Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

人工智能构建第二大脑

Answer

以下是关于人工智能构建第二大脑的相关内容:

信息到智慧的进化是一个动态、渐进的过程,不仅需要外部信息输入,还需内部认知加工。随着人工智能技术发展,这一进程极大加速和优化。AI 能帮助更快收集处理信息、构建知识体系,甚至模拟人类决策过程。

信息、知识、智慧是人类认知和决策的三个层次,相互联系作用。在 AI 时代,有更多工具和方法加速从信息到智慧的进化,构建高效知识管理体系。

从信息到知识:Forte 强调“外部大脑”概念,利用数字工具和系统存储思考、想法和信息,释放认知负担,专注创意和高阶思考。可使用数字笔记工具记录,通过分类、标签或链接关联零散信息形成知识网络,对信息深加工提炼知识。

从知识到智慧:智慧形成不仅需知识积累,更要深刻理解和应用。Forte 提倡复盘和整合,复盘指定期回顾笔记和想法加深理解发现新联系,整合指将新理解和旧知识融合形成更全面深入见解。通过不断复盘和整合,将知识内化为理解和智慧,可能涉及跨领域知识融合、问题解决策略创新或对复杂系统深刻洞察。

AI 时代的信息到智慧进化:这一进化过程加速,AI 和机器学习技术可处理分析大量信息,识别模式联系,通过智能推荐等功能提高从信息到知识转化效率,辅助决策分析等应用模拟扩展人类智慧。结合《打造第二大脑》理论和 AI 技术发展,人类知识管理和智慧发展处于全新充满可能的时代,个人和组织通过高效信息管理可提升生产力创造力,形成独到智慧见解。在信息泛滥时代,引入 DIKW 模型和 CODE 信息管理法则可提供更深刻理解和实践指导。

此外,构建外脑的核心是思维方式与执行方法,虽核心不是工具,但好工具能提升效率。在智能时代,处理语言与数据效率指数级提升,影响软件工具使用、设计及对知识管理与传播的认知方式。

Content generated by AI large model, please carefully verify (powered by aily)

References

小七姐:AI 时代的知识管理体系构建

信息到智慧的进化是一个动态的、渐进的过程,涉及信息的收集、知识的构建和智慧的形成。这一进程不仅需要外部信息的输入,还需要内部认知的加工。随着人工智能技术的发展,这一进程得到了极大的加速和优化。AI可以帮助我们更快地收集和处理信息,通过数据分析和机器学习构建知识体系,甚至在某些领域内模拟人类的决策过程,展示出一定程度的“智慧”。信息、知识、智慧是人类认知和决策的三个层次,它们相互联系、相互作用。在AI时代,我们有了更多工具和方法来加速从信息到智慧的进化过程,构建高效的知识管理体系,从而更好地理解世界、解决问题。在探讨“信息到智慧,何以进化”的过程中,我们可以借鉴Tiago Forte的《打造第二大脑》中的一些核心观点,来丰富我们的理解和实践方法。《打造第二大脑》一书中,Forte提出了如何有效地利用数字工具来管理信息、提升个人生产力的策略,这些策略可以帮助我们更好地理解信息、知识和智慧之间的转化过程。[heading2]从信息到知识[content]Forte强调了“外部大脑”的概念,即利用数字工具和系统来存储我们的思考、想法和信息,从而释放我们的认知负担,让我们能够更专注于创意和高阶思考。这一点对于信息向知识的转化至关重要。通过外部化存储信息,我们不仅能更有效地管理和检索信息,还能通过不断的整理和重组这些信息来提炼出知识。例如,我们可以使用数字笔记工具来记录阅读的书籍、会议的要点或是日常的灵感。随着时间的积累,这些零散的信息可以通过分类、标签或是链接相互关联,形成知识的网络。这个过程实际上是对信息的深加工,使我们能够从大量信息中提炼出有价值的知识。

构建外脑 / 智变时代的个人知识管理

虽然说构建外脑(ExoBrain)的核心是思维方式与执行方法,一种有效组织消费信息并内化为知识的手段,不过工欲善其事,必先利其器,我们需要有使用起来得心应手的软件。Tiago在提出CODE方法来实践第二大脑的时候,并没有使用大语言模型这样的AI工具;但在这一年来的时间里,ChatGPT、Claude还有Google Bard展现出来的能力,让大家直接跃进到了智能时代,我们处理语言与数据的效率得到了指数级的提升,这会深远的影响到软件工具的使用、设计以及我们对知识管理与传播的认知方式。

小七姐:AI 时代的知识管理体系构建

智慧的形成,按照Forte的理论,不仅需要知识的积累,更需要对这些知识的深刻理解和应用。这其中,Forte提倡的复盘(Review)和整合(Integrate)的概念尤为关键。复盘是指定期回顾自己的笔记和想法,从而加深理解和发现新的联系;整合则是指将新的理解和旧的知识融合,形成更加全面和深入的见解。通过不断的复盘和整合,我们能够将知识内化为自己的理解和智慧。这一过程可能涉及到跨领域的知识融合、问题解决策略的创新或是对复杂系统的深刻洞察。智慧的形成,是对知识的超越,它不仅能帮助我们更好地理解世界,还能让我们在面对新问题时,能够创造性地提出解决方案。[heading2]AI时代的信息到智慧进化[content]在AI时代,这一进化过程得到了前所未有的加速。AI和机器学习技术可以帮助我们更快地处理和分析大量信息,识别出其中的模式和联系。同时,通过智能推荐、自动分类和总结等功能,AI可以大大提高我们从信息到知识的转化效率。更进一步,AI辅助的决策分析、预测模型和创意生成等应用,也在一定程度上模拟和扩展了人类的智慧。结合《打造第二大脑》中的理论和AI技术的发展,我们可以看到,通过有效地管理和应用信息,借助强大的工具和系统,人类的知识管理和智慧发展正处于一个全新的、充满可能的时代。在这个过程中,个人和组织都有机会通过高效的信息管理,不仅提升生产力和创造力,还能更深刻地理解世界,形成独到的智慧和见解。在信息泛滥的时代,我们如何将海量的信息转化为有用的知识,进而形成智慧?这里,引入DIKW模型和CODE信息管理法则,可以为我们提供更深刻的理解和实践指导。

Others are asking
你好,你是基于哪个大语言模型的人工智能?
我并非基于某个特定的大语言模型。AI 领域中的语言模型众多,例如 GPT3 等。大语言模型通常是使用深度学习和神经网络创建的,基于人类训练数据来理解单词、代码语法等。像生成式 AI 可以生成文本、图片、音频、视频等内容形式,其中包括大语言模型。2017 年 6 月,谷歌团队发表的论文《Attention is All You Need》首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络。
2025-04-08
生成超过15000字的人工智能技术在智能化零售行业中的应用与商业模式创新论文,学科方向是计算机科学与技术专业
很抱歉,目前无法直接为您生成超过 15000 字的论文。但我可以为您提供一个论文大纲,以帮助您组织思路和开展研究: 标题:人工智能技术在智能化零售行业中的应用与商业模式创新 摘要:简述人工智能技术在智能化零售中的重要性、应用现状、创新商业模式以及研究的主要结论。 一、引言 (一)研究背景:介绍智能化零售行业的发展趋势和人工智能技术的兴起。 (二)研究目的与意义:阐述研究人工智能技术在该领域应用和商业模式创新的目的,以及对行业发展的重要意义。 (三)研究方法与结构:说明采用的研究方法,如文献综述、案例分析等,并概述论文的结构安排。 二、人工智能技术概述 (一)人工智能技术的定义与分类:解释人工智能的概念,分类如机器学习、深度学习、自然语言处理等。 (二)关键技术原理:详细介绍相关技术的原理,如机器学习中的监督学习、无监督学习等。 (三)技术发展历程与现状:回顾人工智能技术的发展历程,分析当前的技术水平和应用情况。 三、智能化零售行业概述 (一)智能化零售的概念与特点:定义智能化零售,阐述其特点如个性化服务、精准营销等。 (二)行业发展现状与趋势:分析智能化零售行业的现状,包括市场规模、竞争格局等,预测未来的发展趋势。 (三)面临的挑战与机遇:探讨行业发展中面临的问题,以及人工智能技术带来的机遇。 四、人工智能技术在智能化零售中的应用 (一)客户画像与精准营销:如何利用人工智能技术分析客户数据,实现精准营销。 (二)库存管理与供应链优化:通过人工智能算法优化库存水平和供应链流程。 (三)智能推荐与个性化服务:介绍基于人工智能的推荐系统,为客户提供个性化的购物体验。 (四)无人零售与智能支付:探讨无人零售店的技术实现和智能支付方式的应用。 (五)店铺布局与商品陈列优化:利用人工智能进行数据分析,优化店铺布局和商品陈列。 五、人工智能技术驱动的商业模式创新 (一)新的零售模式:如线上线下融合的智能零售模式。 (二)数据驱动的商业决策:依靠人工智能分析数据,制定更科学的商业决策。 (三)合作与共享经济模式:探讨与技术供应商、其他企业的合作模式,以及共享数据和资源的可能性。 (四)增值服务与收费模式创新:基于人工智能技术提供的新服务,创新收费模式。 六、案例分析 (一)选取成功应用人工智能技术的智能化零售企业案例。 (二)详细介绍其应用场景、商业模式创新和取得的成效。 (三)总结经验教训,为其他企业提供借鉴。 七、影响与挑战 (一)对消费者行为和市场竞争的影响:分析人工智能技术如何改变消费者购物行为和市场竞争格局。 (二)技术与数据安全问题:探讨人工智能应用中的技术漏洞和数据泄露风险。 (三)法律法规与伦理道德问题:研究相关法律法规的缺失,以及可能引发的伦理道德问题。 八、结论与展望 (一)研究成果总结:概括人工智能技术在智能化零售中的应用和商业模式创新的主要发现。 (二)未来研究方向与建议:提出进一步研究的方向和对企业、政府的建议。 希望以上大纲对您有所帮助,祝您顺利完成论文!
2025-04-07
人工智能搜索与百度搜索的区别
人工智能搜索与百度搜索存在以下区别: 1. 底层技术:人工智能搜索的底层技术常包括“RAG”,即“检索增强生成”,包括检索、增强和生成三个步骤。而百度搜索的技术构成相对复杂,不断融合新的技术和功能。 2. 发展路径:在中国市场,相较欧美,百度作为搜索巨头已将文心一言大模型融入搜索,提供对话式回答和创作功能。同时,市场上还涌现出如秘塔 AI 搜索等创新型产品,主打“无广告,直接答案”,提供结构化结果和引用来源等特色功能。 3. 产品更新与竞争态势:Google 仍在战斗前线密集释放技能,与其他公司竞争激烈。而百度在新模型发布方面相对较少。此外,Google 推出新功能曾引发大量用户不满,而百度的相关新功能在页面布局和使用体验上更靠近某些特定产品,并聚合了多种创作能力和智能体快捷调用窗口。百度文库也上线了“AI 全网搜”功能,打通了特定工作流,产品功能较为完整,但受限于模型能力,生成内容尚有提升空间。
2025-04-01
浅谈“生成式人工智能在中职实训课的应用”
生成式人工智能在中职实训课的应用: 生成式人工智能是一种能够生成新的、未曾存在内容的人工智能技术,所生成的内容可以是多模态的,包括文本(如文章、报告、诗歌等)、图像(如绘画、设计图、合成照片等)、音频(如音乐、语音、环境声音等)、视频(如电影剪辑、教程、仿真等)。 其应用场景广泛,例如: 文档摘要:将长篇文章或报告总结为简短、精准的摘要。 信息提取:从大量数据中识别并提取关键信息。 代码生成:根据用户的描述自动编写代码。 营销活动创建:生成广告文案、设计图像等。 虚拟协助:例如智能聊天机器人、虚拟客服等。 呼叫中心机器人:能够处理客户的电话请求。 生成式人工智能的工作方式如下: 1. 训练阶段:通过从大量现有内容(文本、音频、视频等)中学习进行训练,训练的结果是一个“基础模型”。 2. 应用阶段:基础模型可以用于生成内容并解决一般性问题,还可以使用特定领域的新数据集进一步训练,以解决特定问题,从而得到一个量身定制的新模型。 Google Cloud 提供了相关工具,如 Vertex AI 是端到端机器学习开发平台,旨在帮助开发人员构建、部署和管理机器学习模型;Generative AI Studio 允许应用程序开发人员或数据科学家快速制作原型和自定义生成式 AI 模型,无需代码或代码量少;Model Garden 是一个平台,可以让用户发现 Google 的基础和第三方开源模型,并与之交互,它提供了一组 MLOps 工具,用于自动化机器学习管道。 在教育领域,从 AI 助教到智慧学伴的应用探索中,以“移动教学与促动”课程实习周为例,让教育学专业的学生了解和尝试运用教育 APP、二维码、教育游戏等技术方式开展移动教学。课程实习需要在 5 天内让非技术背景的学生分组设计课程并展示,由于学生众多,教师难以给予个性化指导,而 AI 在一定程度上补足了学生缺乏的经验。
2025-03-31
人工智能的意义
人工智能具有多方面的重要意义: 从监管角度看,有效监管人工智能需要对其有共同的理解。目前对于人工智能没有广泛共识的通用定义,但通过参考其“适应性”和“自主性”这两个产生定制监管响应需求的特性来定义。“适应性”使解释系统结果的意图或逻辑变得困难,“自主性”使结果的责任分配变得困难。 从产业发展角度看,人工智能是引领新一轮科技革命和产业变革的基础性和战略性技术,加速与实体经济深度融合,改变工业生产模式和经济发展形态,对新型工业化、制造强国、网络强国和数字中国建设发挥重要支撑作用。我国人工智能产业在技术创新、产品创造和行业应用等方面快速发展,形成庞大市场规模,伴随新技术加速迭代,呈现创新技术群体突破、行业应用融合发展、国际合作深度协同等新特点,亟需完善产业标准体系。 从学科本身角度看,人工智能是一门研究如何使计算机表现出智能行为,例如做人类擅长之事的科学。对于一些无法明确编程的任务,如根据照片判断人的年龄,正是人工智能感兴趣的领域。在金融、医学和艺术等领域,人工智能也带来了诸多益处。
2025-03-28
我希望了解人工智能大模型公司的整体产业情况
以下是关于人工智能大模型公司的整体产业情况: 2024 年被称为国内大模型落地元年,经过一年时间的发展,呈现出以下特点: 1. 竞争格局:国内大模型行业基本形成了以百度、阿里、字节等科技大厂和创业“AI 六小虎”为主要玩家的竞争态势。 2. 落地增长:2024 年 1 至 11 月,国内大模型中标项目数量和金额大幅增长。中标项目共 728 个,是 2023 年全年的 3.6 倍;中标金额 17.1 亿元,是 2023 年全年的 2.6 倍。中标项目数前五的行业分别是运营商、能源、教育、政务、金融。 3. 厂商表现:百度在中标数量和金额方面排名所有厂商之首,科大讯飞居第二。在金融行业,百度也排名第一。 4. 行业应用:在智能终端行业,超半数手机厂商使用文心大模型,多家车企已接入百度文心大模型。 5. 能力要求:大模型进入产业落地后,除模型本身能力外,落地应用所需的全栈技术能力、工程化配套工具等对落地效果有直接影响。企业落地大模型需要具备构建算力、数据治理、模型训练、场景落实、应用搭建、持续运营、安全合规等整套能力,大模型的竞争正成为体系化之战。 此外,2023 年国内大模型发展情况包括:智谱推出了 4 代 GLM,MiniMax 推出新模型及“星野”APP,月之暗面在长 Token 能力上表现出色。但在 2C 端真正出圈的产品较少,在 2B 行业中,大模型对收入撬动有限。硬件层上,国内仍缺乏胜任大模型训练的芯片,华为昇腾在单卡指标上接近,但存在稳定性和生态问题。
2025-03-27
神经网络与大脑实际工作的原理区别
神经网络与大脑实际工作的原理存在以下区别: 1. 神经网络本质上是运行在多层面上的软件,由人工建立的一层层互相连接的神经元模型组成,模仿大脑处理复杂问题,如视觉和语言等。它可以自行学习与工作,不需要人为提示或参与控制。 2. 早期由于电脑处理能力不足,神经网络的发展受限。而大脑则具有强大的天然处理能力。 3. 神经网络的计算风格受神经元及其适应性连接启发,与传统的序列计算不同。 4. 对于循环网络,其连接图中存在定向循环,动态复杂,更具生物真实性。 5. ChatGPT 是通过获取大量人类创作的文本样本进行训练,生成类似的文本。其神经网络由简单元素组成,基本操作简单,从积累的“传统智慧统计数据”中提取“连贯的文本线索”,但不像大脑那样具有全面和复杂的功能。 总之,神经网络是对大脑的一种模拟,但与大脑真实的工作方式仍存在诸多差异。
2025-02-25
是AI聪明还是人的大脑聪明
AI 和人的大脑谁更聪明是一个复杂的问题,不能简单地一概而论。 从某些方面来看,AI 具有强大的计算能力和处理大量数据的能力,能够快速准确地完成特定任务。例如,在处理复杂的数学计算、大规模数据的分析和模式识别等方面表现出色。 然而,人的大脑具有独特的智慧和能力。大脑是一个混沌系统,具有创造性、适应性、情感理解、综合判断和复杂情境处理等能力。人类能够进行抽象思维、创新创造、理解情感和道德等方面的思考。 AI 是通过学习人类大脑结构来发展的,但目前仍存在诸多不足和缺陷。例如,大模型内部也是混沌系统,即使是科学家也无法解释其微观细节。 在绘画方面,人类的绘画创作通常是线性发展的过程,先学习线稿表达、色彩搭配、光影表现等,而 AI 是以积累数据、扩散噪声、再降噪收束的路径来生图,经常会在同一张图中呈现出不同绘画级别的细节。 总之,AI 和人的大脑各有优势和局限性,不能简单地判定谁更聪明。
2024-11-22
帮我找这篇文章《AI Agent系列:系统性学习大脑模块》
以下是关于《AI Agent 系列:系统性学习大脑模块》的相关内容: 大脑模块(Brain)是 AI Agent 智能行为的核心,是一个高度集成的系统,负责处理信息、做出决策和规划行动。通常基于大型语言模型(如 Llama 或 GPT),在海量文本数据上训练,赋予强大的自然语言理解和生成能力。 其不仅包含丰富的语言知识(词法、句法、语义学和语用学),还融入广泛的常识知识,能做出符合现实世界的合理决策。此外,还集成特定领域专业知识,能在专业领域执行复杂任务。 具备记忆能力,可存储和检索过去的观察、思考和行动序列,对处理连续任务和解决复杂问题至关重要。还具备推理能力,能基于证据和逻辑决策,并通过规划能力将复杂任务分解为可管理的子任务,制定相应行动计划。 计划反思机制使 Agent 能评估和完善策略,适应变化环境,支持任务泛化,根据指令完成新任务。上下文学习能力让其从给定示例快速学习适应新任务,持续学习机制避免灾难性遗忘,保持知识更新累积。 接收感知模块处理信息后,会访问存储系统,检索知识并提取信息,帮助制定计划、推理和做明智决策。还能记录 Agent 过去的观察、思考和行动,以不同形式存储,不断更新常识和专业知识库。基于大型语言模型的 AI Agent 具备出色概括和迁移能力,适应新奇或陌生场景。以下是大脑模块中对不同能力的关注点。
2024-08-23
flowith根据自然语言构建一个直接使用的工作流吗,如何向flowith提出要求
Flowith 可以根据自然语言构建工作流。即使没有专业编程技能,只要能用清晰的自然语言描述出想要的各个 Agents 具备的行为和功能,就可以快速制作多 Agents 应用或创建代理式工作流。 使用工作流的步骤如下: 1. 配置工作流: 在 Code 节点内使用 IDE 工具,通过 AI 自动生成代码或编写自定义代码逻辑,来处理输入参数并返回响应结果。 该节点支持 JavaScript、Python 运行时,需注意不同运行时的特定事项。 可在 IDE 底部单击尝试 AI,并输入自然语言设定代码逻辑,也可选中代码片段通过快捷键唤起 AI 并输入自然语言让其修改代码。 2. 通过工作流数据库节点操作数据表: 在工作流中添加数据库节点对数据表进行操作,可通过 NL2SQL 方式和代码方式进行调用,支持完整读写模式。 参考以下操作添加并配置工作流节点: 单击页面顶部的工作流页签,然后单击创建工作流。 输入工作流名称和使用描述,然后单击确认。 在基础节点页签下,将数据库节点拖入到工作流配置画布区域。 根据相关信息配置数据库节点,包括输入添加 SQL 执行中需要的参数,输入要执行的 SQL 语句,可单击自动生成使用大模型生成 SQL。 需注意不支持 Select语法、多表 Join 操作,最多返回 100 行数据。在配置数据库节点前,要确保已经搭建了一个 Bot,并在这个 Bot 中创建好了数据表。
2025-03-26
构建知识库有什么要注意的?
构建知识库时需要注意以下几点: 1. 在使用在线检索流程生成结果时: 重排序的结果通常因大模型上下文有限制而不会都被使用,可以设置阈值进行截断,如只使用前 3 5 个文档,或只取相关性分数大于某个值的文档。 一些先进的 RAG 系统会对选中的文档进行摘要或压缩,以在有限空间内包含更多相关信息。 2. 对于后置处理,可能包括敏感内容检测和移除、格式化输出等。 3. 创建智能体的知识库时: 手动清洗数据可提高准确性,如创建画小二课程的 FAQ 知识库时,飞书在线文档中每个问题和答案以分割。 对于本地文档,不能一股脑全部放进去训练,应先放入大的章节名称内容,再按固定方式细化处理。 4. 使用 Coze 搭建知识库时: 文档的分片策略会严重影响查询结果,RAG 方案存在跨分片总结和推理能力弱、文档有序性被打破、表格解析失败等问题。 希望以上内容对您有所帮助。
2025-03-25
如何构建知识库
构建知识库的方法主要有以下两种: 使用 flowith 构建知识库: 1. 选择“Manage Your Knowledge Base”,进入知识库管理页面。 2. 点击左上角的加号,添加新的知识库,并为其起一个易于分辨的名字。 3. 点击添加文件,建议使用 Markdown 格式的文件。 4. Flowith 会对文件逐个进行抽取等处理,无需操心具体过程,等待处理完毕。 5. 处理完毕后,可以在知识库管理页面测试检索,输入关键词过滤相关内容。 使用 Dify 构建知识库: 1. 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式,并对数据进行清洗、分段等预处理,确保数据质量。 2. 创建数据集:在 Dify 中创建一个新的数据集,并将准备好的文档上传至该数据集,为数据集编写良好的描述。 3. 配置索引方式:Dify 提供了三种索引方式供选择,包括高质量模式、经济模式和 Q&A 分段模式,根据实际需求选择合适的索引方式。 4. 集成至应用:将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用,在应用设置中配置数据集的使用方式。 5. 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代,定期更新知识库,增加新的内容以保持时效性。 总的来说,Dify 提供了一个可视化的知识库管理工具,关键步骤包括数据准备、数据集创建、索引配置,以及将知识库集成到应用中并持续优化。
2025-03-20
我是新手小白,如何用最简单的方式构建多智能体
对于新手小白构建多智能体,以下是一种较为简单的方式: 1. 快速搜索补充参考信息:根据用户的任务调研市场上主流的开源搜索引擎技术架构,使用搜索工具 API WebSearchPro 补充更多信息,具体可参考。 2. 用模型规划和分解子任务:使用大模型如 GLM40520 帮助规划,把用户问题拆分成若干子搜索任务,并转换为 JSON 格式。JSON 格式处理可参考。 3. 用搜索智能体完成子任务:AI 搜索智能体具备联网搜索和自主分析并进行多轮搜索任务的能力。智能体 API 的调用方式可参考。智能体 id 为 659e54b1b8006379b4b2abd6,简介为连接全网内容,精准搜索,快速分析并总结的智能助手。 4. 总结子任务生成思维导图:智能体能调用各种插件,如思维导图、流程图、PPT 工具等,可根据工作需要选择。智能体 API 的调用方式可参考。智能体 id 为 664e0cade018d633146de0d2,简介为告别整理烦恼,任何复杂概念秒变脑图。 另外,OpenAI 官方开源的多智能体框架「Swarm」具有一定优势,其「Handoffs」处理了不同智能体之间交接的逻辑。例如构建客服多智能体,可能只需要准备普通接线客服和宽带客服两个 Agent 。 在实际操作中,如创建 Coze 智能体获取笔记和评论信息,要创建智能体并使用单 Agent 对话流模式,编排对话流,进行测试和发布等步骤。发布时要注意相关配置,如输出类型、输入类型等。
2025-03-20
如何构建多模态知识库?
构建多模态知识库可以参考以下步骤: 1. 图像知识库方面:通过多模态的能力对图片信息进行检索理解。效果测试时,上传一张图片,在图像数据库里找到相关信息,然后结合内容进行回复。 2. 构建图片索引: 新建结构化数据表时,将图片索引所在列的字段类型设置为 link。需注意新建数据表后,无法再新增或修改字段类型为 link。 创建结构化知识库时,对于需要建立图片索引的 link 类型字段,在旁边的下拉列表中选择图片。创建知识库后,无法再新建或修改图片索引。 3. 多模态知识库还包括构建图片型索引需结构化数据表,字段类型设置为 link,以实现 FAQ 中向用户推送图片信息。
2025-03-19
如何构建一个优秀的ai的知识库
构建一个优秀的 AI 知识库可以参考以下步骤和要点: 1. 明确概念和原理:了解 AI 时代知识库的概念、实现原理以及能力边界。 2. 掌握获取资料的原理:比如在通往 AGI 之路大群中通过对话获取知识库中资料的原理。 3. 利用相关平台组件:更好地使用 Coze 等 AI Agent 平台中的知识库组件,打造更强大的智能体。 4. 规划内容: 数据库:让 Coze 拥有记忆的组件 1。 知识库:让 Coze 拥有记忆的组件 2。 变量:让 Coze 拥有记忆的组件 3。 JSON:让您更好地使用 Coze 插件。 API:外部应用程序接入 Coze 的方式。 操作系统与服务器:那些接入了 Coze 的微机器人的运行位置。 Docker:以最简单的方式部署微信机器人。 5. 确定功能范围:编写 prompt 提示词,设定 Bot 的身份和目标。 6. 整理对应关系:创建知识库,整理“关键字”与“AI 相关资料链接”的对应关系,并将信息存储起来。 支持的文档类型:本地文档、在线数据、飞书文档、Notion 等,可使用本地文档。 按照操作指引上传文档、分段设置、确认数据处理。 小技巧:知识库的好用程度与内容切分粒度有关,可以在内容中加上特殊分割符,如“”,分段标识符号选择“自定义”,内容填“”。如果内容有误需要编辑,可以点击具体内容,鼠标右键会看到“编辑”和“删除”按钮进行操作。 同时,“通往 AGI 之路”是一个由开发者、学者和有志人士等参与的学习社区和开源的 AI 知识库,在这里,您既是知识的消费者,也是知识的创作者。它不仅是一个知识库,还是连接学习者、实践者和创新者的社区,让大家在这里碰撞思想,相互鼓舞,一同成长。
2025-03-12
我在用AI辅助学习新概念英语第二册,但是deep seek总是报错,我应该换成什么别的AI呢?
如果您在使用 Deep Seek 辅助学习新概念英语第二册时总是报错,可以考虑换成 Wenxiaobai.com 这个平台。它高速响应,完全免费,支持各种平台使用,与 Deep Seek 官网几乎相同,速度快且稳定性高,最新版本还支持文档与图片分析。
2025-03-12
我想系统性的了解AI,你能为我画一个思维导图吗,或者结构性的帮我介绍。譬如:第一级:人工智能,第二级人工智能下的所有分支
以下是为您系统性介绍 AI 的结构内容: 第一级:人工智能 第二级: 1. 基本概念 术语和基础概念 主要分支(机器学习、深度学习、自然语言处理等) 分支之间的联系 2. 学习之旅 入门课程推荐(李宏毅老师的课程等) 在线教育平台课程 3. 特定模块 图像 音乐 视频等 4. 提示词技巧 5. 实践尝试 实践巩固知识 作品分享 6. 体验产品 ChatGPT Kimi Chat 智谱 文心一言等 此外,为您推荐三本神经科学书籍: 1. 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga;Richard B.Lvry;George R.Mangun) 2. 《神经科学原理》(作者:Eric R.Kandel;James H.Schwartz) 3. 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著) 还有《雪梅 May 的 AI 学习日记》中提到的学习经验,如第一阶段迈出第一步,看书听课进社区,包括系统性学习、初步探索、加入 AI 社区等。
2025-01-21
我面临退休,想使用ai开展第二职业,该如何规划实施?
以下是为您规划使用 AI 开展第二职业的一些建议: 1. 深入了解 AI 领域:明确自己的兴趣点,比如是对 AI 提示词、AI 绘画、AI 智能体还是其他方面感兴趣。 2. 评估自身技能:确定自己现有的技能与 AI 领域的结合点,以及还需要提升哪些技能。 3. 学习与提升:根据职业目标,获取个性化的学习建议和资源,提升在 AI 领域的专业技能。 4. 选择研究课题:有意识地选择有潜力和市场需求的研究方向。 5. 宣传工作成果:让更多人了解您在 AI 领域的工作和成果。 6. 合作与交流:与能力强且您钦佩的人合作,学习他们的研究品味和思考方式。 7. 关注行业趋势:了解 AI 领域的最新发展和未来方向,比如更事实性不会产生幻觉的语言模型、可以使用工具与世界进行交互的多模态模型等。 8. 制定职业规划:明确短期和长期的职业目标,制定详细的发展计划。 同时,您可以利用一些职业规划服务产品,比如: 1. 对于学生和应届毕业生,可以通过产品了解 AI 技术在不同职业中的应用,评估兴趣和技能,选择合适职业路径并制定规划,根据职业目标获取个性化学习建议和资源提升技能。 2. 对于职场新人和职业转换者,可根据自身职业目标和市场需求制定发展计划,明确短期和长期目标,获取职业转型支持和必要技能培训资源。 3. 对于企业,可利用产品评估应聘者 AI 技能水平,为现有员工提供职业发展规划和技能提升建议,培养内部 AI 人才。 4. 对于教育机构,可将产品作为学生职业指导一部分,帮助了解 AI 领域职业机会和发展路径,优化课程设置提供针对性培训。 5. 对于职业咨询师,可将产品作为辅助工具为客户提供更精准规划建议和技能评估,基于产品数据提供更全面前瞻性指导。
2024-12-24
我想使用ai开展第二职业,该如何规划实施?
以下是关于使用 AI 开展第二职业的规划实施建议: 1. 努力工作:不仅要增加工作时间,还要提升专注程度。可以有意识地与能力强且令人钦佩的人合作,学习他们的研究品味和思考方式。 2. 研究本身及周期:涉及研究课题的选择、研究工作的开展以及成果的宣传等所有部分。 3. 了解模型:深入了解 AI 模型的行为和局限性,以便更好地引导研究方向和做出正确决策。 4. 评估能力:明确语言模型在各种任务中的评价指标,这是研究人员需要优化的目标函数。 5. 针对自身情况: 学生和应届毕业生:通过产品了解 AI 技术在不同职业中的应用,评估兴趣和技能,选择合适职业路径并制定详细规划;根据职业目标获得个性化学习建议和资源,提升 AI 领域技能。 职场新人和职业转换者:职场新人根据自身职业目标和市场需求制定发展计划,明确短期和长期目标;职业转型者可获取详细转型路径和必要技能培训资源。 企业:利用产品评估应聘者 AI 技能水平,为现有员工制定个性化职业发展计划,提供持续指导和培训。 教育机构:将相关产品作为学生职业指导一部分,优化课程设置,提供针对性 AI 技能培训。 职业咨询师:使用产品为客户提供更精准规划建议和技能评估,基于市场数据和趋势分析提供全面前瞻性指导。
2024-12-24
普通人怎么入局AI,提升自己的职场竞争力,或者开启第二副业
对于普通人入局 AI 以提升职场竞争力或开启第二副业,以下是一些建议: 1. 应用 AI 提效:在互联网大厂降本增效的背景下,个人工作量可能增加,利用 AI 提高工作效率,既能增强竞争力,又有助于早下班。 2. 躬身入局:如徐文浩老师所说,在重大技术变革时,每天在一线动手实践是可行之路。 3. 关注优质信息源:例如吴炳见的【AI 大航海】和徐文浩老师的【AI 炼金术】公众号,获取有价值的信息。 4. 了解共创模式:共创模式有多元化视角、增强参与感、共享资源、快速迭代、增强创新等优点,但也面临协调复杂、知识产权保护、利益分配、责任归属与质量控制等挑战。 需要注意的是,在开启相关行动之前,要做好充分的准备和学习。
2024-12-20
帮我写一个可以训练的分类器代码, python 代码,目的是将样本的扰动分为 0,0.001,0.003,0.005 四类,按照以下步骤写 第一步:导入需要的库 第二步:加载位于/public/xdw/ls/signaldefense/AS/perturbed_data.npy 的数据 第三步:获取数据样本的扰动值 第四步:判断扰动值的大小,比如扰动值为 0,则加一计数 第五步:打印出判断各类扰动值的正确率
以下是为您生成的 Python 代码示例,用于实现将样本的扰动分为 0、0.001、0.003、0.005 四类的分类器: ```python import numpy as np 第一步:导入需要的库 import numpy as np 第二步:加载数据 data = np.load 第三步:获取数据样本的扰动值 perturbation_values = data 假设扰动值在第二列 第四步:判断扰动值的大小并计数 count_0 = 0 count_0_001 = 0 count_0_003 = 0 count_0_005 = 0 for value in perturbation_values: if value == 0: count_0 += 1 elif value == 0.001: count_0_001 += 1 elif value == 0.003: count_0_003 += 1 elif value == 0.005: count_0_005 += 1 第五步:计算正确率 total_samples = len accuracy_0 = count_0 / total_samples accuracy_0_001 = count_0_001 / total_samples accuracy_0_003 = count_0_003 / total_samples accuracy_0_005 = count_0_005 / total_samples print print print print ```
2024-12-05