Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

推荐学习Aigc的入门理论书籍

Answer

以下是为您推荐的学习 AIGC 的入门理论书籍和相关资料:

  1. 《AIGC Weekly#19》:其中包括腾讯非常系统的 Stable Diffusion 介绍文章,马丁整理的关于 AIGC 的碎片化思考,多邻国创始人 Luis von Ahn 专访,Meta AI 发布的自监督学习“烹饪书”,以及回顾大语言模型发展历程的内容。
  2. 《AIGC Weekly#01》:包含对 Stable Diffusion 工作原理的介绍,Emad 写的关于 SD V2 模型的笔记,Hugging Face Inference Endpoints 指南,GPT-4 预测相关内容,以及关于 AI 时代工作未来的读物。
  3. 【AI 学习笔记】:介绍了 AI 大模型的相关概念,如生成式 AI、相关技术名词(包括监督学习、无监督学习、强化学习、深度学习等)、技术里程碑(如 2017 年谷歌团队发表的提出 Transformer 模型的论文)等。
Content generated by AI large model, please carefully verify (powered by aily)

References

AIGC Weekly #19

腾讯非常系统的Stable Diffusion介绍文章,量大管饱。使用入门指南包括硬件需求、安装Python和Git、装配模型,以及如何使用该模型进行图像生成。同时可以通过安装插件等个性化配置,对生成过程进行优化。[heading2][AIGC之我见-马丁的面包屑](https://whjlnspmd6.feishu.cn/wik[content]产品经理、独立开发者马丁整理的自己关于AIGC的一些碎片化思考,很多观点想的很清楚,非常值得一看。[heading2][多邻国创始人Luis von Ahn专访](https://www.newyorker.com/m[content]介绍了Luis von Ahn创建多邻国的过程和对AI的一些思考,特别是AI对教育的影响,他认为AI能以极低的成本产出匹配人类教师教学水平的内容,可以极大的促进教育平权。[heading2][自监督学习CookBook-Mate](https://ai.facebook.com/blog/[content]Meta AI发布了一本“自监督学习烹饪书”,为AI研究人员和从业者提供了使用SSL方法的实用指南。SSL是最近AI突破的关键因素之一,能够在多个领域推动深度学习的边界,从而使模型在自然语言(例如翻译和大语言模型)、音频(例如data2vec)以及计算机视觉模型等模态上实现灵活。本指南提供了一个SSL基础和其食谱,以易于研究人员使用的方式描述了方法的方法家族以及连接其目标的理论线程。研究人员可以使用此烹饪书来学习SSL的基本技术和词汇。[heading2][大语言模型发展历程](https://briefgpt.xyz/lm)[content][Rick Yu](https://twitter.com/cosmtrek)的论文工具增加了一个页面回顾了大语言模型的发展历程,介绍了历代先驱者的研究成果,从N-gram、神经语言模型到现在的GPT系列等。

AIGC Weekly #01

对Stable Diffusion工作原理的介绍。来源:[https://jalammar.github.io/illustrated-stable-diffusion/](https://jalammar.github.io/illustrated-stable-diffusion/)Emad写的关于SD V2模型的一些笔记。来源:[https://twitter.com/EMostaque/status/1595731398450634755](https://twitter.com/EMostaque/status/1595731398450634755)Hugging Face Inference Endpoints指南,介绍如何部署Stable Diffusion以针对给定的输入提示生成图像。来源:[https://www.philschmid.de/stable-diffusion-inference-endpoints](https://www.philschmid.de/stable-diffusion-inference-endpoints)GPT-4预测TLDR:Paras认为GPT-4将能够结合语言模型和代码,这可能意味着它将能够通过生成代码并执行代码来获得所需的答案。时间会证明一切!来源:[https://twitter.com/paraschopra/status/1596762675710918656](https://twitter.com/paraschopra/status/1596762675710918656)AI时代工作的未来。这是一本很棒的读物,讲述了未来的新工作流程:人类提出创造性提示,使用AI完成大量工作,然后人类调整和完善输出。[https://noahpinion.substack.com/p/generative-ai-autocomplete-for-everything](https://noahpinion.substack.com/p/generative-ai-autocomplete-for-everything)

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT含义:Transformer是关键。Transformer比RNN更适合处理文本的长距离依赖性。

Others are asking
aigc是什么
AIGC 即 AI generated content,又称为生成式 AI,意为人工智能生成内容。 AIGC 能够通过机器学习和深度学习算法,根据输入的数据和指令生成各种类型的内容,例如 AI 文本续写、文字转图像的 AI 图、AI 主持人等。其应用领域广泛,包括内容创作、广告、媒体等。 AIGC 主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,如 GPT4 和 Gemini Ultra。图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,应用于数据增强和艺术创作,代表项目有 Stable Diffusion 和 StyleGAN 2。音视频生成利用扩散模型、GANs 和 Video Diffusion 等,广泛应用于娱乐和语音生成,代表项目有 Sora 和 WaveNet。此外,AIGC 还可应用于音乐生成、游戏开发和医疗保健等领域。 能进行 AIGC 的产品项目众多,能进行 AIGC 的媒介也很多,包括且不限于: 语言文字类:OpenAI 的 GPT,Google 的 Bard,百度的文心一言,还有一种国内大佬下场要做的的 LLM 都是语言类的。 语音声音类:Google 的 WaveNet,微软的 Deep Nerual Network,百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits。 图片美术类:早期有 GEN 等图片识别/生成技术,去年大热的扩散模型又带火了我们比较熟悉的、生成质量无敌的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion。 AIGC、UGC(普通用户生产)和 PGC(专业用户生产)都是内容生成的不同方式,主要区别在于内容的创作者和生成方式。AIGC 由人工智能生成内容,优势在于可以快速、大规模地生成内容,适用于需要大量内容的场景。UGC 由用户生成内容,优势在于内容丰富多样,能够反映用户的真实想法和创意,适用于社交媒体、社区论坛等互动性强的平台。PGC 由专业人士或机构生成内容,优势在于内容质量高、专业性强,适用于新闻媒体、专业网站等需要高质量内容的平台。 目前,我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成了共同监管的形势。AIGC 应用可能引发内生风险、数据隐私问题和知识产权风险,需要进一步加强监管和伦理约束。
2025-03-30
AIGC降重有什么办法
以下是一些 AIGC 降重的办法: 1. 重新表述:对由 AIGC 生成的内容进行重新组织和表述,改变句子结构和用词。 2. 增加细节:通过补充更多的具体信息、案例或解释,使内容更加丰富和独特。 3. 引用权威来源:引入可靠的权威资料和研究成果,增强内容的可信度和独特性。 需要注意的是,在使用 AIGC 生成的内容时,要遵循相关的法律法规和学术规范,确保内容的合法性和原创性。同时,目前有一些常用的 AIGC 论文检测网站和工具,如: 1. Turnitin:是广泛使用的学术剽窃检测工具,增加了检测 AI 生成内容的功能。使用时上传论文,系统会自动分析文本并提供详细报告,标示出可能由 AI 生成的部分。 2. Copyscape:主要用于检测网络上的剽窃行为,虽不是专门的 AIGC 检测工具,但可发现可能被 AI 生成的重复内容。输入文本或上传文档,系统会扫描网络查找相似或重复内容。 3. Grammarly:提供语法检查和剽窃检测功能,剽窃检测部分可帮助识别可能由 AI 生成的非原创内容。将文本粘贴到编辑器中,选择剽窃检测功能,系统会提供分析报告。 4. Unicheck:基于云的剽窃检测工具,适用于教育机构和学术研究,可检测 AI 生成内容的迹象。上传文档或输入文本,系统会分析并生成报告,显示潜在的剽窃和 AI 生成内容。 5. :专门设计用于检测 AI 生成内容的工具,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。上传文档或输入文本,系统会提供详细报告,包括可能的 AI 生成内容。
2025-03-26
有没有自动降低文章的aigc率的工具,中文的
目前尚未有专门用于自动降低文章 AIGC 率的中文工具。但您可以通过人工修改、调整表述方式、增加独特的观点和内容等方法来降低文章的 AIGC 特征。
2025-03-25
有没有自动降低文章的aigc率的工具
以下是一些能够自动检测并降低文章 AIGC 率的工具: 1. Turnitin: 功能:是广泛使用的学术剽窃检测工具,最近增加了检测 AI 生成内容的功能。 使用方法:用户上传论文,系统自动分析文本并提供详细报告,标示出可能由 AI 生成的部分。 2. Copyscape: 功能:主要用于检测网络上的剽窃行为,虽不是专门的 AIGC 检测工具,但能发现可能被 AI 生成的重复内容。 使用方法:输入文本或上传文档,系统扫描网络以查找相似或重复的内容。 3. Grammarly: 功能:提供语法检查和剽窃检测功能,剽窃检测部分可帮助识别可能由 AI 生成的非原创内容。 使用方法:将文本粘贴到 Grammarly 的编辑器中,选择剽窃检测功能,系统提供分析报告。 4. Unicheck: 功能:基于云的剽窃检测工具,适用于教育机构和学术研究,可检测 AI 生成内容的迹象。 使用方法:上传文档或输入文本,系统分析并生成报告,显示潜在的剽窃和 AI 生成内容。 5. : 功能:专门设计用于检测 AI 生成内容,使用先进的算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。 使用方法:上传文档或输入文本,系统提供详细报告,包括可能的 AI 生成内容。
2025-03-25
如何降低文章的aigc率
要降低文章的 AIGC 率,可以从以下几个方面入手: 1. 注重个人创作和思考:在写作过程中,充分发挥自己的知识、经验和创造力,减少对 AI 生成内容的依赖。 2. 深入研究和理解主题:通过广泛阅读相关资料,深入了解文章主题,从而能够以独特的视角和观点进行阐述。 3. 独特的表达风格:培养自己独特的语言表达风格,包括词汇运用、句式结构等,使文章具有鲜明的个人特色。 4. 增加细节和实例:通过详细描述具体的案例、经历或数据,丰富文章内容,使其更具真实性和可信度。 5. 人工审核和修改:在完成初稿后,仔细检查和修改,确保文章的逻辑、语言和内容均符合个人的创作思路。 此外,在学术研究和写作中,还可以使用一些 AIGC 论文检测网站和工具来辅助判断文章中是否存在 AI 生成的内容,例如: 1. Turnitin:是广泛使用的学术剽窃检测工具,增加了检测 AI 生成内容的功能。用户上传论文后,系统会自动分析文本并提供详细报告,标示出可能由 AI 生成的部分。 2. Copyscape:主要用于检测网络上的剽窃行为,虽不是专门的 AIGC 检测工具,但能发现可能被 AI 生成的重复内容。输入文本或上传文档,系统会扫描网络查找相似或重复内容。 3. Grammarly:提供语法检查和剽窃检测功能,其剽窃检测部分可帮助识别可能由 AI 生成的非原创内容。将文本粘贴到编辑器中,选择剽窃检测功能,系统会提供分析报告。 4. Unicheck:基于云的剽窃检测工具,适用于教育机构和学术研究,能检测 AI 生成内容的迹象。上传文档或输入文本,系统会分析并生成报告,显示潜在的剽窃和 AI 生成内容。 5. :专门设计用于检测 AI 生成内容的工具,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。上传文档或输入文本,系统会提供详细报告,包括可能的 AI 生成内容。
2025-03-25
免费降aigc率网站
以下是一些免费的 AIGC 检测网站: 1. :提供免费的 AI 内容检测工具,能识别文本是否由 AI 生成。使用方法是将文本粘贴到在线工具中,点击检测按钮,系统会提供分析结果。 2. GPTZero:专门设计用于检测由 GPT3 生成的内容,适用于教育和出版行业。使用时上传文档或输入文本,系统会分析并提供报告,显示文本是否由 GPT3 生成。 3. Content at Scale:提供 AI 内容检测功能,帮助识别文本是否由 AI 生成。使用时将文本粘贴到在线检测工具中,系统会分析并提供结果。 此外,在学术研究和写作中,还有一些常用的 AIGC 论文检测网站和工具: 1. Turnitin:广泛使用的学术剽窃检测工具,最近增加了检测 AI 生成内容的功能。用户上传论文,系统自动分析文本并提供详细报告,标示出可能由 AI 生成的部分。 2. Copyscape:主要用于检测网络上的剽窃行为,虽不是专门的 AIGC 检测工具,但能发现可能被 AI 生成的重复内容。输入文本或上传文档,系统扫描网络查找相似或重复内容。 3. Grammarly:提供语法检查和剽窃检测功能,剽窃检测部分可帮助识别可能由 AI 生成的非原创内容。将文本粘贴到编辑器中,选择剽窃检测功能,系统提供分析报告。 4. Unicheck:基于云的剽窃检测工具,适用于教育机构和学术研究,能检测 AI 生成内容的迹象。上传文档或输入文本,系统分析并生成报告,显示潜在的剽窃和 AI 生成内容。 5. :专门设计用于检测 AI 生成内容,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。上传文档或输入文本,系统提供详细报告,包括可能的 AI 生成内容。
2025-03-25
TRAE编程快速入门
以下是 Trae 编程的快速入门指南: 一、Trae 简介 Trae 是字节跳动推出的智能编程助手,提供基于 Agent 的 AI 自动编程能力,通过自然语言对话就能实现代码编写。 二、Trae 的功能 1. 传统 IDE 功能,如代码编写、项目管理、插件管理、源代码管理等。 2. 智能问答:在编写代码时可随时与 AI 助手对话,获得代码解释、注释和错误修复帮助。 3. 实时代码建议:AI 助手能理解当前代码并实时提供建议,提升编程效率。 4. 代码片段生成:通过自然语言描述需求生成相应代码片段,甚至能编写项目级或跨文件代码。 5. 从 0 到 1 开发项目:告知想开发的程序,AI 助手提供相关代码或自动创建所需文件。 三、下载 Trae 官网下载地址:https://www.trae.ai/download ,支持 Mac 系统、Windows 系统,未来支持 Linux 系统。 四、使用方法 1. 安装:下载完成后按界面提示一步步安装。 2. 登录:安装完成后点击右侧登录按钮,程序会自动打开网页提示登录,无账号需先注册。登录完若出现“App Unavailable”提示,因 Trae 仅在部分地区可用,此时需开启科学上网。网页登录成功后可关闭科学上网,再点击中间大按钮。 3. 进入客户端后,查看对话框右下角,有三种大模型可选:Claude3.5Sonnet、Claude3.7Sonnet、GPT4o。Trae 提供两种模式: Chat 模式:根据描述进行代码生成、解释、分析问题或解决问题。 Builder 模式:可让 Trae 从 0 开发完整项目,对代码文件的任何更改会自动保存。 五、使用案例 1. 生成一个贪吃蛇游戏:打开 Builder 模式,输入“使用 web 技术栈生成一个贪吃蛇游戏”,排队完成后,Trae 开始思考和代码编写,期间需手动接入进行文件审查,点击“全部接受”。代码生成完成后,Trae 自动运行命令启动页面,点击运行,在 Webview 中可看到实现的游戏效果,试玩基本无 Bug。Trae 还进行了工作总结,说明了已实现的功能,如游戏包含的特性、主要功能和游戏界面等。 2. 生成一个任务清单应用:输入“使用 Web 技术开发一个任务清单应用”,过程类似。 3. 根据 UI 设计图自动生成项目代码:从站酷上找设计图,输入提示生成,虽不完美但能根据反馈调整。 六、总结 从实际体验看,Trae 表现出色,具有高效代码生成能力、多技术栈支持和动态调整潜力。
2025-03-30
ai入门教学
以下是为新手提供的 AI 入门教学: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,还有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。建议掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。知识库中有很多实践后的作品、文章分享,欢迎您实践后也进行分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 如果您对 AI 绘画感兴趣,这里有从 0 入门的 AI 绘画教程: 🔥强烈推荐,学完变大神系列章节教学视频: 第一节课:AI 绘画原理与基础界面 第二节课:20 分钟搞懂 Prompt 与参数设置,你的 AI 绘画“咒语”学明白了吗? 第三节课:打破次元壁!用 AI“重绘”照片和 CG 第四节课:AI 绘画模型,“画风”自由切换 第五节课:提高 AI 绘画分辨率的方式 第六节课:LoRa|Hypernetwork 概念简析 第七节课:定向修手修脸,手把手教你玩转局部重绘! 第八节课:提示词补全翻译反推,“终极”放大脚本与细节优化插件 第九节课:LoRA 从原理到实践 第十节课:零基础掌握 ControlNet!
2025-03-28
ai学习入门
新手学习 AI 可以按照以下步骤入门: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,对于入门强化学习,可参考以下内容: 像这个链接里面:https://github.com/ty4z2008/Qix/blob/master/dl.md 有很多资料,但需明确学习目的。比如入门强化学习,很多强化学习里面,学习深度强化学习的第一个算法都是 DQN,以搞懂它做为目标,表示入门。 通往 AGI 之路的介绍中提到,学习 AI 可从记忆(了解历史、基本术语等)、理解(进一步了解主要思想)、应用(选择适合自己的 AI 产品解决实际问题)、分析(阅读各类文章、视频等理解知识关系)、评价(通过课程与书籍深入学习)、创造(尝试新想法)等方面进行。我们阅读、思考、选择,不求多,只求精,只求有更高的价值。保持新鲜度,每天为 AI 添加新的维度。
2025-03-28
ai学习入门
以下是新手学习 AI 的入门建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,还有以下入门相关内容: 入门指南:强化学习 原文地址:https://mp.weixin.qq.com/s/pOO0llKRKL1HKG8uz_Nm0A 作者在未学过机器学习、对 AI 一窍不通的情况下开启学习之旅,学习前先明确目的,如本文以搞懂 DQN 算法作为入门强化学习的目标,并给出学习计划。 写给不会代码的你:20 分钟上手 Python+AI 在深入学习 AI 时,编程可能会带来困难,此教程旨在让大家更快掌握 Python 和 AI 的相互调用,并在 20 分钟内完成简单程序、爬虫应用抓取公众号文章、为公众号文章生成概述等任务。 介绍了 Python 像哆拉 A 梦,拥有标准库,还可通过 pip 工具和 GitHub 平台获取更多资源。 OpenAI 通过 ChatGPT 提供开箱即用的服务,通过 OpenAI API 提供更加灵活的服务,可通过代码调用完成更多自动化任务。
2025-03-27
提示词工程入门
提示词工程入门: 基本概念: 简单的提示词能获得结果,但结果质量与提供信息的数量和完善度有关。提示词可包含指令、问题、上下文、输入、示例等元素,以更好地指导模型获得更好结果。 如使用 OpenAI 的聊天模型,有 system、user 和 assistant 三种角色,system 非必需但有助于设定 assistant 行为。本指南示例通常仅用 user 消息作 prompt。 语言模型能基于给出的上下文续写,可通过改进提示词获得更好结果。提示工程探讨如何设计最佳提示词以高效完成任务,可用于多种高级任务。 相关精读: 在生成式 AI 模型中,提示词工程是新兴学科,塑造模型交互和输出。提示词是用户与模型沟通的文本界面,涵盖简单问题到复杂任务。 提示词工程核心是制作实现特定目标的最佳提示词,涉及对模型能力和局限性的理解及所处上下文。 提示词工程不仅构建提示词,还需结合领域知识、对 AI 模型理解和系统化方法定制提示词,是迭代和探索过程。 关于提示词工程师: 是负责设计和优化提示的专业人员,目标是引导模型产生准确、有用和相关回答。 主要职责包括设计、优化、评估提示,需具备领域知识、自然语言处理、人工智能、沟通能力等。 是新兴职业,随着人工智能发展需求将增大,有实际工作案例。
2025-03-27
入门
以下是为您提供的 AI 入门相关内容: 强化学习入门: 学习之前先明确目的。 学习深度强化学习的第一个算法通常是 DQN,以搞懂它作为入门目标。 参考资料:https://github.com/ty4z2008/Qix/blob/master/dl.md 。 Stable Diffusion 入门: 基本介绍:https://waytoagi.feishu.cn/wiki/CeOvwZPwCijV79kt9jccfkRan5e 。 运作方式:https://waytoagi.feishu.cn/wiki/TNIRw7qsViYNVgkPaazcuaVfndc 。 新人视频教程:https://waytoagi.feishu.cn/wiki/O5jEwgZIRiQ10xkqGOQcKtSBnSe 。 文字教程:https://zhuanlan.zhihu.com/p/622238031 。 模型网站: C 站SD 模型网站:https://civitai.com/ 。 Liblibai模型+在线 SD:https://www.liblib.ai/ 。 huggingface:https://huggingface.co/models?pipeline_tag=texttoimage&sort=trending 。 吐司站:https://tusiart.com/ 。 人像摄影模型介绍:https://www.bilibili.com/video/BV1DP41167bZ 。 扣子“AI 应用”入门: 讲师韦恩是智能体创业者、WayToAGI 共建者、微软提示词工程师、多平台 Agent 开发者、企业级 AI Agent 定制专家,荣获多家 AI 开发平台的比赛奖项,有 12 年程序开发背景,是多家企业的 AI 落地顾问。 课程计划: DAY1:入门,搭建证件照应用,需要有一定的智能体搭建基础。 DAY2:进阶,邮票收藏馆搭建,需要有第一天的 AI 应用搭建基础,传送门:https://waytoagi.feishu.cn/wiki/NiXNwxVtHiP68Pk7bKmcNRDon6d?from=from_copylink 。 您将收获: 全面认识扣子的 AI 应用的底层逻辑。 解决 AI 应用核心卡点:工具栏、表单使用、加载动图、界面布局等卡点。 收获一个价值千元的 AI 应用证件照。
2025-03-26
背景:我是一名高中生,想学习AI知识,逐步从入门到精通 目标:希望在<3个月>内具备一定能力。 请结合我的背景和优势,为我设计一份学习路线: - 列出每阶段(例如每一个礼拜)的学习重点(比如编程基础、数学)。 - 为每个阶段推荐<具体资源>(书籍、在线课程、练习项目等)。 - 提供一些学习技巧或注意事项。
以下是为您设计的一份在 3 个月内从入门到具备一定能力的 AI 学习路线: 第一个月: 学习重点:了解 AI 基本概念,包括术语、主要分支及它们之间的联系;掌握编程基础,如 Python 语言。 推荐资源: 书籍:《人工智能:一种现代方法》 在线课程:Coursera 上的“人工智能入门”课程 练习项目:使用 Python 实现简单的数据分析和可视化 学习技巧和注意事项:多做笔记,理解概念,注重实践。 第二个月: 学习重点:深入学习数学基础,包括统计学、线性代数和概率论;了解算法和模型中的监督学习和无监督学习。 推荐资源: 书籍:《概率论与数理统计》《线性代数及其应用》 在线课程:edX 上的“机器学习基础”课程 练习项目:使用监督学习算法进行数据分类预测 学习技巧和注意事项:通过实际案例加深对数学知识的理解,多做练习题。 第三个月: 学习重点:掌握神经网络基础,包括网络结构和激活函数;学习模型的评估和调优。 推荐资源: 书籍:《深度学习》 在线课程:Udacity 上的“深度学习入门”课程 练习项目:构建并优化一个简单的神经网络模型 学习技巧和注意事项:积极参与在线讨论,及时解决学习中的问题。 在整个学习过程中,您还可以: 体验 AI 产品,如 ChatGPT、文心一言等,了解其工作原理和交互方式。 掌握提示词的技巧,提高与 AI 的交互效果。 参与相关的社区和论坛,分享学习经验和成果。
2025-03-21
检索有关AI入门必读书籍
以下是为您推荐的 AI 入门必读书籍: 1. 「」,有助于熟悉 AI 的术语和基础概念。 2. 「」,其中包含为初学者设计的课程。 3. GPT1 到 Deepseek R1 所有公开论文 The 2025 AI Engineer Reading List:涉及人工智能工程的 10 个领域,包括 LLMs、基准、提示、RAG、代理、CodeGen、视觉、语音、扩散、微调。如果您想从零开始,可以从此处开始。 4. 入门经典必读:作者为 ,原文地址:https://a16z.com/2023/05/25/aicanon/ 。文中分享了一份用于更深入了解现代 AI 的精选资源列表。
2025-03-17
AI如何学习,请给我具体的学习路线、视频和书籍
以下是为您提供的 AI 学习路线、视频和书籍的相关内容: 学习路线: 1. 了解 AI 基本概念:阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 开始 AI 学习之旅:在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程按照自己的节奏学习。 3. 选择感兴趣的模块深入学习:AI 领域广泛,比如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习,同时掌握提示词的技巧。 4. 实践和尝试:理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 视频: 1. 大量阅读。 书籍: 1. 推荐看 open AI 的官方 Cookbook,小琪姐做了中文精读翻译。 2. 关于介绍 GPT 运作原理、Transformer 模型、扩散模型等的文章,还包括软件 2.0 时代相关内容。
2025-03-13
如何通过与AI的对话获取高质量的信息?有没有相关书籍或者文章推荐,请给出相关链接。
以下是关于如何通过与 AI 的对话获取高质量信息以及相关书籍和文章推荐的内容: 在与 AI 对话获取高质量信息方面: 作为普通用户,语言在大模型中不是关键,核心是向量空间中的游走脉络,输出时的语言翻译是次要的,且训练语料的中英文差异在于 embedding 环节。 通过合适的模型、prompt 和 test 入口表达,用大模型公式调试出好效果以替代垂类模型,但微调垂类模型可能使大模型泛化能力下降,需分场景看待。 写提示词未挖掘出大模型的天花板,还有提升空间。 相关书籍和文章推荐: 从数学、作家、代码、原理角度写大模型的四本书。 介绍 GPT 运作原理、Transformer 模型、扩散模型等的文章。 关于 AI 知识库及学习路径的介绍中提到的经典必读文章,如软件 2.0 时代相关内容。 初学者入门推荐看 open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。 获取信息的渠道: 可以关注赛博蝉星公众号、国外优质博主的 blog 或 Twitter 等,订阅获取最新信息并投稿。 可通过“通往 AGI 之路”知识库获取相关内容,该知识库涵盖了 AI 多方面知识及社区共创项目,如人工智能简史、AI 会话简史等,还有 10 篇精选文章助于理解 AI。 您还可以通过参加社区共创项目,如 AIPU、CONFIUI 生态大会,每月的切磋大会等活动,以及新活动 AIPO,与他人交流获取更多信息。同时,鼓励整理学习笔记并分享交流,以促进对知识的吸收和理解。
2025-03-09
最近想要出一本书,书籍的主题是“Deepseek的应用革命:打造AI时代的竞争力”主要是面相企业家和企业高管,希望能够将知识库内容中关于企业应用的部分提炼成书,请根据知识库素材,输出一个图书内容规划和重点参考资料
以下是为您规划的图书内容和重点参考资料: 一、图书内容规划 1. 引言 介绍 AI 时代的背景和企业面临的挑战与机遇。 阐述 DeepSeek 在塑造企业竞争力方面的重要性。 2. DeepSeek 的技术创新 详细介绍 DeepSeek 最新模型 V3 与 R1 的架构创新,如混合专家(MoE)架构、多头潜注意力(MLA)等。 解释其如何提升计算效率和推理能力,打破算力壁垒。 3. 多领域的应用案例 字节跳动的新技术 OmniHuman 在视频生成方面的突破。 Coinbase 全面推动 AI 应用的实践,如在欺诈预防和客户支持等领域的应用。 4. 对企业管理的影响 探讨善于沟通上下文、明晰 AI 能力边界、合理授权并监督等管理经验如何提升 AI 协作效率。 5. 行业趋势与挑战 分析 AI 基础大模型参数量的变化趋势。 讨论初级程序员面临的职业挑战以及编程领域的颠覆性变化。 6. 未来展望 预测 DeepSeek 及相关技术在未来的发展方向和可能的创新。 二、重点参考资料 1. 《》 2. 《》 3. 《》 4. 《》 5. 《》 6. 《[零基础掌握 Deepseek》》 7. 日报 8. 日报
2025-03-08
我想获得一本书籍的干货内容,用什么AI工具能实现?
以下是一些可以帮助您获得书籍干货内容的 AI 工具: 1. TXYZ :这是一个能帮助搜索、查询专业文献并进行对话的 AI 工具,提供从搜索获取、查询对话获取知识再到管理知识的一站式服务。它是唯一和预印本文库官方合作的 AI 工具,ArXiv 的每篇论文下面都有直达 TXYZ 的按钮。用户可以自己上传 PDF 论文或者链接,通过它来在专业文献中迅速找到自己想要的答案和内容。在对话中提供论文参考,给出可信的背书。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-09
零基础小包AI学习路径
以下是为零基础的您提供的 AI 学习路径: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您可以找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,像二师兄这样的案例也可供您参考。二师兄在二月因七彩虹售后群老哥的分享,要了 SD 秋叶安装包,下载了教学视频,迈出 AI 学习的第一步。三月啃完 SD 的所有教程并开始炼丹,四月尝试用 GPT 和 SD 制作图文故事绘本、小说推文的项目,五月加入 Prompt battle 社群,开始 Midjourney 的学习。 如果您是零基础小白,还可以: 找网上的基础课程进行学习。 观看科普类教程。 阅读 OpenAI 的文档,理解每个参数的作用和设计原理。 利用一些练手的 Prompt 工具。
2025-03-30
AI学习路线
以下是为新手提供的 AI 学习路线: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-03-30
哪个AI能帮助初中生规划学习计划
以下几个 AI 可以帮助初中生规划学习计划: 1. 文心大模型 4.0:它可以按照以下步骤为用户制定学习计划。首先询问学习目标或需要解决的问题,然后依次询问并收集学习目标与个人或职业发展目标的关系、具体学习内容、量化学习进度和成功的标准、目标完成的时间框架、目标的现实可行性等信息,最后综合这些信息制定详细的分步骤学习计划,包括每日和每周的学习内容及目标。 2. ChatGPT:可以协助设定量化目标,比如以考取雅思 8.0 且能和朋友或客户流利交谈为目标。然后会询问达成目标的时间框架,比如半年。还会询问目标的现实可行性,比如考虑目前的英语水平、日常时间安排、学习资源等情况。 例如,如果一个初中生想要提高英语水平,设定半年内考取雅思 8.0 且能流利交流为目标,目前雅思 6.5,每天能投入 2 小时,周末更多,有网络课程访问条件且能购买学习材料,那么这些 AI 可以根据这些信息为其制定具体的学习计划。
2025-03-30
如何学习Prompt
以下是关于如何学习 Prompt 的详细指导: 一、准备工作 首先,您需要有一个大模型帐号,并熟悉与它们对话的方式。以下为您推荐一些可用的平台: 1. ChatGPT4(性能最强) 2. 国产平替: 二、学习资料 1. 必看 OpenAI 的官方文档: 同时,还有中文精度版的官方 Cookbook 可供参考: 三、网站资源 以下是一些精选的 Prompt 相关网站: |站点名|网站介绍|地址|附件| ||||| |Learning Prompt|授人以渔,非常详尽的 Prompt 学习资源,包括 ChatGPT 和 MidJourney||| |FlowGPT|国外做的最大的 prompt 站,内容超全面,更新快||| |ChatGPT Shortcut|ChatGPT 提示词网站,提供了非常多使用模板,简单修改即可指定输出||| |ClickPrompt|轻松查看、分享和一键运行模型,创建 Prompt 并与其他人分享||| |Prompt Extend|让 AI 帮你自动拓展 Prompt||| |PromptPerfect|帮你自动优化提示词,你可以看到优化前后的对比||| |PromptKnit|The best playground for prompt designers||| |PromptPort(支持中文)|AI Prompt 百科辞典,其中 prompts 是聚合了市场上大部分优质的 prompt 的词库,快速的寻找到用户需求 prompt||| |Prompt Engineering Guide|GitHub 上点赞量非常高的提示工程指南,基于对大语言模型的浓厚兴趣,编写了这份全新的提示工程指南,介绍了大语言模型相关的论文研究、学习指南、模型、讲座、参考资料、大语言模型能力以及与其他与提示工程相关的工具。||| 四、学习建议 1. 理解提示词的作用:提示词向模型提供了上下文和指示,其质量直接影响模型输出的质量。 2. 学习提示词的构建技巧: 明确任务目标,用简洁准确的语言描述。 给予足够的背景信息和示例,帮助模型理解语境。 使用清晰的指令,如“解释”、“总结”、“创作”等。 对特殊要求应给予明确指示,如输出格式、字数限制等。 3. 参考优秀案例:研究和学习已有的优秀提示词案例,可在领域社区、Github 等资源中查找。 4. 实践、迭代、优化:多与语言模型互动,根据输出提高提示词质量。尝试各种变体,比较分析输出差异,持续优化提示词构建。 5. 活用提示工程工具:如 Anthropic 的 Constitutional AI。 6. 跟上前沿研究:提示工程是当前前沿研究领域之一,持续关注最新研究成果和方法论。 精心设计的提示词能最大限度发挥语言模型的潜力,多实践、多学习、多总结,终可掌握窍门。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-29
学习SRCNN的路径可以是什么
很抱歉,目前知识库中没有关于学习 SRCNN 路径的相关内容。但一般来说,学习 SRCNN 可以从以下几个方面入手:首先,深入了解卷积神经网络(CNN)的基础知识,包括卷积层、池化层、激活函数等。其次,查阅相关的学术文献和研究报告,以获取关于 SRCNN 的详细原理和实现方法。还可以在网上搜索相关的教程和课程资源,例如在线课程平台、技术博客等。同时,尝试使用相关的深度学习框架,如 TensorFlow、PyTorch 等,进行实践和代码实现。最后,参与相关的技术社区和论坛,与其他研究者和开发者交流经验和心得,以加深对 SRCNN 的理解和应用。
2025-03-29
学习SRCNN可以通过怎样的路径
很抱歉,目前知识库中没有关于学习 SRCNN 路径的相关内容。但一般来说,学习 SRCNN 可以从以下几个方面入手:首先,深入了解卷积神经网络(CNN)的基础知识,包括卷积层、池化层等概念。其次,查阅相关的学术文献和研究报告,以获取关于 SRCNN 模型的详细架构和原理。还可以参考在线的课程和教程,一些知名的在线教育平台可能会有相关的内容。同时,实践是关键,可以通过使用相关的数据集进行模型的训练和优化,来加深对 SRCNN 的理解和掌握。
2025-03-29