Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

神经网络相关书籍推荐

Answer

以下是为您推荐的神经网络相关书籍:

  1. 《这就是 ChatGPT》:作者被称为“在世的最聪明的人”,研究神经网络几十年,创作了 Mathematica、Wolfram 等备受推崇的软件。该书的导读序是美团技术学院院长刘江老师回顾了整个 AI 技术发展的历史,对于了解 AI、大语言模型计算路线的发展,起到提纲挈领的作用。
  2. 关于神经网络信念网络方面的研究文献:
    • Gail A.Carpenter and Stephen Grossberg.1988.The ART of Adaptive Pattern Recognition by a Self-Organizing Neural Network.Computer 21,3(March 1988),77-88.
    • H.Bourlard and Y.Kamp.1988.Auto-association by multilayer perceptrons and singular value decomposition.Biol.Cybern.59,4-5(September 1988),291-294.
    • P.Baldi and K.Hornik.1989.Neural networks and principal component analysis:learning from examples without local minima.Neural Netw.2,1(January 1989),53-58.
    • Hinton,G.E.&Zemel,R.S.(1993),Autoencoders,Minimum Description Length and Helmholtz Free Energy.,in Jack D.Cowan;Gerald Tesauro&Joshua Alspector,ed.,‘NIPS’,Morgan Kaufmann,,pp.3-10.
    • Ackley,D.H.,Hinton,G.E.,&Sejnowski,T.J.(1985).A learning algorithm for boltzmann machines*.Cognitive science,9(1),147-169.
    • LeCun,Y.,Chopra,S.,Hadsell,R.,Ranzato,M.,&Huang,F.(2006).A tutorial on energy-based learning.Predicting structured data,1,0.
    • Neal,R.M.(1992).Connectionist learning of belief networks.Artificial intelligence,56(1),71-113.
    • Hinton,G.E.,Dayan,P.,Frey,B.J.,&Neal,R.M.(1995).The”wake-sleep”algorithm for unsupervised neural networks.Science,268(5214),1158-1161.

此外,您还可以参考“三本神经科学书籍”,原文地址:https://web.okjike.com/originalPost/64f2b8ff0c915376a20c5d61 作者:CyberDaily

Content generated by AI large model, please carefully verify (powered by aily)

References

学习笔记:【这就是 ChatGPT】了解原理让大语言模型 AI 成为你的打工人

如果识别一个印刷体图片,我可能会怎么做神经网络解决的是未知规则的处理。先把图片都变成黑白大小变成固定尺寸和数据库的东西对比得出结论然而,这种情况过于理想化。不仅存在多种字体,即使对于印刷体,不同的拍摄角度也引入了多种例外情况。虽然存在图形算法进行矫正,但整体方法仍然是基于不断添加规则。这种方法本质上是试图通过不断增加和完善规则来解决问题,这显然是不可行的。虽然这种方法可以解决象棋的问题,但对围棋来说就非常困难了。围棋的每个节点有三种可能状态:白、黑或空,加上不同节点间状态的组合,现有的资源无法应对。神经网络专门处理未知规则的情况。将图片转换为黑白,调整图片至固定尺寸,与数据库中的内容进行对比,最终得出结论。神经网络的发展得益于生物学研究的支持,并且在数学上提供了一种方向,使其能够处理未知的情况,如手写体识别。关于这部分内容,非常建议看《这就是ChatGPT》这本书,它的作者是被称为”在世的最聪明的人”,研究神经网络几十年,创作了Mathematica、Wolfram等备受推崇的软件,这本书最特别之处还在于,导读序是美团技术学院院长刘江老师回顾了整个AI技术发展的历史,对于了解AI,大语言模型计算路线的发展,起到提纲挈领的作用,非常值得一读。本文写作过程中得到了[byzer-llm](https://github.com/allwefantasy/byzer-llm)作者祝威廉的大力支持,在此感谢。byzer-llm选择了一个非常特别的技术路线,在大模型时代显得尤为重要。

深度 | 神经网络和深度学习简史(第二部分):BP算法之后的又一突破——信念网络

Gail A.Carpenter and Stephen Grossberg.1988.The ART of Adaptive Pattern Recognition by a Self-Organizing Neural Network.Computer 21,3(March 1988),77-88.H.Bourlard and Y.Kamp.1988.Auto-association by multilayer perceptrons and singular value decomposition.Biol.Cybern.59,4-5(September 1988),291-294.P.Baldi and K.Hornik.1989.Neural networks and principal component analysis:learning from examples without local minima.Neural Netw.2,1(January 1989),53-58.Hinton,G.E.&Zemel,R.S.(1993),Autoencoders,Minimum Description Length and Helmholtz Free Energy.,in Jack D.Cowan;Gerald Tesauro&Joshua Alspector,ed.,‘NIPS’,Morgan Kaufmann,,pp.3-10.Ackley,D.H.,Hinton,G.E.,&Sejnowski,T.J.(1985).A learning algorithm for boltzmann machines*.Cognitive science,9(1),147-169.LeCun,Y.,Chopra,S.,Hadsell,R.,Ranzato,M.,&Huang,F.(2006).A tutorial on energy-based learning.Predicting structured data,1,0.Neal,R.M.(1992).Connectionist learning of belief networks.Artificial intelligence,56(1),71-113.Hinton,G.E.,Dayan,P.,Frey,B.J.,&Neal,R.M.(1995).The”wake-sleep”algorithm for unsupervised neural networks.Science,268(5214),1158-1161.

书籍推荐:三本神经科学书籍

原文地址:https://web.okjike.com/originalPost/64f2b8ff0c915376a20c5d61作者:[CyberDaily](https://web.okjike.com/u/0c2eedcd-da35-4727-b8fc-a609a92aac09)

Others are asking
卷积神经网络
卷积神经网络,也称卷积网络(术语“神经”具有误导性),使用卷积层来过滤输入以获取有用信息。卷积层具有学习的参数,能自动调整滤波器以提取对应任务的最有用信息,例如在一般目标识别中过滤对象形状信息,在鸟类识别中提取颜色信息。通常多个卷积层用于在每一层之后过滤图像以获得越来越多的抽象信息。 卷积网络通常也使用池层,以获得有限的平移和旋转不变性,还能减少内存消耗,从而允许使用更多的卷积层。 最近的卷积网络使用初始模块,它使用 1×1 卷积核来进一步减少内存消耗,同时加快计算速度。 1998 年,Yann LeCun 和他的合作者开发了 LeNet 的手写数字识别器,后来正式命名为卷积神经网络。它在前馈网中使用反向传播,被用于读取北美地区约 10%的支票。卷积神经网络可用于从手写数字到 3D 物体的与物体识别有关的所有工作。 在 ImageNet 2012 年的 ILSVRC 竞赛中,来自多个机构的先进计算机视觉小组将已有的最好计算机视觉方法应用于包含约 120 万张高分辨率训练图像的数据集。
2025-03-02
SVM与神经网络的区别是啥
SVM(支持向量机)和神经网络在以下方面存在区别: 1. 原理和模型结构: SVM 基于寻找能够最大化分类间隔的超平面来进行分类或回归任务。 神经网络则是通过构建多层神经元组成的网络结构,通过神经元之间的连接权重和激活函数来学习数据的特征和模式。 2. 数据处理能力: SVM 在处理小样本、高维度数据时表现较好。 神经网络通常更适合处理大规模数据。 3. 模型复杂度: SVM 相对较简单,参数较少。 神经网络结构复杂,参数众多。 4. 对特征工程的依赖: SVM 对特征工程的依赖程度较高。 神经网络能够自动从数据中学习特征。 5. 应用场景: 在图像识别、语音识别、机器翻译等领域,神经网络占据主导地位。 SVM 在一些特定的小数据集或特定问题上仍有应用。
2025-02-26
SVM与前馈神经网络的区别是什么
SVM(支持向量机)和前馈神经网络在以下方面存在区别: 数据处理方式:SVM 主要基于特征工程,而前馈神经网络可以自动从大量数据中学习特征。 模型结构:SVM 是一种线性分类器的扩展,具有相对简单的结构;前馈神经网络具有更复杂的多层结构。 应用场景:在图像识别、语音识别、语音合成、机器翻译等领域,早期常使用 SVM 结合特征工程,而现在神经网络逐渐占据主导地位。例如,图像识别中,早期由特征工程和少量机器学习(如 SVM)组成,后来通过使用更大数据集和在卷积神经网络结构空间中搜索,发现了更强大的视觉特征;语音识别中,以前涉及大量预处理和传统模型,现在几乎只需要神经网络;语音合成中,历史上采用各种拼接技术,现在 SOTA 类型的大型卷积网络可直接产生原始音频信号输出;机器翻译中,之前常采用基于短语的统计方法,而神经网络正迅速占领统治地位。
2025-02-26
前馈神经网络、循环网络、对称连接网络区别是什么,当前大语言模型属于前面说的哪种网络架构,为什么这种网络架构流行
前馈神经网络、循环网络和对称连接网络的区别如下: 1. 前馈神经网络:这是实际应用中最常见的神经网络类型。第一层是输入,最后一层是输出。若有多个隐藏层,则称为“深度”神经网络。各层神经元的活动是前一层活动的非线性函数,通过一系列变换改变样本相似性。 2. 循环网络:在连接图中存在定向循环,意味着可以按箭头回到起始点。它们具有复杂的动态,训练难度较大,但更具生物真实性。目前如何高效地训练循环网络正受到广泛关注,它是模拟连续数据的自然方式,相当于每个时间片段具有一个隐藏层的深度网络,且在每个时间片段使用相同权重和输入,能长时间记住隐藏状态信息,但难以训练其发挥潜能。 3. 对称连接网络:有点像循环网络,但单元之间的连接是对称的(在两个方向上权重相同)。比起循环网络,对称连接网络更易分析。没有隐藏单元的对称连接网络被称为“Hopfield 网络”,有隐藏单元的则称为玻尔兹曼机。 当前的大语言模型通常基于 Transformer 架构,它属于前馈神经网络的一种变体。这种架构流行的原因包括:能够处理长序列数据、并行计算效率高、具有强大的特征提取和表示能力等。
2025-02-25
神经网络从架构上有哪几种类型,当前流行的大语言模型用哪种类型神经网络,为什么这种神经网络架构更为流行
神经网络从架构上主要有以下几种类型: 1. 马尔科夫链:用于文本生成。 2. 循环神经网络(RNN):可应用于文本生成。 3. 长短时记忆网络(LSTMs):在文本生成等领域发挥作用。 4. Transformer:当今最流行的模型大多基于此架构,包括流行的大型语言模型,如 GPT3、GPTJ 或 BERT 等。 5. Encoderonly:适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT。 6. Encoderdecoder:同时结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,用例包括翻译和摘要,代表是 Google 的 T5。 7. Decoderonly:更擅长自然语言生成任务,众多 AI 助手采用此结构。 当前流行的大语言模型,如 GPT3、ChatGPT 等,多采用 Decoderonly 架构的神经网络。这种架构更为流行的原因在于:它更擅长自然语言生成任务,能够根据用户输入生成相应的内容。同时,Transformer 架构具有延长的注意力广度,能够更好地处理长序列数据,提高模型的性能和表现。
2025-02-25
神经网络与大脑实际工作的原理区别
神经网络与大脑实际工作的原理存在以下区别: 1. 神经网络本质上是运行在多层面上的软件,由人工建立的一层层互相连接的神经元模型组成,模仿大脑处理复杂问题,如视觉和语言等。它可以自行学习与工作,不需要人为提示或参与控制。 2. 早期由于电脑处理能力不足,神经网络的发展受限。而大脑则具有强大的天然处理能力。 3. 神经网络的计算风格受神经元及其适应性连接启发,与传统的序列计算不同。 4. 对于循环网络,其连接图中存在定向循环,动态复杂,更具生物真实性。 5. ChatGPT 是通过获取大量人类创作的文本样本进行训练,生成类似的文本。其神经网络由简单元素组成,基本操作简单,从积累的“传统智慧统计数据”中提取“连贯的文本线索”,但不像大脑那样具有全面和复杂的功能。 总之,神经网络是对大脑的一种模拟,但与大脑真实的工作方式仍存在诸多差异。
2025-02-25
我想获得一本书籍的干货内容,用什么AI工具能实现?
以下是一些可以帮助您获得书籍干货内容的 AI 工具: 1. TXYZ :这是一个能帮助搜索、查询专业文献并进行对话的 AI 工具,提供从搜索获取、查询对话获取知识再到管理知识的一站式服务。它是唯一和预印本文库官方合作的 AI 工具,ArXiv 的每篇论文下面都有直达 TXYZ 的按钮。用户可以自己上传 PDF 论文或者链接,通过它来在专业文献中迅速找到自己想要的答案和内容。在对话中提供论文参考,给出可信的背书。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-09
推荐学习AI大模型的书籍
以下是为您推荐的学习 AI 大模型的相关书籍: 1. 从数学角度写大模型的书籍。 2. 从作家角度写大模型的书籍。 3. 从代码角度写大模型的书籍。 4. 从原理角度写大模型的书籍。 此外,在 Python 和 AI 方面,也有一些推荐: 1. Python 方面: 《Python 学习手册》 《Python 编程》 2. AI 方面: 《人类简史》(“认知革命”相关章节) 《深度学习实战》 希望这些推荐对您有所帮助。
2025-02-08
学习AI的书籍
以下是为您推荐的学习 AI 的书籍: 神经科学相关: 《认知神经学科:关于心智的生物学》(作者:Michael S. Gazzaniga;Richard B. Lvry;George R. Mangun):世界权威的认知神经科学教材,系统涵盖认知神经科学的多个方面。 《神经科学原理》(作者:Eric R. Kandel;James H. Schwartz):让您系统了解神经元的细胞和分子生物学等内容。 《神经生物学:从神经元到脑》(作者:John G. Nicholls 等著):神经生物学领域的世界级名著,涵盖神经科学的多方面内容。 Python 与 AI 相关: Python 方面: 《Python 学习手册》:名声在外。 《Python 编程》:对新手友好。 AI 方面: 《人类简史》:“认知革命”的相关章节有帮助。 《深度学习实战》:梳理了 ChatGPT 爆发前的 AI 信息与实践。
2025-02-07
AI阅读书籍的最佳实践是什么?
以下是关于 AI 阅读书籍的一些最佳实践: 1. 方法论萃取: 针对不同类型书籍的阅读和记忆方法进行分类,探讨共性方法论。 研究阅读和记忆的思维模型及小技巧。 思考如何优先选择自己“一定看得下去”的书籍,通过目录大纲确定核心内容。 确定一本书的阅读次数和顺序。 考虑读书过程中做笔记还是读完后回忆做大纲。 探索如何教刚毕业的孩子学会有效读书。 根据上述问题的答案设计“书籍阅读助手”“催我读书”等 Prompt,并不断优化和迭代。 2. 成为博物学家: 了解各个领域的知识,在恰当的时候调用。 参考权威、准确、有框架、成体系且好读的推荐书单,如涵盖心理学、人工智能、经济学等 13 个学科的书单。 3. 批判性思考: 思考在哪些情况下使用和不使用 AI 辅助阅读。 避免将 AI 作为默认选项,例如在使用地图导航时,不应完全依赖,而应注重自身对环境的观察和记忆。
2025-01-31
AI相关的书籍推荐
以下是为您推荐的与 AI 相关的书籍: 神经科学相关: 《认知神经学科:关于心智的生物学》(作者:Michael S. Gazzaniga;Richard B. Lvry;George R. Mangun):世界权威的认知神经科学教材,涵盖认知神经科学的多个方面。 《神经科学原理》(作者:Eric R. Kandel;James H. Schwartz):系统介绍神经元的细胞和分子生物学等内容。 《神经生物学:从神经元到脑》(作者:John G. Nicholls 等著):涵盖神经科学的方方面面。 Python 和 AI 相关: Python 方面: 《Python 学习手册》:名声在外。 《Python 编程》:对新手友好。 AI 方面: 《人类简史》:“认知革命”相关章节有价值。 《深度学习实战》:梳理了 ChatGPT 爆发前的 AI 信息与实践。
2025-01-22
推荐学习Aigc的入门理论书籍
以下是为您推荐的学习 AIGC 的入门理论书籍和相关资料: 1. 《AIGC Weekly19》:其中包括腾讯非常系统的 Stable Diffusion 介绍文章,马丁整理的关于 AIGC 的碎片化思考,多邻国创始人 Luis von Ahn 专访,Meta AI 发布的自监督学习“烹饪书”,以及回顾大语言模型发展历程的内容。 2. 《AIGC Weekly01》:包含对 Stable Diffusion 工作原理的介绍,Emad 写的关于 SD V2 模型的笔记,Hugging Face Inference Endpoints 指南,GPT4 预测相关内容,以及关于 AI 时代工作未来的读物。 3. 【AI 学习笔记】:介绍了 AI 大模型的相关概念,如生成式 AI、相关技术名词(包括监督学习、无监督学习、强化学习、深度学习等)、技术里程碑(如 2017 年谷歌团队发表的提出 Transformer 模型的论文)等。
2025-01-01
请给我推荐一些AI写小说相关的文档和学习资料
以下是为您推荐的一些 AI 写小说相关的文档和学习资料: 1. 《🐋全新 AI 整活计划:DeepSeek 小说家 2025 年 2 月 9 日》 介绍了关于提示词编写及 AI 应用的探讨,包括理性决策提示词的编写方法、示例的价值、自用与他用提示词的区别、改进指令遵循、AI 应用于软件开发等方面。 还分享了关于写作方式、好文字的定义、模型特点与推荐等内容。 2. 《陈财猫:如何用 AI 写出比人更好的文字?》 提到了两个技巧,一是“显式归纳与列出你想要的文本特征”,二是“通过 prompt 中的描述与词语映射到预训练数据中的特定类型的文本,从而得到想要的相似样本”。 3. 《Stuart:教你用 coze 写起点爆款小说《夜无疆》,做到高中生文笔水平》 介绍了一个能写出至少高中水平小说的 coze 工作流,包括用 bing 搜索相关内容、将搜索结果结构化、用大模型草拟大纲、写文章等核心节点。
2025-03-05
我想学习一些AI创作小说的技巧,能给我推荐一些学习材料吗
以下是为您推荐的一些学习 AI 创作小说的资料: 此外,陈财猫还为您提供了一些创作技巧: 1. 显式归纳与列出您想要的文本特征。例如,明确描述写小说的刚需,如优秀的文风、细腻的文笔,具体到“几句话一换行”“以短句和对话为主,结构紧凑”“用词直白犀利”等,在调试过程中逐步调整描述,直到达到理想效果。 2. 通过 prompt 中的描述与词语映射到预训练数据中的特定类型的文本,从而得到想要的相似样本。比如,明确指出想要的小说类型,如“充满张力的女性复仇文,可能会出现在晋江文学城或者起点中文网的古代言情分类中”。对于短剧剧本创作这类较新且有特殊要求的任务,更要准确描述其特点和出现的场景。
2025-03-05
老照片修复工具推荐
以下是一些老照片修复工具推荐: 视频放大工具: https://www.topazlabs.com/topazvideoai 百度网盘分享的 Topaz 全家桶:链接:https://pan.baidu.com/s/1bL4tGfl2nD6leugFh4jg9Q?pwd=16d1 ,提取码:16d1 ,复制这段内容打开「百度网盘 APP 即可获取」 Kraken.io:主要用于图像压缩,也提供免费的图像放大功能,能保证图像细节清晰度。 Deep Art Effects:强大的艺术效果编辑器,通过 AI 技术能将图像放大并赋予艺术效果,支持多种滤镜和风格。 RealESRGAN:https://replicate.com/nightmareai/realesrgan ,这是基于 RealESRGAN 的图像超分辨率增强模型,有人脸修复和可调节放大倍数选项,但使用几次要收费。 Photoshop Generative AI 功能:主要工具包括 Remove tool、Clone brush、Generative fill 以及 Neural filters,链接:https://x.com/xiaohuggg/status/1692751080973828468?s=46&t=F6BXooLyAyfvHbvr7Vw2g SD 图生图,重绘幅度小一点 图片放大工具: 本地工具放大:https://www.upscayl.org/download 开源工作流: 开源工作流: stability.ai 的 https://clipdrop.co/tools 画质增强 magnific:https://magnific.ai/ Krea:https://www.krea.ai/apps/image/enhancer Image Upscaler:https://imageupscaler.com/ 佐糖:https://picwish.cn/photoenhancerapi?apptype=apsbdapi&bd_vid=8091972682159211710 腾讯 ARC:https://arc.tencent.com/zh/aidemos/humansegmentation?ref=88sheji.cn ,腾讯开源的模型,能恢复老照片,在线测试地址:https://replicate.com/tencentarc/gfpgan 美图老照片修复:https://www.xdesign.com/quality/?channel=sllbd90&bd_vid=11711254260543749686 Imglarger:https://imglarger.com/ Let's Enhance:https://letsenhance.io/ Waifu2x:http://waifu2x.udp.jp/ 此外,将照片放入后期处理中,使用 GFPGAN 算法可将人脸变清晰,具体可参考文章—— 。
2025-03-05
一个ai小白,想要学习ai相关知识,请帮忙推荐学校路径和方法
对于 AI 小白,以下是学习 AI 的学校路径和方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的系列课程,引导了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,还有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库有很多实践后的作品和文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 实际应用表现的第一手体验,激发对 AI 潜力的认识。 此外,还可以参考以下资源: 学习路径方面,有很多高质量学习内容,如李弘毅老师的生成式 AI 导论、吴达的生成式 AI 入门视频等供有时间深入学习的人使用。 部分同学通过观看李弘毅的导论、文达的相关信息并整理成学习笔记,在整理过程中能学到更多知识,还能与大家交流互动。 觉得系统学习枯燥的话,可以等待社区共创内容,通过共创做小项目来反向推动学习。 介绍了 A16Z 推荐的内容从 5 篇扩展到 6 篇,包括 GPT 相关知识、Transformer 模型运作原理,及大语言模型词语接龙原理等基础知识。 推荐看 open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。 历史脉络类资料:整理了 open AI 的发展时间线和万字长文回顾等。
2025-03-05
推荐几个能用于科研的ai
以下是为您推荐的用于科研的 AI 工具: 1. Scite.ai:这是一个为研究人员、学者和行业专业人员打造的创新平台,能增强对科学文献的洞察,提供引用声明搜索、自定义仪表板和参考检查等工具,简化学术工作。网址:https://scite.ai/ 2. Scholarcy:一款科研神器,主要服务于做科研、学术、写论文的人群。它可以从文档中提取结构化数据,并通过知识归纳引擎生成文章概要,包含关键概念、摘要、学术亮点、学术总结、比较分析、局限等板块的内容。网址:https://www.scholarcy.com/ 3. ChatGPT:强大的自然语言处理模型,能提供有关医学课题等方面的修改意见。您可以向它提供文章,并提出问题和需求。网址:https://chat.openai.com/ 这些工具能从不同角度审视和改进您的科研课题,您可根据具体需求选择合适的工具尝试。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-03-05
如果要搭建一个自己的业务知识的结构化知识库,推荐哪个平台和工具?
以下是为您推荐的搭建自己业务知识结构化知识库的平台和工具: 1. Coze: 影响 RAG 输出质量的因素:当下这些平台的 RAG 能力对问答场景友好,其他场景效果一般。若需要企业级复杂知识库场景,可能需要找专业团队,收费几万到几十万不等。 基础能力:包括提示词(设定 Bot 身份、目标和技能)、插件(通过 API 连接集成平台和服务)、工作流(规划和实现复杂功能逻辑)、记忆库(保留和理解对话细节,添加外部知识库)。 相关参考:编写提示(https://www.coze.cn/docs/guides/prompt)、插件介绍(https://www.coze.cn/docs/guides/create_plugin)、工作流介绍(https://www.coze.cn/docs/guides/workflow)、知识库介绍(https://www.coze.cn/docs/guides/knowledge)、数据库(https://www.coze.cn/docs/guides/database)。 2. 您还可以参考以下文章: 《小七姐:信息管理工具与方法》:从信息源的选择、信息通路的建立、知识结构化、知识内化与应用等方面展示了信息管理和知识体系搭建的过程。 《这可能是讲 Coze 的知识库最通俗易懂的文章了》:其中提到如果想使用专门搭建个人知识库的软件,可以查看《手把手教你本地部署大模型以及搭建个人知识库》(https://waytoagi.feishu.cn/wiki/ZKGmwsQhTihYZ8kdu7uccF1lnQc?from=from_copylink),忽略本地部署大模型环节,直接看其中推荐的软件。但使用该软件可能需要对接一些额外的 API,建议先了解 RAG 的原理再使用。
2025-03-05
deepseek相关的文档
以下是与 DeepSeek 相关的文档和信息: 在 2025 年 2 月 6 日的“【今晚 8 点】聊聊你怎么使用 DeepSeek!”中,提到了以下内容: DP 模型的功能:能进行自然语言理解与分析、编程、绘图,如 SVG、MA Max 图表、react 图表等。 使用优势:可以用更少的词让模型做更多事,思维发散,能给出创意思路和高级内容。 存在问题:思维链长不易控制,可能输出看不懂或胡编乱造的内容,增加纠错成本。 审核方法:可以用其他大模型来解读 DP 模型给出的内容。 使用建议:使用时要有自己的思维雏形,多看思考过程,避免被模型冲刷原有认知。 使用场景:包括阅读、育儿、写作、随意交流等方面。 案例展示:通过与孩子共读时制作可视化互动游戏,以及左脚踩右脚式的模型交互来展示 DP 模型的应用。 音系学研究:对音系学感兴趣,通过对比不同模型的回答来深入理解,如 bug 和 DIFF SIG,探讨语言概念在音系学下的心理印象等。 大模型取队名:与大模型进行多轮对话来取队名,通过不断约束和披露喜好,最终得到满意的队名及相关内容。 此外,2 月 6 日的宝玉日报中提到: Dario Amodei 认为 DeepSeek 进入前沿 AI 竞赛,但美国应保持领先优势。 强调“没有民族主义敌意”,依旧欢迎华裔科学家加入 Anthropic。 批评 DeepSeek 安全性差,称其“测试过的模型里最糟糕”。相关文稿:
2025-03-05
codepal 相关信息
CodePal 是一款全面的 AI 编程助手,具有以下特点: 1. 智能代码生成:用户输入编程语言及功能描述,即可自动生成相应的代码片段,适用于 Python、Java、JavaScript 和 C++等多种编程语言。 2. 广泛的语言支持:支持超过 30 种编程语言,包括主流语言(如 C、Ruby、Kotlin)和低级语言(如 C++、Rust),能满足不同开发需求。 3. 用户友好界面:设计简洁直观,适合从初学者到经验丰富的开发者等各类用户轻松上手。 4. 功能多样化:除代码生成外,还提供调试建议、代码优化和单元测试生成等功能,有助于提升代码质量和效率。 5. 免费计划:提供基本功能的免费版本,适合爱好者和初学者尝试使用。其独特之处在于强大的 AI 驱动能力,能让用户通过自然语言轻松生成高质量代码,节省时间并减少错误。
2025-03-05
微信机器人相关课程
以下是关于微信机器人的相关课程: 日程安排: 6 月 19 日 20:00 开始:从零到一,搭建微信机器人。 6 月 20 日 20:00 开始:Coze 接入、构建你的智能微信助手。 6 月 23 日 20:00 开始:微信机器人插件拓展教学。 6 月 24 日 20:00 开始:虚拟女友“李洛云”开发者自述。 6 月 25 日 20:00 开始:FastGPT:“本地版 coze"部署教学。 6 月 27 日 20:00 开始:Hook 机制的机器人使用和部署教学。 共学快闪第三期活动总结: 关于虚拟聊天机器人的讨论。 创建聊天机器人:可在平台创建自己的 bot,并互相交流和沟通。新客户可用 COS 作为 API 来搭建。 举办 cost 活动:包括图文赛道和创意赛道,参与者可投稿参赛并有奖金。 评估指标和体系:提出了 helpfulness、拟人性、语言流畅度和优雅性、OC 等评估指标,并讨论了机评和人评混合的评估方式,以及一些相对主观的指标,如后验的对话轮速、对话轮次、用户的使用留存和频率等。 问题汇总和整理:提供了问题汇总文档,记录了 119 条常见问题和解决方案。 微信机器人的搭建:搭建过程是逐步的,可能会遇到卡点,最早有专人在群里回复。前两天的分享在知识库首页,通过第三轮 agent 供学,可跟着教程搭建出不错的机器人。 机器人的能力:可实现小的商业化目的,如搭建客服机器人、进行群管理等。 课程相关:微信机器人课程全免费,梦飞带大家完成的课程已在知识库,可扫码直达学习。 prompt 的相关内容:prompt 属于商业机密,无法分享。赵悦普及了大模型回复速度与输出字符数据相关的知识。 大事件记录: 皇子:零成本、零代码搭建一个智能微信客服,保姆级教程。 安仔:不用黑魔法,小白也能做一个对接 GPT 大模型的微信聊天机器人。 张梦飞:【保姆级】一步一图,手把手教你把 AI 接入微信。 张梦飞:FastGPT + OneAPI + COW 带有知识库的机器人完整教程。 张梦飞:基于 Hook 机制的微信 AI 机器人,无需服务器,运行更稳定,风险更小。 张梦飞:【保姆级教程】这可能是你在地球上能白嫖到的,能力最强的超级微信机器人!一步一图,小白友好。 在自己的电脑上部署 COW 微信机器人项目。
2025-03-05
我想系统学习AI绘画相关知识
以下是为您系统整理的 AI 绘画相关学习资源: 1. 知乎上 Rocky 的系列教程: 深入浅出完整解析 Stable Diffusion XL 核心基础知识: 深入浅出完整解析 Stable Diffusion 中 UNet 核心基础知识: 深入浅出完整解析 LoRA 核心基础知识: 深入浅出完整解析 ControlNet 核心基础知识: 2. 【野菩萨】的课程: 预习周课程:包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 基础操作课:涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。 核心范式课程:涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。 SD WebUi 体系课程:包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 ChatGPT 体系课程:有 ChatGPT 基础、核心 文风、格式、思维模型等内容。 ComfyUI 与 AI 动画课程:包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 应对 SORA 的视听语言课程:涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 如果您想要免费获得这门课程,可以来参与 video battle。冠军奖励:4980 课程一份;亚军奖励:3980 课程一份;季军奖励:1980 课程一份;入围奖励:598 野神殿门票一张。您可以扫码添加菩萨老师助理,了解更多课程信息。
2025-03-04