Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

推荐学习Aigc的入门理论书籍

Answer

以下是为您推荐的学习 AIGC 的入门理论书籍和相关资料:

  1. 《AIGC Weekly#19》:其中包括腾讯非常系统的 Stable Diffusion 介绍文章,马丁整理的关于 AIGC 的碎片化思考,多邻国创始人 Luis von Ahn 专访,Meta AI 发布的自监督学习“烹饪书”,以及回顾大语言模型发展历程的内容。
  2. 《AIGC Weekly#01》:包含对 Stable Diffusion 工作原理的介绍,Emad 写的关于 SD V2 模型的笔记,Hugging Face Inference Endpoints 指南,GPT-4 预测相关内容,以及关于 AI 时代工作未来的读物。
  3. 【AI 学习笔记】:介绍了 AI 大模型的相关概念,如生成式 AI、相关技术名词(包括监督学习、无监督学习、强化学习、深度学习等)、技术里程碑(如 2017 年谷歌团队发表的提出 Transformer 模型的论文)等。
Content generated by AI large model, please carefully verify (powered by aily)

References

AIGC Weekly #19

腾讯非常系统的Stable Diffusion介绍文章,量大管饱。使用入门指南包括硬件需求、安装Python和Git、装配模型,以及如何使用该模型进行图像生成。同时可以通过安装插件等个性化配置,对生成过程进行优化。[heading2][AIGC之我见-马丁的面包屑](https://whjlnspmd6.feishu.cn/wik[content]产品经理、独立开发者马丁整理的自己关于AIGC的一些碎片化思考,很多观点想的很清楚,非常值得一看。[heading2][多邻国创始人Luis von Ahn专访](https://www.newyorker.com/m[content]介绍了Luis von Ahn创建多邻国的过程和对AI的一些思考,特别是AI对教育的影响,他认为AI能以极低的成本产出匹配人类教师教学水平的内容,可以极大的促进教育平权。[heading2][自监督学习CookBook-Mate](https://ai.facebook.com/blog/[content]Meta AI发布了一本“自监督学习烹饪书”,为AI研究人员和从业者提供了使用SSL方法的实用指南。SSL是最近AI突破的关键因素之一,能够在多个领域推动深度学习的边界,从而使模型在自然语言(例如翻译和大语言模型)、音频(例如data2vec)以及计算机视觉模型等模态上实现灵活。本指南提供了一个SSL基础和其食谱,以易于研究人员使用的方式描述了方法的方法家族以及连接其目标的理论线程。研究人员可以使用此烹饪书来学习SSL的基本技术和词汇。[heading2][大语言模型发展历程](https://briefgpt.xyz/lm)[content][Rick Yu](https://twitter.com/cosmtrek)的论文工具增加了一个页面回顾了大语言模型的发展历程,介绍了历代先驱者的研究成果,从N-gram、神经语言模型到现在的GPT系列等。

AIGC Weekly #01

对Stable Diffusion工作原理的介绍。来源:[https://jalammar.github.io/illustrated-stable-diffusion/](https://jalammar.github.io/illustrated-stable-diffusion/)Emad写的关于SD V2模型的一些笔记。来源:[https://twitter.com/EMostaque/status/1595731398450634755](https://twitter.com/EMostaque/status/1595731398450634755)Hugging Face Inference Endpoints指南,介绍如何部署Stable Diffusion以针对给定的输入提示生成图像。来源:[https://www.philschmid.de/stable-diffusion-inference-endpoints](https://www.philschmid.de/stable-diffusion-inference-endpoints)GPT-4预测TLDR:Paras认为GPT-4将能够结合语言模型和代码,这可能意味着它将能够通过生成代码并执行代码来获得所需的答案。时间会证明一切!来源:[https://twitter.com/paraschopra/status/1596762675710918656](https://twitter.com/paraschopra/status/1596762675710918656)AI时代工作的未来。这是一本很棒的读物,讲述了未来的新工作流程:人类提出创造性提示,使用AI完成大量工作,然后人类调整和完善输出。[https://noahpinion.substack.com/p/generative-ai-autocomplete-for-everything](https://noahpinion.substack.com/p/generative-ai-autocomplete-for-everything)

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。

Others are asking
在哪里可以看AIGC智能客服 实战项目
以下是一些可以查看 AIGC 智能客服实战项目的途径: 1. 数字人课程:卡尔的 AI 沃茨推出的数字人课程,包含 15 节视频课,持续更新并附赠课外社群辅导,课程中回顾了 2023 年数字人领域的破圈事件,还介绍了数字人的广泛应用和完整学习体系。报名方式为扫码查看课程详细内容和介绍。 2. 摊位信息:在杭州商场举办的 AI 切磋大会的摊位中,有关于“AI 数字员工”的摊位,提供抖音运营、AI 客服、智能问诊、企业定制员工、定制知识库等体验 demo。 3. 大厂 AIGC 实践:京东有众多 AIGC 相关的实践案例,如【羚珑 AI 智绘营】IPAdapter 等,相关链接可在给定的内容中查看。
2025-01-01
学习AIGC课程
以下为您推荐一门优秀的 AIGC 课程——野菩萨的 AIGC 资深课: 课程由工信部下属单位人民邮电出版社开设,是市面上技术更新最快的课程之一。 课程内容丰富,涵盖 AI 绘画、视听语言和 ChatGPT 等多个体系的知识,包括预习周课程、基础操作课、核心范式课程、SD WebUi 体系课程、ChatGPT 体系课程、ComfyUI 与 AI 动画课程、应对 SORA 的视听语言课程等。 预习周课程:包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。 基础操作课:涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。 核心范式课程:涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。 SD WebUi 体系课程:包括 SD 基础部署、SD 文生图、图生图、局部重绘等。 ChatGPT 体系课程:有 ChatGPT 基础、核心 文风、格式、思维模型等内容。 ComfyUI 与 AI 动画课程:包含部署和基本概念、基础工作流搭建、动画工作流搭建等。 应对 SORA 的视听语言课程:涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 无论您是 AI 初学者还是进阶者,都能满足您的学习需求。 免费课程机会:可以参与 video battle,获胜者可获得课程奖励,包括冠军 4980 课程一份、亚军 3980 课程一份、季军 1980 课程一份,入围奖励 598 野神殿门票一张。 扫码添加菩萨老师助理,了解更多课程信息。 此外,关于 AIGC 的原理: AIGC 是一种“生产工具”,以 ChatGPT 为例,训练时输入海量文字训练资料,通过深度学习模型运算输出一系列答案。使用时输入指令要求,它通过海量信息检索输出合适答案,训练数据集越大越聪明,输出答案越符合预期。更多 AIGC 原理,推荐易懂生动有趣的大咖课程:原课程地址(需要科学上网)
2024-12-29
谈谈你对AI/AIGC的理解
AI(人工智能)是指让计算机模拟人类智能的技术。机器学习是人工智能的重要组成部分,包括监督学习、无监督学习和强化学习等方式。监督学习基于有标签的训练数据,学习输入与输出的映射关系;无监督学习则在无标签数据中自主发现规律,例如聚类。强化学习从反馈中学习以最大化奖励或最小化损失。深度学习参照人脑构建神经网络,其中 Transformer 模型基于自注意力机制处理序列数据,比 RNN 更适合处理长距离依赖。 AIGC(人工智能生成内容)是利用人工智能技术生成各种类型内容的应用方式,能生成文字、图像、视频等。它在内容创作、广告、媒体等领域广泛应用。 AIGC、UGC(用户生成内容)和 PGC(专业人士或机构生成内容)是不同的内容生成方式。AIGC 由人工智能生成,可快速大规模生成内容;UGC 由用户生成,内容丰富多样反映用户想法;PGC 由专业团队或机构生成,内容质量高专业性强。
2024-12-29
如何登呢使用有言aigc
以下是关于 AIGC 相关的使用信息: AIGC 论文检测网站: Turnitin:是广泛使用的学术剽窃检测工具,增加了检测 AI 生成内容的功能。使用方法为上传论文,系统自动分析并提供详细报告,标示出可能由 AI 生成的部分。 Copyscape:主要用于检测网络剽窃行为,虽非专门的 AIGC 检测工具,但可发现可能被 AI 生成的重复内容。使用时输入文本或上传文档,系统扫描网络查找相似或重复内容。 Grammarly:提供语法检查和剽窃检测功能,剽窃检测部分可识别可能由 AI 生成的非原创内容。将文本粘贴到编辑器中,选择剽窃检测功能,系统提供分析报告。 Unicheck:基于云的剽窃检测工具,适用于教育机构和学术研究,可检测 AI 生成内容的迹象。上传文档或输入文本,系统分析并生成报告,显示潜在的剽窃和 AI 生成内容。 :专门设计用于检测 AI 生成内容的工具,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。上传文档或输入文本,系统提供详细报告。 ChatGPT 注册: 注册谷歌账号: 1. 电脑打开谷歌网站:https://accounts.google.com/,点击创建账号。 2. 选择个人用途。 3. 填写姓名(避免中文、拼音,尽量用英文名字,姓可以不填)。 4. 填写年龄性别(最好大于 18 岁)。 5. 填写账号名称。 6. 设置密码(大小写字母+数字)。 7. 手机短信验证,国内号码即可,填写验证码。 8. 填写辅助邮箱(可用国内邮箱)。 9. 确认账户信息,点击下一步。 10. 拉到最底部,点我同意。 11. 点击确认开启个性化设置后即可完成注册。 注册 ChatGPT 账号: 1. 打开 ChatGPT 的官网:https://chat.openai.com/,点击注册按钮。 2. 点击用 Google 账号登录。 3. 输入刚注册的谷歌邮箱,点击下一步。 4. 输入密码,点击下一步。 5. 确认用谷歌账号作为 ChatGPT 账号登录。 6. 然后会跳转到 OpenAI 的网页,填写名字跟出生日期(确保年龄在 18 岁以上),点击 Agr。 7. 完成注册。 悠船操作指南: 1. 进入官网:https://www.youchuanai.com/,点击下载对应版本。 2. 点击注册,在注册方式选择「激活码」(目前邀请码已达上限),填写其他信息完成后即可使用。
2024-12-27
AIGC图生视频网站
以下是一些 AIGC 图生视频相关的网站和信息: 摊位信息中提到的一些与 AIGC 相关的摊位,如“B2B AI 营销与 AI 落地项目快速🔜落地”,涵盖了文生图生视频等内容。 Krea 用开放的 API 做了自己的 AI 视频功能,支持对任何视频输入提示词进行延长,可能是用视频最后一帧做的图生视频。 Runway 发布 ActOne 功能,支持将现实视频的人物表情和动作迁移到生成的视频上,效果非常好,目前已全量开放。 Ideogram 发布 Ideogram Canvas,可以在无限画布上对生成的图片进行编辑,包括扩图、局部重绘以及基本的生成功能。 Luma AI 发布了 Dream Machine 视频生成模型,图生视频的表现相当惊艳,分辨率、运动幅度、美学表现都很出色,同时向所有人开放了免费试用。 希望以上信息对您有所帮助。
2024-12-27
如何降低论文的 AIGC查重率
以下是一些常用的可降低论文 AIGC 查重率的检测网站和工具: 1. Turnitin: 功能:是广泛使用的学术剽窃检测工具,最近增加了检测 AI 生成内容的功能。 使用方法:用户上传论文,系统自动分析文本并提供详细报告,标示出可能由 AI 生成的部分。 2. Copyscape: 功能:主要用于检测网络上的剽窃行为,虽不是专门的 AIGC 检测工具,但可发现可能被 AI 生成的重复内容。 使用方法:输入文本或上传文档,系统扫描网络以查找相似或重复内容。 3. Grammarly: 功能:提供语法检查和剽窃检测功能,剽窃检测部分可帮助识别可能由 AI 生成的非原创内容。 使用方法:将文本粘贴到 Grammarly 的编辑器中,选择剽窃检测功能,系统提供分析报告。 4. Unicheck: 功能:基于云的剽窃检测工具,适用于教育机构和学术研究,可检测 AI 生成内容的迹象。 使用方法:上传文档或输入文本,系统分析并生成报告,显示潜在的剽窃和 AI 生成内容。 5. : 功能:专门设计用于检测 AI 生成内容的工具,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。 使用方法:上传文档或输入文本,系统提供详细报告,包括可能的 AI 生成内容。 6. : 功能:提供免费的 AI 内容检测工具,可识别文本是否由 AI 生成。 使用方法:将文本粘贴到在线工具中,点击检测按钮,系统提供分析结果。 7. GPTZero: 功能:专门设计用于检测由 GPT3 生成内容的工具,适用于教育和出版行业。 使用方法:上传文档或输入文本,系统分析并提供报告,显示文本是否由 GPT3 生成。 8. Content at Scale: 功能:提供 AI 内容检测功能,帮助用户识别文本是否由 AI 生成。 使用方法:将文本粘贴到在线检测工具中,系统分析并提供结果。 这些工具和网站可以帮助教育机构、研究人员和编辑识别 AI 生成的内容,确保学术和出版的原创性和诚信。您可以根据具体需求,选择适合的工具来进行检测。但请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-26
新手如何入门
新手入门 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 知识库中有很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 书籍推荐: Python 方面: 《Python 学习手册》:名声在外。 《Python 编程》:新手友好。 AI 方面: 《人类简史》:“认知革命”的相关章节获益匪浅。 《深度学习实战》:梳理了 ChatGPT 爆发前的 AI 信息与实践。 课程&资源&信息推荐: 对于 Python 及各种 AI 工具的使用,优先推荐 B 站 up 主「PAPAYA 电脑教室」的 Python 入门课,完全免费。 对于大模型,Andrej Karpathy 讲得很好。 油管地址:https://www.youtube.com/watch?v=zjkBMFhNj_g B 站地址:https://www.bilibili.com/video/BV1AU421o7ob 对于资料库,推荐 AJ 和众多小伙伴们共创的「🌈通往 AGI 之路」(一个飞书文档),这是当下最全的中文 AI 资料库,免费、开源、共创,包含几乎所有有价值的文档、文章、资料、资讯,并永远第一时间更新。 链接:https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e
2025-01-02
入门课程
以下是为您提供的 AI 入门课程相关信息: 推荐布鲁姆分类法学习路径,先从。 了解 AI 基本概念:首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 开始 AI 学习之旅:在「」中,您将找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。建议您一定要掌握提示词的技巧,它上手容易且很有用。 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 如需了解云计算中的人工智能主题,可以考虑参加《》课程。课程列表(待更新),如人工智能导论、符号人工智能等相关课程,部分课程有对应的讲义和实验。
2024-12-31
小白如何入门AI
对于小白入门 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多大家实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 此外,还有小白 30 分钟上手 Cursor AI 编程的步骤: 1. 直接上手:AI 编程就是一场 PUA 和提问大赛。 分辨两个模式:Chat 模式可直接和大模型对话,与正常的 ChatGPT 类似,但在 Composer 模式中能即时反馈,直接创建文件、填写代码。 例如在 Composer 模式下输入“给我创建一个 2048 的网页游戏吧”,它会生成相关文件,若环境报错,可截图在 Composer 对话框中询问解决方法。 元子分享了小白 30 分钟快速体验 AI 工具的缘起:对于像作者父亲这样的人,尽管作者已做了很多准备工作,但他们仍觉得 AI 有距离。这让作者意识到,看似简单的 AI 工具初级尝试,其实拦住了很多人,而没有亲手尝试,就难以了解 AI 能带来的帮助。
2024-12-30
Ai入门教程
以下是为您提供的 AI 入门教程: 一、了解 AI 基本概念 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您可以找到为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程按照自己的节奏学习,并有可能获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,涵盖图像、音乐、视频等。您可以根据自身兴趣选择特定模块深入学习,同时一定要掌握提示词的技巧,它容易上手且很有用。 四、实践和尝试 理论学习后,实践是巩固知识的关键。您可以尝试使用各种产品做出自己的作品,知识库中也有很多大家实践后的作品和文章分享,欢迎您在实践后进行分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的有效方式。例如,尝试使用 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,以获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 六、AI 绘画入门教程 1. 非常推荐先看 Nenly 同学的教程,相关链接: B 站:https://space.bilibili.com/1814756990 提示词宝典:BV12X4y1r7QB 模型新手包:BV1Us4y117Rg 汉化及扩展安装:BV1hz4y1a76M 学习资料链接:https://nenly.notion.site/017c3341c8b84a7ebb4c2cb16f36e28f 随堂练习素材下载: 夸克:https://pan.quark.cn/s/98b88f75cc5f 度盘:https://pan.baidu.com/s/10rzgzIjzad7AKmjw8zO_w?pwd=nely 2. 从 0 入门 AI 绘画教程: 强烈推荐,学完变大神系列章节教学视频: 课程内容: 第一节课:AI 绘画原理与基础界面 第二节课:20 分钟搞懂 Prompt 与参数设置,您的 AI 绘画“咒语”学明白了吗? 第三节课:打破次元壁!用 AI“重绘”照片和 CG 第四节课:AI 绘画模型,“画风”自由切换 第五节课:提高 AI 绘画分辨率的方式 第六节课:LoRa|Hypernetwork 概念简析 第七节课:定向修手修脸,手把手教您玩转局部重绘! 第八节课:提示词补全翻译反推,“终极”放大脚本与细节优化插件 第九节课:LoRA 从原理到实践 第十节课:零基础掌握 ControlNet!
2024-12-29
我是小白,不知道怎么入门
以下是为您提供的 AI 入门指南: 1. 如果您想入门制作 MV: 首先,跟 GPT 探讨 MV 与微电影的相似之处,找到制作 MV 缺少的知识,了解关键元素(如音乐与节奏、视觉风格、叙事与主题)和成熟方法论,明确视频要传达的信息和目标观众。 接着,从音乐与节奏开始设计,让 GPT 告知缺少的资料并编辑完成初步的 MV 概念然后结构化。 最后,逐步得到核心元素内容。 2. 如果您想入门 Python: 了解 Python 简介(包括发展历史、特点与优势、应用领域)。 进行安装与环境配置(包括安装教程、配置环境变量、安装和使用 IDE)。 学习 Python 基本语法(包括变量与数据类型、运算符、控制结构)。 掌握 Python 函数与模块(包括函数定义与调用、参数传递、模块与包)。 熟悉 Python 数据结构(包括列表、元组、集合、字典)。 了解 Python 面向对象编程(包括类与对象、封装、继承、多态、特殊方法)。 学习常用 Python 模块(如 os 模块、sys 模块、datetime 模块、math 模块)。 掌握文件操作与异常处理(包括文件的打开、读写与关闭、异常捕捉与处理)。 通过实战项目巩固知识。 3. 如果您想入门 AI 歌手相关的 ACE Studio: 对于零乐理基础用户,了解名词解释,如干声、MIDI、变调、BPM 等。 推荐工作流为干声转换选择歌手微调。通过干声转换获取 MIDI 初稿,修复识别错误的瑕疵。如果有更高要求,可参考进阶篇。
2024-12-29
入门者可以通过哪些AI训练自己的AI模型
对于入门者训练自己的 AI 模型,以下是一些建议和途径: 1. 学习相关基础知识:了解 AI 的基本概念、原理和技术,包括机器学习、深度学习等。 2. 参加课程:例如微软为初学者提供的为期 12 周、24 节课的人工智能课程,涵盖不同方法和处理图像、文本的神经架构等,并提供可执行的 Jupyter 笔记本和实验室。 3. 选择合适的预训练模型:可以使用开源的预训练模型如 BERT、GPT 等作为基础,也可自行训练一个基础模型。 4. 准备训练所需的数据和计算资源:确保有足够覆盖目标应用场景的训练数据,并准备如 GPU 服务器或云计算资源等足够的计算资源。 5. 针对目标任务进行模型微调训练:根据具体应用场景对预训练模型进行微调训练,优化模型结构和训练过程以提高性能。 6. 选择合适的部署方式:包括本地环境部署、云计算平台部署、分布式部署、公共云服务商部署等,根据自身的资源、安全和性能需求进行选择。 7. 注意安全性和隐私保护:大模型涉及大量数据和隐私信息,要重视安全性和合规性。 总的来说,训练自己的 AI 模型需要综合考虑多方面因素,包括知识学习、课程参与、数据准备、模型选择与训练、部署方式以及安全性等,根据具体需求选择合适的方法,并注意优化各个环节以提高模型性能和应用效果。
2024-12-29
如果用ai通过学习我所指定的书籍或网页,之后再输出给我想要查阅和学习的内容呢?
目前的 AI 技术可以通过对指定的书籍或网页进行学习,然后为您提供相关的内容。这通常涉及自然语言处理和机器学习的技术。 一种常见的方式是使用文本分类和信息抽取的算法,对输入的书籍或网页内容进行分析和理解,提取关键信息。然后,根据您的需求和查询,通过生成文本的方式为您输出相应的内容。 但要实现这一过程,可能需要一些特定的工具和技术,并且效果可能会受到数据质量、模型复杂度以及您的需求明确程度等多种因素的影响。 您可以考虑使用一些专门的知识管理工具或智能助手,它们可能具备这样的功能,能够帮助您更高效地获取所需的信息。
2024-12-30
生成式人工智能或者专门的书籍教程是什么意思?这种人工智能有什么用?现在市面上有免费的吗?要是没有免费的我去翻外网也可以
生成式人工智能是一种能够创建新内容的人工智能技术。以下是关于生成式人工智能的一些详细信息: 课程方面: 台湾大学李宏毅教授的生成式 AI 课程,主要介绍了其基本概念、发展历程、技术架构和应用场景等内容。课程共 12 讲,每讲约 2 小时。通过学习该课程,可掌握基本概念和常见技术,能使用相关框架搭建简单模型,了解发展现状和未来趋势。学习内容包括: 1. 什么是生成式 AI:定义和分类,与判别式 AI 的区别,应用领域。 2. 生成式模型:基本结构和训练方法,评估指标,常见模型及其优缺点。 3. 生成式对话:基本概念和应用场景,系统架构和关键技术,基于模型的对话生成方法。 4. 预训练语言模型:发展历程和关键技术,优缺点,在生成式 AI 中的应用。 5. 生成式 AI 的挑战与展望:面临的挑战和解决方法,未来发展趋势和研究方向。 改变创意工作方面: 生成式人工智能在创意工作中发挥着重要作用。例如,生成模型经过训练后,可针对特定内容领域进行“微调”,催生了用于生物医学、法律、法语等的专用模型,以及适用于不同目的的 GPT3 等。NVIDIA 的 BioNeMo 是用于在超级计算规模上训练、构建和部署大型语言模型的框架,适用于生成化学、蛋白质组学和 DNA/RNA 等内容。但使用生成式人工智能仍需人工参与,人类要输入提示让其创建内容,创造性的提示会产生创造性的输出,“即时工程师”可能成为新职业。该领域已出现 DALLE 2 图像提示书和提示市场。 学习资源: 1. 教材:《生成式 AI 导论 2024》,李宏毅。 2. 参考书籍:《深度学习》,伊恩·古德费洛等。 3. 在线课程:李宏毅的生成式 AI 课程。 4. 开源项目:OpenAI GPT3、字节跳动的云雀等。 学习方法:根据课程内容和资源,制定适合自己的学习计划,多实践、多思考。 目前市面上有部分免费的生成式人工智能资源,但也有收费的。需要注意的是,未经许可翻外网可能存在法律风险,请您谨慎选择。
2024-12-24
生成书籍阅读助手的 Prompt
以下是为您生成的书籍阅读助手的 Prompt 相关内容: 如果想让 AI 帮助您像“樊登读书”或者“得到”这样给您讲书,您需要设计一个叫做“书籍阅读助手”的 Prompt。要把通用型的读书方法论复刻到 Prompt 里,再根据不同类型的书籍测试,不断优化和迭代。 通用型读书方法论的访谈问题包括: 1. 不同类型的书是不是有不同的阅读和记忆方法?如何分类,有没有一些共性的方法论可以给出? 2. 阅读和记忆是不是有不同的思维模型或者小技巧,能列出来参考吗? 3. 读书时更需要的好像是一种自驱力,如何优先选择自己“一定看得下去”的书籍?怎么通过目录大纲确定一本书的核心内容? 4. 一本书您会读几遍?有什么顺序上的讲究吗? 5. 您会在读的过程中做笔记吗?还是读完以后回忆来做大纲呢? 6. 如果要教您大学刚毕业的孩子学会有效读书,怎么才能快速教会他呢? 当上述问题都有清晰、明确的答案之后,就可以开始设计 Prompt 了。 如果想要让 AI 在“选书”和“督促我读书”这个环节起作用,那要做的是一个叫做“催我读书”的 Prompt,要重点研究如何选出适合用户的书,如何实现 Prompt 的激励效果和让自己读完有获得感(例如生成读书笔记)。 如果更侧重读完书后的知识内化部分,要重点研究的是读书的效率和信息转化问题,这里更重要的是结构化信息能力和有效的记忆存储和调取。
2024-12-19
有没有阅读书籍的ai 工具
以下是一些可以用于阅读书籍的 AI 工具: Elicit:可以让用户直接向文章本身提出问题,有助于在不必阅读整篇文章的情况下了解文章是否涉及提出的问题。 ChatGPT:向其提供要查询的书籍的详细信息,提供越详细,越能针对问题提供准确答案。 此外,在创作小说方面,以下 AI 工具可以辅助创作: ChatGPT:擅长构思。 Claude:文笔好于 ChatGPT。 彩云小梦、Kimi、MidReal 等。 其他开源模型。
2024-12-12
关于ai的书籍推荐
以下是为您推荐的关于 AI 的书籍: 神经科学相关: 《认知神经学科:关于心智的生物学》(作者:Michael S. Gazzaniga; Richard B. Lvry; George R. Mangun):世界权威的认知神经科学教材,是认知神经科学之父的经典力作,系统涵盖了认知神经科学的诸多方面。 《神经科学原理》(作者:Eric R. Kandel; James H. Schwartz):能让您系统了解神经元的细胞和分子生物学、突触传递等内容。 《神经生物学:从神经元到脑》(作者:John G. Nicholls 等著):神经生物学领域的世界级名著,涵盖了神经科学的各个方面。 Python 和 AI 相关: Python 方面:《Python 学习手册》《Python 编程》。 AI 方面:《人类简史》《深度学习实战》。 希望这些推荐能满足您的需求。
2024-11-25
入门大模型的简要学习书籍清单
以下是为您推荐的入门大模型的简要学习书籍清单: 1. 《大模型入门指南》: 通俗解释了大模型,即通过输入大量语料让计算机获得类似人类的“思考”能力,能进行文本生成、推理问答、对话、文档摘要等工作。 用上学参加工作类比大模型的训练和使用过程,包括找学校(训练所需的大量计算和 GPU)、确定教材(大量数据)、找老师(算法)、就业指导(微调)、搬砖(推导)。 介绍了 Token 作为模型处理和生成的文本单位,以及其在数字化和形成词汇表中的作用。 2. 《从 0 到 1 了解大模型安全,看这篇就够了》: 介绍了不同类型的模型架构,如 encoderonly 适用于自然语言理解任务,encoderdecoder 用于理解和生成内容,decoderonly 更擅长自然语言生成任务。 指出目前大型语言模型多为只使用 Decoder 的 Decoderonly 架构,其预训练数据量大,参数多。 提到了大模型在安全性方面的差别。 3. 《走入 AI 的世界》: 以 GPT3 为例,说明了预训练阶段大模型学习的内容和数量,如使用了 4990 亿 token 的数据集,相当于 86 万本《西游记》。 介绍了 Transformer 模型,这是一种处理文本内容的经典架构,不清楚其具体细节不影响使用大模型,感兴趣可通过相关链接深入了解。
2024-10-28
如何学习AI并成为一个产品经理
以下是关于如何学习 AI 并成为一个产品经理的相关内容: 一、AI 产品经理的层级划分 1. 入门级 能通过 WaytoAGI 等开源网站或一些课程了解 AI 的概念。 使用 AI 产品并尝试动手实践应用搭建。 对应的画像可能是喜欢听小宇宙 APP 的播客或浏览 AI 相关的文章。 2. 研究级 有两个路径,一个是技术研究路径,一个是商业化研究路径。 对应传统互联网偏功能实现的产品经理和偏商业运营的产品经理,最好是同一个人。 这个阶段对应的画像可能是对某一领域有认知,可以根据需求场景选择解决方案,或利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 3. 落地应用 有一些成功落地应用的案例,如产生商业化价值。 对应传统互联网 PM 也有三个层级: 负责功能模块与执行细节。 负责整体系统与产品架构。 熟悉行业竞争格局与商业运营策略。 二、AI 产品经理的要求 1. 懂得技术框架,不一定要了解技术细节,而是对技术边界有认知,最好能知道一些优化手段和新技术的发展。 2. 关注场景、痛点、价值。 三、学习资源与案例 1. 可以参考《雪梅 May 的 AI 学习日记》,其中提到用 ComfyUI 和 Cursor 做应用,感受是二者结合可以制作个人的 AI 产品,是一个可学习的方向。 2. 最近的招聘信息中对 AI 产品经理的职责描述和任职要求: 职责描述:负责基于通用人工智能技术(AGI)的智慧医疗诊断产品的规划、研发、发布上市的全过程管理;通过市场调研和分析,开发满足客户需求的产品或服务,为公司制定产品战略;制定并执行产品开发计划和目标,协调项目相关人员,推动产品开发工作的顺利进行;提出产品优化建议,推动产品快速迭代,并协调增长部门实现产品的持续增长。 任职要求:本科及以上学历,计算机、信息技术、工程、检验、生物科学、细胞生物学等相关专业优先考虑;具备 3 年以上产品管理经验,有医疗领域产品管理经验者、有极致产品案例者优先;在产品创新、研发、迭代改进及商业化方面有丰富的项目管理经验;对客户需求具有高度敏感度,熟悉竞品分析、定价策略。
2025-01-04
SD怎么学习简单
学习 Stable Diffusion(SD)可以从以下方面入手: 学习 SD 提示词: 1. 学习基本概念: 了解 Stable Diffusion 的工作原理和模型架构。 理解提示词如何影响生成结果。 掌握提示词的组成部分(主题词、修饰词、反面词等)。 2. 研究官方文档和教程: 通读 Stable Diffusion 官方文档,了解提示词相关指南。 研究来自开发团队和专家的教程和技巧分享。 3. 学习常见术语和范例: 熟悉 UI、艺术、摄影等相关领域的专业术语和概念。 研究优秀的图像标题和描述,作为提示词范例。 4. 掌握关键技巧: 学习如何组合多个词条来精确描述想要的效果。 掌握使用“()”、“”等符号来控制生成权重的技巧。 了解如何处理抽象概念、情感等无形事物的描述。 5. 实践和反馈: 使用不同的提示词尝试生成各种风格和主题的图像。 对比提示词和实际结果,分析原因,总结经验教训。 在社区内分享结果,请教高手,获取反馈和建议。 6. 创建提示词库: 根据主题、风格等维度,建立自己的高质量提示词库。 将成功案例和总结记录在案,方便后续参考和复用。 7. 持续跟进前沿: 关注 Stable Diffusion 的最新更新和社区分享。 及时掌握提示词的新技术、新范式、新趋势。 学习 SD 的 Web UI: 1. 安装必要的软件环境: 安装 Git 用于克隆源代码。 安装 Python 3.10.6 版本,确保勾选“Add Python 3.10 to PATH”选项。 安装 Miniconda 或 Anaconda 创建 Python 虚拟环境。 2. 克隆 Stable Diffusion Web UI 源代码: 打开命令行工具,输入命令 git clone https://github.com/AUTOMATIC1111/stablediffusionwebui.git ,将源代码克隆到本地目录。 3. 运行安装脚本: 进入 stablediffusionwebui 目录。 运行 webuiuser.bat 或 webui.sh 脚本,它会自动安装依赖项并配置环境。 等待安装完成,命令行会显示 Web UI 的访问地址。 4. 访问 Web UI 界面: 复制命令行显示的本地 Web 地址,在浏览器中打开。 即可进入 Stable Diffusion Web UI 的图形化界面。 5. 学习 Web UI 的基本操作: 了解 Web UI 的各种设置选项,如模型、采样器、采样步数等。 尝试生成图像,观察不同参数对结果的影响。 学习使用提示词(prompt)来控制生成效果。 6. 探索 Web UI 的扩展功能: 了解 Web UI 支持的各种插件和扩展,如 Lora、Hypernetwork 等。 学习如何导入自定义模型、VAE、embedding 等文件。 掌握图像管理、任务管理等技巧,提高工作效率。 总之,学习 SD 需要多方面的知识和经验积累。初学者可从官方资料入手,掌握基本概念;中级阶段需大量实践,培养敏锐度;高级阶段则要追求创新性、挖掘新维度。持续的学习、实践和总结反馈,是成为高手的必由之路。
2025-01-04
一个人学习AI
以下是为您提供的一个人学习 AI 的相关指导: 一、了解 AI 基本概念 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您可以找到为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,涵盖图像、音乐、视频等方面。您可以根据自身兴趣选择特定模块深入钻研,同时一定要掌握提示词的技巧,它容易上手且很实用。 四、实践和尝试 理论学习后,实践是巩固知识的关键。您可以尝试使用各种产品进行创作,在知识库中也有很多实践后的作品和文章分享,欢迎您在实践后也进行分享。 五、体验 AI 产品 与现有的 AI 产品互动是学习 AI 的有效方式,例如尝试使用 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,从而获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 另外,为了在医疗保健中让 AI 产生真正的改变,应投资创建像优秀医生和药物开发者那样学习的模型生态系统。比如,预医学生的课程从化学和生物学基础开始,设计新疗法的科学家也需经历多年相关学习和实践。 YoYo 分享了自己在通往 AGI 的学习之路心得,学习前不理解 AI 和提示词工程,走了不少弯路;学习后能创建智能体并在公司中实践智能客服等。其学习路径强调“少就是多”“先有个初识”“目录索引推荐”“兴趣最重要”“先动手”,并认为学以致用,通过学习、分享不断成长。
2025-01-04
如何从0到1学习ai
以下是从 0 到 1 学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2025-01-04
ai学习
以下是新手学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-03
小白如何快速系统学习 AI 应用
对于小白快速系统学习 AI 应用,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 知识库中有很多实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 6. 开发实践: 从一个最基础的小任务开始,让 AI 先帮您按照 best practice 写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,学会必备的调试技能。 通过和 AI 的对话,逐步明确项目需求,梳理出产品需求文档。 接下来就是真正的实践,按照项目规划,学习一个 POC,将其应用到大项目中。当遇到错误时,复制错误信息、相关代码扔给 AI 让其找错误并修复,也可找文档或去 stackoverflow 上找答案,然后把这些信息提供给 AI 让其基于此修复。如有可能,找一个老师傅随时提供支援。
2025-01-03