Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何搭建定制知识库

Answer

以下是关于如何搭建定制知识库的相关内容:

要搭建基于 GPT API 的定制化知识库,需要给 GPT 输入定制化的知识。但 GPT-3.5(即当前免费版的 ChatGPT)一次交互支持的 Token 数量有限,约 4096 个,相当于 3000 个单词或 2300 个汉字,容量对于多数领域知识不够。为处理大量领域知识,OpenAI 提供了 embedding API 解决方案,可参考 OpenAI embedding documents。

embeddings 是浮点数字的向量(列表),两个向量之间的距离衡量它们的关联性,小距离表示高关联度,大距离表示低关联度。向量是用一串数字表示大小和方向的量,在计算机科学和数据科学中通常用列表表示。向量之间的距离是度量相似性的方法,常见的如欧几里得距离。在 OpenAI 词嵌入中,靠近的向量词语在语义上相似。

LlamaIndex 是更高一层 LangChain 的抽象,之前叫 GPT Index。之前的文章基于 GPT3.5 搭建定制化知识库中的例子使用了 LlamaIndex 包,它简化了 LangChain 对文本分割和查询的接口,并提供了更丰富的 Data Connector。LlamaIndex 只针对 GPT Model 做 Index,而 LangChain 可对接多个 LLMs,可扩展性更强。参考 https://gpt-index.readthedocs.io/en/latest/

在基于大模型+知识库的 Code Review 实践中,对于自定义知识库-飞书文档(自定义),没有格式要求,能看懂正确代码即可。可直接使用 LangChain 提供的LarkSuite文档加载类,对有权限的飞书文档进行获取,使用 CharacterTextSplitter/RecursiveCharacterTextSplitter 将文本分割成固定长度的块(chunks),方法有两个主要参数:chunk_size 控制每个块的长度,如设置为 1024,则每个块包含 1024 个字符;chunk_overlap 控制相邻两个块之间的重叠长度,如设置为 128,则每个块会与相邻块重叠 128 个字符。

因为大模型有足够多的数据,想让大模型按要求执行就需要用到“Prompt 提示词”。

最近各家大厂接连放大招,AI 技术和应用突飞猛进,GPT-4 接口已支持最大 32K 输入,AI 的开发和使用门槛会越来越低。垂直领域知识库的搭建和优化可能更多是业务问题,而非技术问题。

Content generated by AI large model, please carefully verify (powered by aily)

References

从零开始,用GPT打造个人知识库

要搭建基于GPT API的定制化知识库,涉及到给GPT输入(投喂)定制化的知识。但GPT-3.5,也就是当前免费版的ChatGPT一次交互(输入和输出)只支持最高4096个Token,约等于3000个单词或2300个汉字。这点容量对于绝大多数领域知识根本不够。为了使用GPT的语言能力来处理大量的领域知识,OpenAI提供了embedding API解决方案。参考OpenAI embedding documents。[heading2]理解embeddings[content]embeddings(直译为嵌入)是一个浮点数字的向量(列表)。两个向量之间的距离衡量它们的关联性。小距离表示高关联度,大距离表示低关联度。进一步解释:向量(列表):向量是数学中表示大小和方向的一个量,通常用一串数字表示。在计算机科学和数据科学中,向量通常用列表(list)来表示。列表是一种数据结构,它包含一组有序的元素。例如,一个二维向量可以表示为[2,3],这意味着沿着两个轴的分量分别为2和3。在这里,"list"是一种编程术语,意味着一系列有序的数据。向量之间的距离:向量之间的距离是一种度量两个向量相似性的方法。有多种方式可以计算两个向量之间的距离,最常见的是欧几里得距离。欧几里得距离计算方法是将两个向量的对应元素相减,然后取平方和,再开平方。例如,向量A=[1,2]和向量B=[4,6]之间的欧几里得距离为sqrt((4-1)^2+(6-2)^2)=5。较小距离意味着高相关性,因为向量间相似度高。在OpenAI词嵌入中,靠近向量的词语在语义上相似。例如,“猫”和“狗”距离近,它们都是宠物,与“汽车”距离远,相关性低。文档上给了创建embeddings的示例上面的命令访问embeddings API接口,将input语句,转化成下面这一串浮点数字。

从零开始,用GPT打造个人知识库

LlamaIndex是更高一层LangChain的抽象,之前叫GPT Index。之前的文章[基于GPT3.5搭建定制化知识库](http://mp.weixin.qq.com/s?__biz=MzIyNDAzMzYxNQ==&mid=2652028778&idx=1&sn=985a386f915dea0d4dc97186af7c50b6&chksm=f3f3314ac484b85ce64579538987cea764181f92a4bb953724b055f0f2b9c73c03b109cfbe27&scene=21#wechat_redirect)中的例子就是使用的LlamaIndex包。它简化了LangChain对文本分割,查询这块的接口,提供了更丰富的Data Connector。LlamaIndex只针对GPT Model做Index,而LangChain是可以对接多个LLMs,可扩展性更强。参考https://gpt-index.readthedocs.io/en/latest/[heading2]写在最后[content]最近各家大厂接连放大招,AI技术和应用突飞猛进,GPT-4接口已经支持最大32K输入,AI的开发和使用门槛肯定会越来越低,就像当年的Windows,Office。垂直领域知识库的搭建和优化可能更多的是一个业务问题,而不是一个技术问题。欢迎关注公众号”越山集“,多交流。让我们保持好奇心,不断探索,共同进步。

信鑫:基于大模型 + 知识库的 Code Review 实践

飞书文档没有格式要求,能看懂正确代码是怎样就行这里直接使用LangChain提供的[LarkSuite](https://link.zhihu.com/?target=https%3A//python.langchain.com/docs/integrations/document_loaders/larksuite)文档加载类,对有权限的飞书文档进行获取,使用CharacterTextSplitter/RecursiveCharacterTextSplitter将文本分割成固定长度的块(chunks),方法有两个主要参数:chunk_size:控制每个块的长度。例如设置为1024,则每个块包含1024个字符。chunk_overlap:控制相邻两个块之间的重叠长度。例如设置为128,则每个块会与相邻块重叠128个字符。[heading3]Prompt指令设计[content]因为大模型有足够多的数据,我们想让大模型按要求执行就需要用到『Prompt提示词』。图源Stephen Wolfram

Others are asking
deepseek本地部署知识库
以下是关于 DeepSeek 本地部署知识库的相关信息: 您可以参考以下链接获取更多详细内容: DeepSeek 资料库:照着做可直接上手🔗 需要注意的是,日报中提到本地部署并不适合普通用户,纳米 AI 搜索是目前较为稳定的第三方替代方案,其满血版推理能力接近官方但速度较慢,高速版速度快、体验流畅但推理能力稍弱。体验地址:🔗或下载纳米 AI 搜索 APP 。
2025-02-21
waytoagi 的飞书知识库智能问答机器人是怎么做的
waytoagi 的飞书知识库智能问答机器人是基于飞书 aily 搭建的。在飞书 5000 人大群里内置了名为「waytoAGI 知识库智能问答」的智能机器人,它会根据通往 AGI 之路的文档及知识进行回答。 其具有以下功能和特点: 1. 自动问答:自动回答用户关于 AGI 知识库内涉及的问题,可以对多文档进行总结、提炼。 2. 知识搜索:在内置的「waytoAGI」知识库中搜索特定的信息和数据,快速返回相关内容。 3. 文档引用:提供与用户查询相关的文档部分或引用,帮助用户获取更深入的理解。 4. 互动教学:通过互动式的问答,帮助群成员学习和理解 AI 相关的复杂概念。 5. 最新动态更新:分享有关 AGI 领域的最新研究成果、新闻和趋势。 6. 社区互动:促进群内讨论,提问和回答,增强社区的互动性和参与度。 7. 资源共享:提供访问和下载 AI 相关研究论文、书籍、课程和其他资源的链接。 8. 多语言支持:支持多语言问答,满足不同背景用户的需求。 使用方法: 1. 在飞书群里发起话题时即可,它会根据 waytoAGI 知识库的内容进行总结和回答。 2. 可以在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(二维码需在获取),然后点击加入,直接@机器人即可。 3. 也可以在 WaytoAGI.com 的网站首页,直接输入问题,即可得到回答。 搭建问答机器人的相关情况: 1. 2024 年 2 月 22 日的会议介绍了 WaytoAGI 社区的成立愿景和目标,以及其在飞书平台上的知识库和社区的情况。 2. 讨论了利用 AI 技术帮助用户更好地检索知识库中的内容,引入了 RAG 技术,通过机器人来帮助用户快速检索内容。 3. 介绍了基于飞书的知识库智能问答技术的应用场景和实现方法,可以快速地给大模型补充新鲜的知识,提供大量新的内容。 4. 讨论了如何使用飞书的智能伙伴功能来搭建 FAQ 机器人,以及智能助理的原理和使用方法。 5. 飞书智能伙伴创建平台(英文名:Aily)是飞书团队旗下的企业级 AI 应用开发平台,提供了一个简单、安全且高效的环境,帮助企业轻松构建和发布 AI 应用,推动业务创新和效率提升。为企业探索大语言模型应用新篇章、迎接企业智能化未来提供理想选择。
2025-02-20
如何搭建自己的知识库
搭建自己的知识库可以参考以下步骤: 1. 了解 RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。 大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,可通过检索增强生成 RAG 实现。 RAG 应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载:从多种来源加载文档,如 PDF 等非结构化数据、SQL 等结构化数据及代码。 文本分割:把文档切分为指定大小的块。 存储:包括将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 检索:通过检索算法找到与输入问题相似的嵌入片。 输出:把问题及检索出来的嵌入片提交给 LLM 生成答案。 2. 文本加载器:将用户提供的文本加载到内存中,便于后续处理。 3. 基于 GPT API 搭建: 涉及给 GPT 输入定制化知识,但 GPT3.5 一次交互支持的 Token 有限。 OpenAI 提供了 embedding API 解决方案,embeddings 是浮点数字的向量,向量间距离衡量关联性,小距离表示高关联度。 4. 本地知识库进阶: 可使用额外软件 AnythingLLM,其包含 Open WebUI 的能力,并支持选择文本嵌入模型和向量数据库。 安装地址:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 在 AnythingLLM 中创建 Workspace 构建本地知识库,包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式综合给出答案,Query 模式仅依靠文档数据给出答案),最后进行测试对话。 总之,搭建知识库需要不断实践和探索,“看十遍不如实操一遍,实操十遍不如分享一遍”。
2025-02-20
DeepSeek搭建 个人知识库
以下是关于 DeepSeek 搭建的相关知识: 对于个人知识库的搭建,您可以参考以下内容: 章节“三.使用 DeepSeek R1 给老外起中文名”:https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZcshareDyEMdmCPOo98S6xbPfNcsuEOnuh 知识点“Node.JS 安装”:https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZcsharePVnndBSV5oWOukx38tKcw2CPnub 申请“DeepSeek R1 API”:https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZcshareTrXednqLAoH3VLxrUiYc1Pb9nhf 网页接入“DeepSeek API”:https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZcshareUK5xdzhiaoo9RkxHR5bcs30pnV8 章节“一.Trae 的介绍/安装/疑难杂症”:https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZcshareR4GvdgOzeoC9mOxd1hScuql6nVY Python 安装:https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZcshareKcojdhid9oWJPjxAvEOczRt0nkg 一个提示词让 DeepSeek 的能力更上一层楼的相关内容: 效果对比:用 Coze 做了个小测试,大家可以对比看看,视频链接: 如何使用: 搜索 www.deepseek.com,点击“开始对话” 将装有提示词的代码发给 Deepseek 认真阅读开场白之后,正式开始对话 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担 通过提示词文件,让 DeepSeek 实现:同时使用联网功能和深度思考功能 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改 用 XML 来进行更为规范的设定,而不是用 Lisp(对我来说有难度)和 Markdown(运行下来似乎不是很稳定) 完整提示词:v 1.3 特别鸣谢:李继刚的【思考的七把武器】在前期为提供了很多思考方向;Thinking Claude 是现在最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源;Claude 3.5 Sonnet 是最得力的助手 五津:DeepSeek+扣子:1 分钟生成小红书爆款单词视频: 先观察此类视频规律,如先问这是什么→再揭晓结果,反复多次。 拆解视频模板的制作流程,逐个轨道分析,注意各轨道上的元素时间对应关系。 涉及的知识点可用于用扣子工作流来搭建。
2025-02-20
现在有哪些个人知识库软件可以用,请推荐。
以下是为您推荐的个人知识库软件: 1. Coze:如果您想使用专门搭建个人知识库的软件,可以参考文章,忽略本地部署大模型环节,直接看其中推荐的软件。但使用该软件可能需要对接一些额外的 API,建议先了解 RAG 的原理再使用。 2. AnythingLLM:包含所有 Open WebUI 的能力,并且额外支持选择文本嵌入模型和向量数据库。安装地址:https://useanything.com/download 。安装完成后,配置页面主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。在 AnythingLLM 中有 Workspace 的概念,可以创建自己独有的 Workspace 跟其他项目数据进行隔离,包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式和 Query 模式),配置完成后即可进行对话测试。 此外,还有通过 GPT 打造个人知识库的方法,比如将文本转换成向量节省空间,拆分成小文本块并通过 embeddings API 转换成 embeddings 向量,在向量储存库中保存这些向量和文本块作为问答的知识库。当用户提问时,将问题转换成向量与库中向量比对,提取关联度高的文本块与问题组合成新的 prompt 发送给 GPT API 。
2025-02-19
waytoagi的知识库基于哪个LLM创建的
目前没有明确的信息表明 waytoagi 的知识库基于哪个 LLM 创建。但以下信息可能对您有所帮助: AnythingLLM 包含了所有 Open WebUI 的能力,并且额外支持选择文本嵌入模型、选择向量数据库等。安装地址为:https://useanything.com/download 。安装完成后配置主要分为三步,包括选择大模型、选择文本嵌入模型、选择向量数据库。AnythingLLM 中有 Workspace 的概念,可创建自己独有的 Workspace 跟其他项目数据进行隔离,包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式和 Query 模式)等。 GitHubDaily 开源项目列表中提到了 AnythingLLM,它是一个可打造成企业内部知识库的私人专属 GPT,可以将任何文档、资源或内容转换为大语言模型(LLM)知识库。
2025-02-19
怎么用AI搭建工作流
搭建 AI 工作流可以参考以下步骤: 1. 搭建 AI 工作流的三种能力: 熟悉各种 AI 工具:了解多个不同 AI 工具的特点和用途,根据具体细分任务选择合适的工具。例如,写标题可用 ChatGPT,写文章可用 Claude,检查文本中的错别字和病句可用秘塔写作猫的 AI 纠错功能。 编写提示词:搭建起人与 AI 之间的“沟通桥梁”,用 AI 能听懂的语言清晰说明需求、任务内容和步骤。 搭建 AI 智能体。 2. 搭建 AI 工作流的工作流: 找到一个工作场景:选择熟悉的工作场景,如写文章、做 PPT 等。 拆解工作流程:将工作拆解成几个小步骤,如写文章可拆分为选题、写稿、改稿、写标题等。 给每一个步骤嵌入工具:针对每个小步骤,思考有无 AI 工具可帮忙,若想不到可参考他人做法,注意灵活选择最优解,目的是提高工作效率而非增加工作的含 AI 量。 此外,在搭建工作流时还需注意: 打开 Comfyui 界面后,右键点击界面,可找到 Comfyui LLM party 的目录,学习手动连接节点实现最简单的 AI 女友工作流,或直接将工作流文件拖拽到 Comfyui 界面中一键复刻提示词工程实验。 从 ollama 的 github 仓库找到对应版本并下载,启动 ollama 后,在 cmd 中输入 ollama run gemma2 将自动下载 gemma2 模型到本地并启动。将 ollama 的默认 base URL=http://127.0.0.1:11434/v1/以及 api_key=ollama 填入 LLM 加载器节点即可调用 ollama 中的模型进行实验。 若 ollama 连接不上,可能是代理服务器的问题,需将 127.0.0.1:11434 添加到不使用代理服务器的列表中。
2025-02-20
多智能体应用搭建
多智能体是由多个自主、独立的智能体组成的系统,每个智能体都能感知环境、决策并执行任务,且相互间能信息共享、任务协调与协同行动以实现整体目标。 随着大型语言模型的出现,以其为核心构建的 Agent 系统受广泛关注。单 Agent 核心在于语言模型与工具的协同配合,可能需与用户多轮交互。而多 Agent 为不同 Agent 分配角色并通过协作完成复杂任务,与用户交互可能减少。 构建多 Agent 框架的主要组成部分包括: 1. 环境:所有 Agent 处于同一环境,包含全局状态信息,且 Agent 与环境有信息交互与更新。 2. 阶段:通常采用 SOP 思想将复杂任务分解为多个子任务。 3. 控制器:可以是语言模型或预先定义好的规则,负责环境在不同 Agent 和阶段间切换。 4. 记忆:因 Agent 数量增多,消息数量及相关字段记录更复杂。 创建智能体时,输入人设等信息并配置工作流,配置完成后可测试,但注意工作流中某些插件的 api_token 不能直接发布,可作为输入让用户购买后输入使用再发布。 OpenAI 官方开源的多智能体框架「Swarm」受欢迎,其在多智能体通信方面表现出色,解决了不同智能体之间传递信息及传递哪些信息等核心难题。例如构建客服多智能体,只需准备普通接线客服和宽带客服两个 Agent,「Swarm」的「Handoffs」处理了交接逻辑。
2025-02-20
搭建AI智能体
搭建 AI 智能体的步骤和要点如下: 1. 创建智能体:输入人设等信息,并放上相关工作流。配置完成后可以进行测试,但千万不要直接发布。 工作流中如【所有视频片段拼接】节点使用的插件 api_token 填的是您的 token,其他人调用会消耗您的费用。您可以将 api_token 作为工作流最开始的输入,用户购买后输入 token 再发布。 2. 明确需求和 AI 能力: 在搭建智能体帮助提炼品牌卖点时,需要先明确 AI 的能力边界,例如 AI 对公司及所在市场不了解的部分,包括公司的主要产品、产品解决的用户需求、产品独特之处、获得的认可、核心渠道、核心购买人群、营销手段、期望在新渠道获得的结果等。 AI 真正的能力在于通过分析数据和信息进行逻辑推理、快速处理和分析数据并提取有价值的信息和模式、拥有大量训练数据并能输出更全面的相关信息、理解用户提供的内容并按正确结构梳理有效输出内容。因此,更适合将智能体作为引导型的灵感提问助手。 3. 学会搭建 AI 智能体: AI 智能体如同员工或智能助手,能根据设定的工作流自动调用不同 AI 工具完成全流程任务,无需人类时刻干预。 例如设计“写作助手”的 AI 智能体,输入文章主题、风格和要求,它能自动完成文章大纲处理、初稿撰写、修改润色和排版等工作,大大提高效率。
2025-02-19
用飞书搭建知识库并进行AI问答
以下是关于用飞书搭建知识库并进行 AI 问答的相关内容: 知识库问答是机器人的基础功能,可根据用户问题从知识库中找到最佳答案,这利用了大模型的 RAG 机制。RAG 机制全称为“检索增强生成”(RetrievalAugmented Generation),是一种用于自然语言处理的技术,结合了检索和生成两种主要的人工智能技术,以提高机器对话和信息处理的能力。 简单来说,RAG 机制先从大型数据集中检索与问题相关的信息,然后利用这些信息生成更准确、相关的回答。可以想象成当问复杂问题时,RAG 机制先在巨大图书馆里找相关书籍,再基于这些书籍信息给出详细回答。这种方法结合大量背景信息和先进语言模型能力,使生成内容更精确,提升对话 AI 的理解力和回答质量。 基于 RAG 机制实现知识库问答功能,首先要创建包含大量社区 AI 相关文章和资料的知识库,比如创建有关 AI 启蒙和信息来源的知识库,通过手工录入方式上传栏目所有文章内容,陆续将社区其他板块文章和资料导入。在设计 Bot 时,添加知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,以更好地利用知识库返回内容结合回答。 另外,全程白嫖拥有一个 AI 大模型的微信助手的搭建步骤如下: 1. 搭建,用于汇聚整合多种大模型接口,方便后续更换使用各种大模型,并获取白嫖大模型接口的方法。 2. 搭建,这是个知识库问答系统,放入知识文件,接入上面的大模型作为分析知识库的大脑来回答问题。若不想接入微信,搭建到此即可使用,它有问答界面。 3. 搭建,其中的 cow 插件能进行文件总结、MJ 绘画。
2025-02-19
我是一个AI小白,我希望能通过不断了解AI为我的工作和生活提效,请为我量身定制逐步深入的AI学习计划
以下是为您量身定制的逐步深入的 AI 学习计划: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 1. AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 2. 掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,进行实践以巩固知识,尝试使用各种产品做出自己的作品。 2. 在知识库中查看大家实践后的作品、文章分享,并分享自己实践后的成果。 五、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 六、如果希望继续精进 1. 了解 AI 背景知识,包括基础理论(人工智能、机器学习、深度学习的定义及其之间的关系)、历史发展(简要回顾 AI 的发展历程和重要里程碑)。 2. 掌握数学基础,包括统计学基础(熟悉均值、中位数、方差等统计概念)、线性代数(了解向量、矩阵等线性代数基本概念)、概率论(基础的概率论知识,如条件概率、贝叶斯定理)。 3. 学习算法和模型,如监督学习(了解常用算法,如线性回归、决策树、支持向量机(SVM))、无监督学习(熟悉聚类、降维等算法)、强化学习(简介强化学习的基本概念)。 4. 学会评估和调优,包括性能评估(了解如何评估模型性能,包括交叉验证、精确度、召回率等)、模型调优(学习如何使用网格搜索等技术优化模型参数)。 5. 掌握神经网络基础,包括网络结构(理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN))、激活函数(了解常用的激活函数,如 ReLU、Sigmoid、Tanh)。 七、学习模式和注意事项 1. 您可以参考《雪梅 May 的 AI 学习日记》,如果您是纯 AI 小白,可以先看左边的目录。学习模式可以是输入→模仿→自发创造。 2. 注意学习内容可能会更新,您可以去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新的内容。 3. 学习时间可以灵活安排,不必每天依次进行,有空的时候学习即可。 4. 本学习计划中的学习资源大多是免费开源的。
2024-12-30
AI+交易:来定制专属于你的私人高级交易顾问吧!
以下是关于“AI+交易:来定制专属于你的私人高级交易顾问吧!”的相关内容: 原本是一名 AIGC 创作者,在接触交易后,希望将交易与 AIGC 相结合,打造私人高级交易顾问。学习交易知识后认识到,单纯迷信技术分析提高胜率实现长期稳定盈利对个人投资者不可行,心态关键。新人对交易理论不熟悉更致命,成熟交易员单一策略熟练运用能找进出点、良好心态能长期盈利,但不熟悉行情只能观望。借助 AI 分析行情,期望在不熟悉市场时找到合适进场点,提高资金使用效率,多种策略配合提高理论胜率(有统计数据显示几千名专业交易员一年里平均胜率 70)。 此外,还有以下 AI 与工作场景结合的案例: 1. 销售方面:包括话术总结优缺点、定制销售解决方案。 2. 客服方面:定制客服话术,有关键词库,如产品知识、使用方法等。 3. HR 方面:团队绩效管理,根据绩效数据输出考评和改进建议;面试工具,如使用 GPT4 技术的实时转录工具帮助求职者生成回答。 另外,在七大行业的商业化应用中: 1. 企业运营:包括日常办公文档撰写整理、营销对话机器人等。 2. 教育:协助评估学生学习情况、定制学习内容等。 3. 游戏/媒体:如定制化游戏、出海文案生成等。 4. 零售/电商:包括舆情监测分析、品牌营销内容撰写等。 5. 金融/保险:如个人金融理财顾问、识别欺诈活动风险等。
2024-12-17
生成定制化PPT的AI工具有哪些?
以下是一些生成定制化 PPT 的 AI 工具: 1. GPT4:可辅助生成 PPT 相关的内容。 2. WPS AI:能在 PPT 制作中提供帮助。 3. chatPPT:专门用于制作 PPT。 4. Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。网址:https://gamma.app/ 5. 美图 AI PPT:由美图秀秀团队推出,通过输入简单文本描述生成专业 PPT 设计,有丰富模板库和设计元素。网址:https://www.xdesign.com/ppt/ 6. Mindshow:AI 驱动的 PPT 辅助工具,提供智能设计功能,如自动布局、图像选择和文本优化等。网址:https://www.mindshow.fun/
2024-09-20
我要的是剪映更新后的数字人教程,现在不是在剪映可以定制自己的形象?
以下是关于剪映更新后的数字人教程及相关信息: 剪映最近更新突飞猛进,新增了多种 AI 功能。 新增能力包括:剪映 ai 生成音乐——唱出你想说的话,一键生成专属音乐视频;照片数字人/定制数字人——照片唱歌和说话;ai 配旁白(全网独家功能)——一键 ai 剪辑视频,并配抖音网感文案;ai 生图片/视频能力(即梦)接入剪映。 定制数字人已上线,其亮点为很逼真(口型自然,可以说话/唱歌/说外语)、制作效率高(写好口播脚本可批量快速制作内容)。只要有图就可以制作逼真的说话或唱歌的 UGC 数字人娱乐视频,例如歌手照片+有词的歌、老照片+影视剧+梗文案或唱歌、宠物唱歌表白/表情包玩梗等。 录制或上传视频,即可根据视频里的动作,1 分钟快速定制自己的数字分身。数字人适用于口播自媒体等场景。 相关链接: 剪映 AI 功能内测:https://bytedance.larkoffice.com/docx/SdDwdsNnAo3B16xLLNscIiHDnxb AI 音乐免费内测排队入口:https://bytedance.larkoffice.com/share/base/form/shrcntN7P3HEdo35fCOiM6QdFrb 照片说话/AI 配旁白/视频生成进剪映免费内测排队入口:https://bytedance.larkoffice.com/share/base/form/shrcnq7rM9EEJytIW5LKyUpVaee 内测视频翻译功能申请地址:https://bytedance.larkoffice.com/share/base/form/shrcnq7rM9EEJytIW5LKyUpVaee 。审批很快,但目前只支持在 app 手机端体验,且只支持本人的视频进行翻译,有声音认证环节。
2024-08-30
有没有有关定制个人食谱的prompt,或者能够根据食材搭配出食谱的prompt或智能体之类的。
以下是为您找到的有关定制个人食谱的相关内容: ChefGPT 具有以下核心特性: 个性化食谱推荐:能根据您手头的食材提供建议。 定制化饮食计划:可根据健身目标和饮食要求创建计划。 完美搭配:为每道菜寻找理想的葡萄酒或啤酒。还有 PantryChef、MasterChef、MacrosChef、MealPlanChef、PairPerfect 和 Shopping List 等其他功能。 Claude 官方提示词(厨艺大师):根据食材和饮食偏好,推荐菜谱主意。需要注意的是,这个是 API 里的 system prompt 。其任务是根据用户提供的可用食材和饮食偏好,生成个性化的食谱建议。利用这些信息,建议各种创意美味的食谱,可以使用给定的食材,同时满足用户的任务需求(如果有提及)。对于每个食谱,提供简短的描述、所需食材清单和简单的做法步骤。确保食谱易于操作、营养丰富,且只需最少量的额外食材或厨具即可烹制。
2024-08-23
我是一个创业者,想做AI软件外包业务,帮助其他公司定制AI软件应用,我自身应该掌握哪些知识?
如果您想做 AI 软件外包业务,帮助其他公司定制 AI 软件应用,自身应掌握以下知识: 1. AIPM 技能: 理解产品核心技术,了解基本的机器学习算法原理,以做出更合理的产品决策。 与技术团队有效沟通,掌握一定的算法知识,减少信息不对称带来的误解。 评估技术可行性,在产品规划阶段做出更准确的判断。 把握产品发展方向,了解算法前沿,更好地规划产品未来。 提升产品竞争力,发现产品独特优势,提出创新特性。 具备数据分析能力,处理和分析相关数据。 2. 提示词工程相关: 了解 2C 业务,为 C 端用户制作有丰富提示词的网页应用程序。 熟悉 B2B2C 业务,为垂直领域企业定制提示词应用。 3. Python 及相关编程知识: Python 基础:包括基本语法规则、数据类型、控制流。 函数:定义和调用函数,理解参数和返回值,以及作用域和命名空间。 模块和包:学会导入模块,使用包来扩展程序功能。 面向对象编程:了解类和对象、属性和方法等概念。
2024-08-12