构建企业 AI 知识库可以参考以下步骤:
在构建过程中,Know-How 很重要,同时工作流不必复杂,能实现目的即可,所以在设计 Bot 前“确定目的”和“确定功能范围”很关键。
第四个部分我想分享一些有关商业化落地的经验。在商业化过程中,构建企业知识库是最常见的需求之一。一种普遍的解决方案是结合企业私有数据与RAG模型的私有化部署。如有特殊需求,我们还可以进行模型的Fine-tuning(微调),以优化性能。基础模型主要负责提供推理提示,而RAG则用于整合新知识,实现快速迭代和定制化信息检索。通过Fine-tuning,我们可以增强基础模型的知识库,调整输出,并教授更复杂的指令,从而提高模型的整体性能和效率。这样的联合应用通常能带来最佳性能,适用于多数企业的需求。而在这个过程中,Know-How很重要!
[heading5]3)创建【知识库】,整理“关键字”与“AI相关资料链接”的对应关系,并将信息存储起来。创建知识库路径:个人空间-知识库-创建知识库知识库文档类型支持:本地文档、在线数据、飞书文档、Notion等,本次使用【本地文档】按照操作指引上传文档、分段设置、确认数据处理。💡小技巧:知识库好不好用,跟内容切分粒度有很大关系,我们可以在内容中加上一些特殊分割符,比如“###”,以便于自动切分数据。分段标识符号要选择“自定义”,内容填“###”。最终的知识库结果如下,同一颜色代表同一个数据段,如果内容有误需要编辑,可以点击具体内容,鼠标右键会看到“编辑”和“删除”按钮,可以编辑或删除。[heading5]4)创建【工作流】,告诉AI机器人应该按什么流程处理信息。[content]创建工作流路径:个人空间-工作流-创建工作流“AI前线”Bot的工作流最终结果如上,本次只用到了“知识库”进行处理。工作流设计好后,先点击右上角“试运行”,测试工作流无误后,就可以点击发布啦。如果任务和逻辑复杂,可以结合左边“节点”工具来实现。比如:可以在工作流中再次调用【大模型】,总结分析知识库内容;可以调用【数据库】存储用户输入的信息;可以调用【代码】来处理复杂逻辑等等;💡个人建议:工作流不必复杂,能实现目的即可,所以在设计Bot前“确定目的”和“确定功能范围”很重要。
[heading5]3)创建【知识库】,整理“关键字”与“AI相关资料链接”的对应关系,并将信息存储起来。创建知识库路径:个人空间-知识库-创建知识库知识库文档类型支持:本地文档、在线数据、飞书文档、Notion等,本次使用【本地文档】按照操作指引上传文档、分段设置、确认数据处理。💡小技巧:知识库好不好用,跟内容切分粒度有很大关系,我们可以在内容中加上一些特殊分割符,比如“###”,以便于自动切分数据。分段标识符号要选择“自定义”,内容填“###”。最终的知识库结果如下,同一颜色代表同一个数据段,如果内容有误需要编辑,可以点击具体内容,鼠标右键会看到“编辑”和“删除”按钮,可以编辑或删除。[heading5]4)创建【工作流】,告诉AI机器人应该按什么流程处理信息。[content]创建工作流路径:个人空间-工作流-创建工作流“AI前线”Bot的工作流最终结果如上,本次只用到了“知识库”进行处理。工作流设计好后,先点击右上角“试运行”,测试工作流无误后,就可以点击发布啦。如果任务和逻辑复杂,可以结合左边“节点”工具来实现。比如:可以在工作流中再次调用【大模型】,总结分析知识库内容;可以调用【数据库】存储用户输入的信息;可以调用【代码】来处理复杂逻辑等等;💡个人建议:工作流不必复杂,能实现目的即可,所以在设计Bot前“确定目的”和“确定功能范围”很重要。