行 AI 方面的创业,以下是一些建议: 1. 数据处理方面: 认识到高质量数据处理服务的稀缺性,数据质量对于模型效果至关重要。 避免单纯依赖开源数据,谨慎考虑购买优质数据的投入风险。 2. 模型选择方面: 训练底层世界大模型需要巨大投入,除大厂外对其他公司较困难。 大多数国内公司往往先推出产品,而非集中精力专攻大模型。 3. 创业方向方面: 可以选择“唯快不破”的策略,尽量低成本、高速度地在小赛道中尝试。 例如辅助创作与学习(如 AI 智能写作助手、语言学习助手等)、推荐与规划(如商品推荐、行程规划等)、监控与预警(如健康监测、安全监控等)、优化与管理(如办公自动化、物流优化等)、销售与交易(如艺术作品生成与销售平台等)等细分领域。 需要注意的是,在这轮 AI 大潮中,新技术加速迭代是常态,不能期望在“技术稳定”时再出手。
2024-12-20
AI对于政府预算编制与预测的影响
AI 对于政府预算编制与预测具有多方面的影响: 案例方面:摩根大通用 AI 创建金融模型,通过处理大量数据集、检测模式并整合多个变量,完善经济和货币预测,使中央银行和政府能从更准确的通胀、国内生产总值增长和失业率等指标预测中受益,为政策选择提供信息,改善利率、流动性管理和宏观审慎措施的决策。 美国政府行动方面:拜登签署的 AI 行政命令指出,AI 能帮助政府为美国人民提供更好的结果,能扩大机构的监管、治理和福利分配能力,降低成本并增强政府系统的安全性。同时,总统指示采取一系列行动,包括为机构使用 AI 发布指导,帮助机构更快速、更便宜、更有效地获取特定 AI 产品和服务,加速招聘 AI 专业人员等。此外,美国《2024 财年预算申请》专门划拨总统预算中的一部分用于人工智能开发和部署,白宫科技政策办公室呼吁获得人工智能资助的机构将人工智能在执行任务时的公平性与可信度作为首要目标,并保护权利和隐私的技术研发。还发布了信息征集,以帮助制定国家 AI 战略。
2024-10-10
最近有哪些新的预测模型
以下是一些新的预测模型: 在游戏领域,围绕 Stable Diffusion 和 Midjourney 等基础模型的关注产生了惊人估值,新研究不断涌现,新模型将随新技术完善而更替。例如 Runway 针对视频创作者需求提供 AI 辅助工具,目前尚未有针对游戏领域的类似套件,但正在积极开发。 Meta 推出的全新无监督“视频预测模型”——VJEPA,与 Sora 模型在学习目标和潜在表示的下游影响方面存在区别。 在 2024 年,生物医学领域有基于深度学习和 Transformer 架构的蛋白质结构预测模型 AlphaFold 3,DeepMind 展示的新实验生物学能力 AlphaProteo,以及 Meta 发布的前沿多模态生成模型 ESM3 等。此外,还有学习设计人类基因组编辑器的语言模型——CRISPRCas 图谱。
2024-12-13
请综合各种AI产品的信息,预测接下来几年内将会有哪些较大创新或者有较大影响力的AI产品
以下是对未来几年内可能出现的较大创新或有较大影响力的 AI 产品的预测: 1. 一个主权国家可能向美国大型人工智能实验室投资 100 亿美元以上,但需国家安全审查。 2. 没有任何编码能力的人独自创建的应用程序或网站可能迅速走红,例如进入 App Store Top100。 3. 案件审理后,前沿实验室可能对数据收集实践实施有意义的改变。 4. 由于立法者担心权力过度,欧盟人工智能法案的早期实施可能比预期更慢。 5. OpenAI o1 的开源替代品可能在一系列推理基准测试中超越它。 6. 挑战者可能难以对 NVIDIA 的市场地位造成重大打击。 7. 由于公司难以实现产品与市场的契合,对人形机器人的投资水平可能下降。 8. 苹果设备上研究的强劲成果可能加速个人设备上 AI 的发展势头。 9. 人工智能科学家撰写的研究论文可能被大型机器学习会议或研讨会接受。 10. 一款以与 GenAI 元素交互为基础的视频游戏可能取得突破性进展。 此外,还可能有以下情况: 1. 2024 年可能是看到真正的应用将人类从旁边帮助和建议的副驾驶,转变为可以完全将人类排除在外的代理的一年,AI 将更像同事而非工具,在软件工程、客户服务等领域发挥作用。 2. 预计明年会有团队花费超过 10 亿美元来训练单个大型模型,生成式 AI 的热潮将更“奢华”。 3. 政府和大型科技公司将继续承受计算需求的压力,逼近电网极限。 4. 虽然预期的 AI 对选举和就业的影响尚未成真,但仍需警惕。
2024-12-03
大模型预测文本
大模型的构建过程通常包括以下步骤: 1. 收集海量数据:如同教孩子成为博学多才的人,让其阅读大量书籍、观看纪录片、与人交谈一样,对于 AI 模型,要收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。 2. 预处理数据:就像为孩子整理学习资料,AI 研究人员需要清理和组织收集到的数据,如删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段。 3. 设计模型架构:如同为孩子设计学习计划,研究人员要设计 AI 模型的“大脑”结构,通常是一个复杂的神经网络,比如 Transformer 架构,这种架构擅长处理序列数据如文本。 4. 训练模型:如同孩子开始阅读和学习,AI 模型开始“阅读”提供的数据,反复尝试预测句子中的下一个词,通过不断重复这个过程,逐渐学会理解和生成人类语言。 大模型存在一些问题: 1. 输出结果具有不可预测性,静态的训练数据导致知识存在截止日期,无法即时掌握最新信息,通用的基础大模型无法满足实际业务需求。 2. 知识具有局限性,模型自身的知识源于训练数据,对于实时性、非公开或离线的数据无法获取。 3. 存在幻觉问题,会在没有答案时提供虚假信息、过时或通用的信息,从可信度低非权威来源提供结果等。 4. 数据安全性是企业关注的重点,企业不愿承担数据泄露风险,将私域数据上传第三方平台训练。 而 RAG 是解决上述问题的有效方案,它能让大模型从权威、预先确定的知识来源中检索、组织相关信息,更好地控制生成的文本输出,用户也能深入了解 LLM 生成最终结果的过程。RAG 可与微调结合使用,两者不冲突。RAG 类似于为模型提供教科书,适用于回答特定询问或解决特定信息检索任务,但不适合教模型理解广泛领域或学习新语言、格式或样式。微调类似于让学生内化知识,适用于模型需要复制特定结构、样式或格式的情况。参考资料:《RetrievalAugmented Generation for Large Language Models:A Survey》(https://arxiv.org/pdf/2312.10997.pdf)
2024-11-05
如何用大模型做销量预测
用大模型做销量预测可以从以下几个方面考虑: 1. 数据收集:销量预测需要大量相关数据,包括历史销售数据、市场趋势、经济指标、消费者行为等。 2. 模型选择:选择适合的大模型,例如基于深度学习的神经网络模型。 3. 特征工程:对收集到的数据进行处理和特征提取,以便模型能够更好地理解和学习。 4. 训练与优化:使用合适的算法和技术对模型进行训练,并不断优化模型参数以提高预测准确性。 5. 考虑国情和政策:不同国家和地区的国情和政策会对销售情况产生影响,模型应进行相应的优化和调整。 6. 可解释性:追求模型的可解释性,以便更好地理解预测结果和做出决策。 关于大模型相关的模型下载和安装: 1. 模型下载: Civitai(C 站):https://civitai.com/ ,可通过点击右上角筛选按钮找到所需模型类型,如 Checkpoint=大模型、LoRA=Lora 等,还可通过点击左上角“Images”查看他人已做好的图片并获取相关模型。 2. 模型安装: 大模型(Ckpt):放入 models\\Stablediffusion VAE 模型:一些大模型需要配合 vae 使用,对应的 vae 同样放置在 models\\Stablediffusion 或 models\\VAE 目录,然后在 webui 的设置栏目选择。 Lora/LoHA/LoCon 模型:放入 extensions\\sdwebuiadditionalnetworks\\models\\lora,也可以在 models/Lora 目录 Embedding 模型:放入 embeddings 目录 若下载的模型不知类型,可使用秋叶的模型解析工具 https://spell.novelai.dev/ ,将模型拖动到空白处即可查看模型信息。
2024-10-22
科学问题二:XXX(小标题) 问题挑战:如何通过构建合理的先验知识或模型假设,刻画出数据中的可变性?如何利用从少量样本中提取到的变化信息来预测未见数据的表现? XXX XXX(问题挑战一的方法) XXX)问题挑战二的方法) 请将XXX补充完整,重点在预测,如何刻画和利用数据分布的“变化性”
以下是为您补充完整的内容: 对于如何通过构建合理的先验知识或模型假设,刻画出数据中的可变性,以及如何利用从少量样本中提取到的变化信息来预测未见数据的表现,我们可以参考以下方法: 在准备 LLM 数据方面,对于制作 LLM 微调数据集,首先获取文本格式非结构式和网络式结构式的数据。对于 QA 数据集,主要依靠已有的大语言模型生成,根据不同文本设定不同的提示词以获取尽可能多且信息量丰富的 QA。先对文件中的文本进行切割,将每一大部分放进一个约 200 字的 txt 文件里,然后设定提示词模板。例如对于公司产品手册,模板可以是:“你是一个聪明的 xxx 公司的 xxx 产品的产品经理。给你一段 xxxxx 有限公司 xx 产品相关的文本,你必须依据文本想出十个不同的问题和这十个问题对应的答案。你想出的问题可以被用来测试公司内部 xxx 职员的专业能力。你想出的问题可以是使用公司产品的用户会想到的问题。你想出的问题和答案必须和所给文本相关。你回答得答案必须可以让使用产品的用户理解。当你想出问题和答案后,你必须用以下格式回复:```
2024-10-21
我是一名研究生,我想利用python实现机器学习,对碳排放进行预测,需要你帮我写出代码,我应该问你哪些问题或者给你哪些前提条件
在您希望利用 Python 实现机器学习对碳排放进行预测并让我为您编写代码时,您需要向我提供以下关键信息和问题: 1. 您所拥有的碳排放相关数据的格式和特征,例如数据的类型(数值型、分类型等)、数据的字段(如时间、能源消耗、生产活动等)。 2. 您对预测模型的性能要求,比如预测的精度、召回率等指标的期望。 3. 您是否有特定的机器学习算法倾向,或者是否希望我根据数据特点为您推荐合适的算法。 4. 数据的规模和分布情况,这会影响模型的训练时间和复杂度。 5. 您是否有可用的预处理步骤,例如数据清洗、特征工程的想法或已经完成的部分。 6. 对于模型的可解释性是否有要求。 7. 您的计算资源情况,例如内存、CPU 核心数等,以便选择适合的模型和训练策略。
2024-10-10
AI对餐饮行业将来会有什么影响?
AI 对餐饮行业的未来可能产生多方面的影响: 1. 客户服务:通过生成式 AI 技术,深入了解客户需求和愿望,提供更加个性化和高效的服务。 2. 运营管理:有助于将人力密集、效率较低的运营环节转变为更低成本、更高效的“计算”模式。 3. 创新服务:例如利用空间智能,实现自主机器人运输餐饮用品,或通过增强现实技术引导厨师进行更安全、更快、更少侵入性的操作。 4. 卫生监控:如检测员工是否正确洗手等卫生操作,保障食品安全。 总之,AI 有望为餐饮行业带来更高效、更个性化和更优质的服务,同时优化运营和管理流程。
2024-12-19
AI的最新发展如何,对于哪些传统行业产生了影响
AI 的最新发展呈现出以下特点和影响: 技术方面:在自然语言处理和多模态推理领域取得进步,模型性能和多模态处理能力显著提升。 行业影响: 推动技术行业发展,为处理大量数据和复杂计算的专业用户提供高效工具。 革新机器人领域,促进智能设备、高级电池能源、电驱动火箭引擎等行业进步。 在核聚变技术、生物制药和纳米科技等前沿领域发挥关键作用。 预计对全球 GDP 产生巨大影响,帮助美国解决债务问题,为经济发展提供新动力。 众多产品和解决方案将被 AI 驱动的创新替代品取代,产业变革规模巨大,AI 相关行业的 TAM 将扩展到几乎所有人类参与的行业。 应用层大量创新,重点从基础训练转移到更高层次的认知任务,如计划和推理。 降低开展业务和投资成本,为收入增长做出贡献,推动公司竞争优势上升。 加速专业服务出现,熟练 AI 的专业人员能产生高附加值。 AI 对传统行业的影响包括但不限于以下方面: 教育:改变教学方式和学习体验。 医疗:辅助诊断、疾病预测等。 科研:提高研究效率和创新能力。 总之,AI 正处于重要的发展阶段,其影响深远且广泛,需要关注其合理使用以确保对社会产生正面影响。
2024-12-10
国内外所有虚拟数字人影响力及诞生时间
以下是国内外部分虚拟数字人的相关信息: 报告类: ,发布者为中国网络视听协会、人民日报智慧媒体研究院、中国传媒大学动画与数字艺术学院、元力趋势网,发表日期为 2024 年 1 月 1 日。 ,发布者为上海市人工智能技术协会、零壹智库、增强现实核心技术产业联盟、商汤科技,发表日期为 2024 年 4 月 11 日。 ,发布者为国盛证券,发表日期为 2023 年 11 月 21 日。 ,发布者为中航证券,发表日期为 2023 年 12 月 5 日。 ,发布者为招商证券,发表日期为 2023 年 10 月 29 日。 数字科技有限公司,发表日期为 2021 年 1 月 1 日。 ,发布者为清华大学新闻与传播学院,发表日期为 2023 年 2 月 21 日。 市场竞争类: 井英科技:CreativeFitting 专注打造“AI+人工”的商业短视频创作新模式,从创意发现到脚本创作,再到视频生产,均引入了 AI 辅助创作,大幅降低了优质短视频生产的边际成本,显著提高了生产效率和产能,网站为,成立于 2020 年 4 月 16 日,地点在上海,融资阶段为 A 轮。 铭顺科技:数字人私有化部署方案提供商,网站为,成立于 2022 年 7 月 15 日,地点在长沙,融资阶段为 A 轮。 八点八数字科技:虚拟人全链路服务公司,网站为,成立于 2014 年 9 月 1 日,地点在南京,融资阶段为 PreA 轮。 慧夜科技:虚拟生命 AI 驱动技术服务商,网站为,成立于 2019 年 5 月 30 日,地点在北京,融资阶段为 PreA 轮。 深锶科技:XR 内容创作平台,网站为,成立于 2021 年 12 月 1 日,地点在北京,融资阶段为 PreA 轮。 拟仁智能:AI 虚拟人解决方案提供商,网站为,成立于 2020 年 9 月 1 日,地点在杭州,融资阶段为天使轮。 心识宇宙:人工智能赋能虚拟人大脑,让虚拟人具有思维、意识和人格,网站为,成立于 2022 年 1 月 1 日,地点在杭州,融资阶段为天使轮。 跳悦智能:AI 数字人技术研发商,如虚拟主播带货,网站为,成立于 2021 年 6 月 1 日,地点在北京,融资阶段为天使轮。 延伸阅读类: ,发布者为汉坤,发表日期为 2022 年 6 月 22 日,类别为文章。 ,发布者为浙江省发展和改革委员会,发表日期为 2022 年 12 月 25 日,类别为政策。
2024-12-08
LLM对未来的影响有哪些
LLM 对未来的影响主要体现在以下几个方面: 1. 应用程序架构:代理有可能成为 LLM 应用程序架构的核心部分,为人工智能应用程序提供解决复杂问题、对外界采取行动以及从经验中学习等全新功能。但目前大多数代理框架仍处于概念验证阶段。 2. 能力拓展:未来的大型语言模型将能够读取和生成文本,拥有更丰富的知识,能利用现有软件基础架构,具备查看和生成图像与视频、听取发声创作音乐、利用系统 2 进行深入思考、在特定领域自我优化以及针对特定任务定制和调整等能力。 3. 落地应用:LLM 技术正从 demo 向落地阶段发展,在达到一定水平后,其在各个业务场景中的实用性将大大提升。但当前大部分应用仍处于探索阶段,在推理、训练学习效率等方面还有待提高,且与视觉、触觉等技术的搭配尚未成熟。同时,关于数据驱动的概率模型和由第一性原理建立的数理模型如何更好地模拟世界以及两者的融合方式仍有待解决。在应用方面,包括自然语言、ToB、ToC 等领域。
2024-12-03
AI在未来多少年会颠覆式影响现在人的生活
AI 在未来对人类生活产生颠覆式影响的时间难以精确预测。目前的研究和观点表明: 从一些观点来看,在接下来的几十年内,AI 就可能带来巨大变化。例如,在未来的几十年里,我们将能够做到在祖辈看来如同魔法般的事情。AI 会为人们提供解决难题的工具,帮助我们在人类进步的架构上增添新的支撑。 预计到 2024 年及以后,生成式 AI 的热潮不会消退,会有团队投入大量资金训练大型模型,同时政府和大型科技公司将持续面临计算需求的压力。 虽然目前 AI 对选举和就业的预期影响尚未完全显现,但未来其影响可能如同潘多拉魔盒,在未来的数年、数十年甚至更长时间内无处不在。 总之,AI 已经在我们的日常生活中存在,其对生活的颠覆式影响会逐步显现,但具体时间难以确定。
2024-11-25