Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

神经网络与大脑实际工作的原理区别

Answer

神经网络与大脑实际工作的原理存在以下区别:

  1. 神经网络本质上是运行在多层面上的软件,由人工建立的一层层互相连接的神经元模型组成,模仿大脑处理复杂问题,如视觉和语言等。它可以自行学习与工作,不需要人为提示或参与控制。
  2. 早期由于电脑处理能力不足,神经网络的发展受限。而大脑则具有强大的天然处理能力。
  3. 神经网络的计算风格受神经元及其适应性连接启发,与传统的序列计算不同。
  4. 对于循环网络,其连接图中存在定向循环,动态复杂,更具生物真实性。
  5. ChatGPT 是通过获取大量人类创作的文本样本进行训练,生成类似的文本。其神经网络由简单元素组成,基本操作简单,从积累的“传统智慧统计数据”中提取“连贯的文本线索”,但不像大脑那样具有全面和复杂的功能。

总之,神经网络是对大脑的一种模拟,但与大脑真实的工作方式仍存在诸多差异。

Content generated by AI large model, please carefully verify (powered by aily)

References

Geoffrey Hinton 是这个人,一步步把“深度学习”从边缘课题变成Google等网络巨头仰赖的核心技术

他不知道所有的答案,但在他的努力之下已经取得了进展。“我非常兴奋,我们改进了神经网络,而这是一个比较接近大脑真实工作的方式。”他很高兴的说到。在Hinton的世界里,神经网络本质上就像一个运行在多层面上的软件。他和他的伙伴建立了一层层互相连接的人工神经元模型,模仿大脑的行为,处理视觉和语言等复杂问题。这些人工神经网络可以收集信息,也可以对其做出反应。它们能对事物的外形和声音做出解释。它们对语言的理解也在进步。它们可以自行学习与工作,而不需要人为提示或者参与控制。这些正是它们与传统的学习机器的区别。随着时间的推移,计算机能力的发展,神经网络也更加快速,灵活,高效,得到了很好的扩展。因为这一切已经酝酿了30年了。从非主流到核心技术早在80年代初期,当Hinton和他的同事们刚开始这项研究时,那时的电脑还不够快,不足以处理有关神经网络的这些庞大的数据,他们取得的成就是有限的。而当时AI普遍的研究方向也与他们相反,都在试图寻找捷径,直接模拟出行为,而不是试图通过模仿大脑的运作来实现。在这样艰难的环境下,Hinton和LeCun仍旧坚持了下来。就算到了2004,学术界对他们的研究仍未提起兴趣。而这时距离他们首次提出“反向传播”算法已经过了20年。这个算法是他们神经网络研究的垫脚石。但也就在这一年,靠着少量的来自Canadian Institute for Advanced Research(CIFAR)以及LeCun和Bengio的资金支持,Hinton创立了Neural Computation and Adaptive Perception(NCAP,神经计算和自适应感知)项目。该项目邀请了来自计算机科学,生物,电子工程,神经科学,物理学和心理学等领域的专家参与。

入门 | 机器学习研究者必知的八个神经网络架构

神经网络是机器学习文献中的一类模型。例如,如果你参加了Coursera的机器学习课程,很可能会学到神经网络。神经网络是一套特定的算法,它彻底改变了机器学习领域。他们受到生物神经网络的启发,目前深度神经网络已经被证实效果很好。神经网络本身是一般的函数逼近,这就是为什么它们几乎可以应用于任何从输入到输出空间复杂映射的机器学习问题。以下是说服你学习神经计算的三个理由:了解大脑是如何工作的:它非常大且很复杂,一旦破坏就会脑死亡,所以我们需要使用计算机模拟。了解受神经元及其适应性连接启发的并行计算风格:这种风格与序列计算截然不同。使用受大脑启发的新颖学习算法来解决实际问题:即使不是大脑的实际工作方式,学习算法也非常有用。在完成吴恩达的Coursera机器学习课程后,我开始对神经网络和深度学习产生兴趣,因此寻找最好的网上资源来了解这个主题,并找到了Geoffrey Hinton的机器学习神经网络课程。如果你正在做深度学习的工程或想要踏入深度学习/机器学习的领域,你应该参加这个课程。Geoffrey Hinton毫无疑问是深度学习领域的教父,在课程中给出了非凡的见解。在这篇博客文章中,我想分享我认为任何机器学习研究人员都应该熟悉的八个神经网络架构,以促进他们的工作。一般来说,这些架构可分为三类:1.前馈神经网络这是实际应用中最常见的神经网络类型。第一层是输入,最后一层是输出。如果有多个隐藏层,我们称之为「深度」神经网络。他们计算出一系列改变样本相似性的变换。各层神经元的活动是前一层活动的非线性函数。2.循环网络循环网络在他们的连接图中定向了循环,这意味着你可以按照箭头回到你开始的地方。他们可以有复杂的动态,使其很难训练。他们更具有生物真实性。

ChatGPT 是在做什么,为什么它有效?

ChatGPT的基本概念在某种程度上相当简单。从网络、书籍等来源中获取大量人类创作的文本样本。然后训练神经网络生成“类似”的文本。特别是让它能够从“提示”开始,然后继续生成“类似于训练内容”的文本。正如我们所见,ChatGPT中的实际神经网络由非常简单的元素组成,尽管有数十亿个。神经网络的基本操作也非常简单,基本上是为每个新单词(或单词部分)生成“输入”,然后将其“通过其元素”(没有任何循环等)。但是,这个过程能够产生成功地“类似于”网络、书籍等内容的文本,这是非常卓越和出乎意料的。它不仅是连贯的人类语言,而且“说的话”是“遵循其提示”的,利用其“读到”的内容。它并不总是说出“全局意义上的话”(或对应于正确的计算),因为(例如,没有访问Wolfram|Alpha的“计算超能力”)它只是根据训练材料中的“声音类似”的东西“说出”“听起来正确”的东西。ChatGPT的具体工程使其相当引人入胜。但是,最终(至少在它可以使用外部工具之前),ChatGPT仅仅从它积累的“传统智慧统计数据”中提取了一些“连贯的文本线索”。但是,其结果有多么类似于人类。正如我所讨论的,这表明了一些至少在科学上非常重要的事情:人类语言(以及背后的思维模式)的结构比我们想象的要简单和更具有“法律属性”。ChatGPT已经隐含地发现了它。但是我们可能可以用语义语法、计算语言等明确地揭示它。ChatGPT在生成文本方面的表现非常出色,结果通常非常接近我们人类所产生的。那么这是否意味着ChatGPT像大脑一样工作呢?它的基本人工神经网络结构最终是基于大脑的理想化模型的。当我们人类生成语言时,许多方面的工作似乎是相当相似的,这似乎是非常可能的。

Others are asking
神经网络需要哪些硬件设施才能搭建起来
搭建神经网络通常需要以下硬件设施: 1. 图形处理单元(GPU):如英伟达的 GTX 580 GPU,其具有大量快速小内核,适合矩阵乘法和高内存带宽,能显著提高训练速度。 2. 专用芯片:如 ASIC 芯片、neuromorphic chips 等,更易于在芯片上实现神经网络的指令集,适用于低能耗的智能设备。 此外,搭建神经网络的硬件设施还具有以下特点和优势: 1. 同质化计算:典型的神经网络主要由矩阵乘法和线性整流函数(ReLu)两种操作组合而成,相比传统软件的指令更简单,核心代码(如矩阵乘法)的正确性和性能验证更容易。 2. 对芯片更友好:指令集小,在芯片实现上更轻松,能改变低能耗智能设备的应用场景。 3. 常量级的运行时间:每次前向迭代的计算量高度一致,不存在手写复杂 C++代码中的各种执行分支,能避免未预料的无限循环。 4. 常量级的内存消耗:几乎无需动态分配内存,减少与硬盘的 swap 和内存泄漏的可能。 5. 高度可移植:一连串的矩阵乘法操作更容易在各种计算机环境下运行。
2025-03-23
结合北京房山区文化、地标建筑、生态景观等内容,设计房山区中小学数学节 LOGO,要求巧妙融合数学元素(如几何图形、数学公式、数学符号等)与 AI 元素(如神经网络图案、代码片段、智能机器人形象等),生动诠释 “数学 + AI=?” 的主题内涵。
以下是为您整合的相关内容: 北京具有丰富多样的特色元素,包括经典地标如万里长城、天安门广场、故宫角楼、天坛等,见证了历史变迁;宜居生活方面,有独特的美食如豆汁儿、脆皮烤鸭、老北京炸酱面,以及充满京腔的日常生活;潮流文化新地标如国家博物馆、胡同里的新老交融、环球影城、798 等;未来科技方面,有西二旗的上班族日常、北大化学系科研 vlog、世界机器人大会等。 在海报设计方面,若对 AI 回答有疑问可再搜索确认,对于想用的项目要确认与北京的关系及能否使用;兔爷、戏曲金句等北京有名元素可用,金句可分化。做海报时可借鉴三思老师毛绒玩具美食系列,先找参考、做头脑风暴。比赛征集内容有四个赛道,若做系列海报,围绕金句或偏向北京非遗项目做系列较简单。用 AI 制作海报时,如制作北京地标糖葫芦风格海报,可用集梦 2.1 模型,以天坛等建筑为画面中心,注意材质、抽卡选图和细节处理。 对于设计房山区中小学数学节 LOGO,您可以考虑将房山区的特色文化、地标建筑、生态景观与数学元素(如几何图形、数学公式、数学符号等)和 AI 元素(如神经网络图案、代码片段、智能机器人形象等)相结合。例如,以房山区的著名建筑为主体,融入数学图形进行变形设计,同时添加一些代表 AI 的线条或图案,以生动诠释“数学 + AI=?”的主题内涵。
2025-03-18
卷积神经网络
卷积神经网络,也称卷积网络(术语“神经”具有误导性),使用卷积层来过滤输入以获取有用信息。卷积层具有学习的参数,能自动调整滤波器以提取对应任务的最有用信息,例如在一般目标识别中过滤对象形状信息,在鸟类识别中提取颜色信息。通常多个卷积层用于在每一层之后过滤图像以获得越来越多的抽象信息。 卷积网络通常也使用池层,以获得有限的平移和旋转不变性,还能减少内存消耗,从而允许使用更多的卷积层。 最近的卷积网络使用初始模块,它使用 1×1 卷积核来进一步减少内存消耗,同时加快计算速度。 1998 年,Yann LeCun 和他的合作者开发了 LeNet 的手写数字识别器,后来正式命名为卷积神经网络。它在前馈网中使用反向传播,被用于读取北美地区约 10%的支票。卷积神经网络可用于从手写数字到 3D 物体的与物体识别有关的所有工作。 在 ImageNet 2012 年的 ILSVRC 竞赛中,来自多个机构的先进计算机视觉小组将已有的最好计算机视觉方法应用于包含约 120 万张高分辨率训练图像的数据集。
2025-03-02
SVM与神经网络的区别是啥
SVM(支持向量机)和神经网络在以下方面存在区别: 1. 原理和模型结构: SVM 基于寻找能够最大化分类间隔的超平面来进行分类或回归任务。 神经网络则是通过构建多层神经元组成的网络结构,通过神经元之间的连接权重和激活函数来学习数据的特征和模式。 2. 数据处理能力: SVM 在处理小样本、高维度数据时表现较好。 神经网络通常更适合处理大规模数据。 3. 模型复杂度: SVM 相对较简单,参数较少。 神经网络结构复杂,参数众多。 4. 对特征工程的依赖: SVM 对特征工程的依赖程度较高。 神经网络能够自动从数据中学习特征。 5. 应用场景: 在图像识别、语音识别、机器翻译等领域,神经网络占据主导地位。 SVM 在一些特定的小数据集或特定问题上仍有应用。
2025-02-26
SVM与前馈神经网络的区别是什么
SVM(支持向量机)和前馈神经网络在以下方面存在区别: 数据处理方式:SVM 主要基于特征工程,而前馈神经网络可以自动从大量数据中学习特征。 模型结构:SVM 是一种线性分类器的扩展,具有相对简单的结构;前馈神经网络具有更复杂的多层结构。 应用场景:在图像识别、语音识别、语音合成、机器翻译等领域,早期常使用 SVM 结合特征工程,而现在神经网络逐渐占据主导地位。例如,图像识别中,早期由特征工程和少量机器学习(如 SVM)组成,后来通过使用更大数据集和在卷积神经网络结构空间中搜索,发现了更强大的视觉特征;语音识别中,以前涉及大量预处理和传统模型,现在几乎只需要神经网络;语音合成中,历史上采用各种拼接技术,现在 SOTA 类型的大型卷积网络可直接产生原始音频信号输出;机器翻译中,之前常采用基于短语的统计方法,而神经网络正迅速占领统治地位。
2025-02-26
前馈神经网络、循环网络、对称连接网络区别是什么,当前大语言模型属于前面说的哪种网络架构,为什么这种网络架构流行
前馈神经网络、循环网络和对称连接网络的区别如下: 1. 前馈神经网络:这是实际应用中最常见的神经网络类型。第一层是输入,最后一层是输出。若有多个隐藏层,则称为“深度”神经网络。各层神经元的活动是前一层活动的非线性函数,通过一系列变换改变样本相似性。 2. 循环网络:在连接图中存在定向循环,意味着可以按箭头回到起始点。它们具有复杂的动态,训练难度较大,但更具生物真实性。目前如何高效地训练循环网络正受到广泛关注,它是模拟连续数据的自然方式,相当于每个时间片段具有一个隐藏层的深度网络,且在每个时间片段使用相同权重和输入,能长时间记住隐藏状态信息,但难以训练其发挥潜能。 3. 对称连接网络:有点像循环网络,但单元之间的连接是对称的(在两个方向上权重相同)。比起循环网络,对称连接网络更易分析。没有隐藏单元的对称连接网络被称为“Hopfield 网络”,有隐藏单元的则称为玻尔兹曼机。 当前的大语言模型通常基于 Transformer 架构,它属于前馈神经网络的一种变体。这种架构流行的原因包括:能够处理长序列数据、并行计算效率高、具有强大的特征提取和表示能力等。
2025-02-25
人工智能构建第二大脑
以下是关于人工智能构建第二大脑的相关内容: 信息到智慧的进化是一个动态、渐进的过程,不仅需要外部信息输入,还需内部认知加工。随着人工智能技术发展,这一进程极大加速和优化。AI 能帮助更快收集处理信息、构建知识体系,甚至模拟人类决策过程。 信息、知识、智慧是人类认知和决策的三个层次,相互联系作用。在 AI 时代,有更多工具和方法加速从信息到智慧的进化,构建高效知识管理体系。 从信息到知识:Forte 强调“外部大脑”概念,利用数字工具和系统存储思考、想法和信息,释放认知负担,专注创意和高阶思考。可使用数字笔记工具记录,通过分类、标签或链接关联零散信息形成知识网络,对信息深加工提炼知识。 从知识到智慧:智慧形成不仅需知识积累,更要深刻理解和应用。Forte 提倡复盘和整合,复盘指定期回顾笔记和想法加深理解发现新联系,整合指将新理解和旧知识融合形成更全面深入见解。通过不断复盘和整合,将知识内化为理解和智慧,可能涉及跨领域知识融合、问题解决策略创新或对复杂系统深刻洞察。 AI 时代的信息到智慧进化:这一进化过程加速,AI 和机器学习技术可处理分析大量信息,识别模式联系,通过智能推荐等功能提高从信息到知识转化效率,辅助决策分析等应用模拟扩展人类智慧。结合《打造第二大脑》理论和 AI 技术发展,人类知识管理和智慧发展处于全新充满可能的时代,个人和组织通过高效信息管理可提升生产力创造力,形成独到智慧见解。在信息泛滥时代,引入 DIKW 模型和 CODE 信息管理法则可提供更深刻理解和实践指导。 此外,构建外脑的核心是思维方式与执行方法,虽核心不是工具,但好工具能提升效率。在智能时代,处理语言与数据效率指数级提升,影响软件工具使用、设计及对知识管理与传播的认知方式。
2025-01-11
是AI聪明还是人的大脑聪明
AI 和人的大脑谁更聪明是一个复杂的问题,不能简单地一概而论。 从某些方面来看,AI 具有强大的计算能力和处理大量数据的能力,能够快速准确地完成特定任务。例如,在处理复杂的数学计算、大规模数据的分析和模式识别等方面表现出色。 然而,人的大脑具有独特的智慧和能力。大脑是一个混沌系统,具有创造性、适应性、情感理解、综合判断和复杂情境处理等能力。人类能够进行抽象思维、创新创造、理解情感和道德等方面的思考。 AI 是通过学习人类大脑结构来发展的,但目前仍存在诸多不足和缺陷。例如,大模型内部也是混沌系统,即使是科学家也无法解释其微观细节。 在绘画方面,人类的绘画创作通常是线性发展的过程,先学习线稿表达、色彩搭配、光影表现等,而 AI 是以积累数据、扩散噪声、再降噪收束的路径来生图,经常会在同一张图中呈现出不同绘画级别的细节。 总之,AI 和人的大脑各有优势和局限性,不能简单地判定谁更聪明。
2024-11-22
帮我找这篇文章《AI Agent系列:系统性学习大脑模块》
以下是关于《AI Agent 系列:系统性学习大脑模块》的相关内容: 大脑模块(Brain)是 AI Agent 智能行为的核心,是一个高度集成的系统,负责处理信息、做出决策和规划行动。通常基于大型语言模型(如 Llama 或 GPT),在海量文本数据上训练,赋予强大的自然语言理解和生成能力。 其不仅包含丰富的语言知识(词法、句法、语义学和语用学),还融入广泛的常识知识,能做出符合现实世界的合理决策。此外,还集成特定领域专业知识,能在专业领域执行复杂任务。 具备记忆能力,可存储和检索过去的观察、思考和行动序列,对处理连续任务和解决复杂问题至关重要。还具备推理能力,能基于证据和逻辑决策,并通过规划能力将复杂任务分解为可管理的子任务,制定相应行动计划。 计划反思机制使 Agent 能评估和完善策略,适应变化环境,支持任务泛化,根据指令完成新任务。上下文学习能力让其从给定示例快速学习适应新任务,持续学习机制避免灾难性遗忘,保持知识更新累积。 接收感知模块处理信息后,会访问存储系统,检索知识并提取信息,帮助制定计划、推理和做明智决策。还能记录 Agent 过去的观察、思考和行动,以不同形式存储,不断更新常识和专业知识库。基于大型语言模型的 AI Agent 具备出色概括和迁移能力,适应新奇或陌生场景。以下是大脑模块中对不同能力的关注点。
2024-08-23
我是一个没有技术背景且对AI感兴趣的互联网产品经理,目标是希望理解AI的实现原理并且能够跟开发算法工程师沟通交流,请给我举出AI模型或者机器学习的分类吧。
以下是 AI 模型和机器学习的分类: 1. AI(人工智能):是一个广泛的概念,旨在使计算机系统能够模拟人类智能。 2. 机器学习:是人工智能的一个子领域,让计算机通过数据学习来提高性能。包括以下几种类型: 监督学习:使用有标签的训练数据,算法学习输入和输出之间的映射关系,包括分类和回归任务。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习:是机器学习的一个子领域,模拟人脑创建人工神经网络处理数据,包含多个处理层,在图像识别、语音识别和自然语言处理等任务中表现出色。 4. 大语言模型:是深度学习在自然语言处理领域的应用,目标是理解和生成人类语言,如 ChatGPT、文心一言等。同时具有生成式 AI 的特点,能够生成文本、图像、音频和视频等内容。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。生成式 AI 生成的内容称为 AIGC。
2025-03-26
生成式人工智能原理是什么
生成式人工智能的原理主要包括以下几个方面: 1. 基于深度学习技术和机器学习算法:通过大规模的数据集训练深度神经网络模型,学习各种数据的规律和特征,从而实现对输入数据的分析、理解和生成。 2. 监督学习:例如在生成文本时使用大语言模型,通过监督学习不断预测下一个词语,经过大量的数据训练,从而生成新的文本内容。这通常需要千亿甚至万亿级别的单词数据库。 3. 从大量现有内容中学习:包括文本、音频和视频等多模式的内容,这个学习过程称为训练,其结果是创造“基础模型”,如为聊天机器人提供支持的大型语言模型(LLM)。基础模型可用于生成内容并解决一般问题,也可以使用特定领域的新数据集进一步训练以解决特定问题。
2025-03-26
LLM的原理
LLM(大语言模型)的工作原理如下: 以“我今天吃了狮子头和蔬菜”这句话为例,在 Transformer 中,会由 Attention 层对其加入更多信息补充,如“狮子头是一道菜”“今天是星期六”等,这些补充信息作为输入给到下一个 Attention 层,层与层之间,哪些信息补充、保留、传递,由模型自主学习,最终模型把海量数据以关系网形式“消化”并保留重要相关性。 形象地说,就像人阅读文章时的连贯性注意力过程,在阅读理解时,脑子里会消化吸收记忆,记忆的不是点状知识,而是网状经验。 大模型以词向量和 Transformer 模型学习海量知识,把知识作为向量空间中的关系网存储,接受输入时通过向量空间中的匹配进行输出。 观察大模型回复,是一个字一个字流式输出的,因为大模型确实在一个字一个字地推理生成内容。比如输入法输入联想,根据输入的单个字推测下一个字,加入上下文能帮助模型理解下一个字。但存在两个问题:一是全量数据计算算力吃不消,二是仅算字的概率易被不相干信息干扰,此时词向量机制和 Transformer 模型中的 Attention 自注意力机制解决了难题。 另外,RAG 对大语言模型的作用就像开卷考试对学生,事实性知识与 LLM 的推理能力相分离,被存储在容易访问和及时更新的外部知识源中,分为参数化知识(模型训练中学习得到,隐式储存在神经网络权重中)和非参数化知识(存储在外部知识源,如向量数据库中)。
2025-03-25
我想学习ai视频ai生图的相关技能,并且我不想速成,我想了解其中的底层原理以便可以更好的控制生成的内容,我应该如何学习
以下是关于学习 AI 视频和生图相关技能的一些建议: 一、基础概念 1. 模型 Checkpoint:生图必需的基础模型,任何生图操作必须选定一个才能开始。 Lora:低阶自适应模型,可视为 Checkpoint 的小插件,用于精细控制面部、材质、物品等细节。 VAE:编码器,功能类似于滤镜,可调整生图的饱和度,一般选择 840000 这个。 2. 提示词 Prompt 提示词:想要 AI 生成的内容,需要花费功夫学习,可从照抄别人开始。 负向提示词 Negative Prompt:想要 AI 避免产生的内容,同样需要学习,可从照抄开始。 3. 其他概念 ControlNet:控制图片中特定图像,如人物姿态、特定文字、艺术化二维码等,属于高阶技能,可后续学习。 ADetailer:面部修复插件,用于治愈脸部崩坏,是高阶技能。 二、参数设置 1. 迭代步数:AI 调整图片内容的次数。步数越多,调整越精密,出图效果理论上更好,但耗时越长,且并非越多越好。 2. 尺寸:图片生成的尺寸大小,需适中选择,太小生成内容有限,太大 AI 可能放飞自我。 3. 生成批次和每批数量:决定重复生成图的批次和每批次同时生成的图片数量。 4. 提示词引导系数:指图像与 prompt 的匹配程度,数字增大图像更接近提示,但过高会使图像质量下降。 5. 随机数种子:固定后可对图片进行“控制变量”操作,首次生成图时无需关注。 6. 重绘幅度:图生图时用到,幅度越大,输出图与输入图差别越大。 在学习过程中,您可以先从熟悉基础模型、提示词和常见参数设置入手,通过实践和参考他人的经验不断积累知识,逐步掌握更高级的技能和工具。
2025-03-24
AI发展技术原理脑图
以下是关于 AI 发展技术原理的相关内容: 腾讯研究院发布的“AI50 年度关键词”报告,基于全年三十余万字的 AI 进展数据库,精选 50 个年度关键词,覆盖大模型技术的八大领域,通过“快思考”与“慢思考”两种维度进行分析,形成 50 张 AI 技术图景卡片。其中“快思考”维度采用人机协同方式呈现印象卡片,“慢思考”维度深入分析技术发展底层逻辑。 DiT 架构是结合扩散模型和 Transformer 的架构,用于高质量图像生成的深度学习模型,其带来了图像生成质的飞跃,且 Transformer 从文本扩展至其他领域,Scaling Law 在图像领域开始生效。 从 AI 发展历程来看,自 1950 年提出至今短短几十年,在国内近 20 年随着互联网发展才开始普及。最初应用主要是基于 NLP 技术的聊天和客服机器人,随后中英文翻译、语音识别、人脸识别等技术取得突破并广泛应用。但以前模型应用范围相对狭窄,而 OpenAI ChatGPT 等大型语言模型的突破展示了新的发展路线,通过大规模模型预训练可涌现出广泛智能应用。 小白理解 AI 技术原理与建立框架的相关内容包括:思维链可显著提升大语言模型在复杂推理的能力;RAG 是检索增强生成,可搭建企业和个人知识库;PAL 是程序辅助语言模型;ReAct 是 reason 与 action 结合的框架,可让模型动态推理并与外界环境互动。 希望以上内容对您有所帮助。
2025-03-24
AI发展背后是哪些技术进步推动的,原理是什么?
AI 发展背后主要由以下技术进步推动: 1. 核心架构:Transformer 和 Diffusion 这两种架构分别在数据转换和数据向图像转换方面发挥了关键作用,构成了当前 AI 技术的基石。 2. 算力提升:自 2010 年以来,GPU 等计算资源的快速发展使算力得到空前爆发,为 AI 技术进步提供强大支持。 3. 人才网络:AI 领域的关键人才大多源自 Google 及其相关实验室和收购的公司,形成强大人才网络,推动了技术发展,并培养了一批领军人物,人才在不同公司间的流动和合作促进了 AI 技术的快速进步。 其原理在于:这些技术的协同作用使得 AI 能够更高效地处理和分析大量数据,实现更复杂的任务和功能。例如,强大的算力能够支持大规模的数据训练和模型优化,优秀的架构能够提高数据处理和模型表达能力,而人才的创新和合作则不断推动技术的突破和应用拓展。
2025-03-24
AI 衡量一个AI任务的指标是不是有准确率 和召回率 分别啥区别
在 AI 任务中,常见的衡量指标包括准确率和召回率。准确率(Accuracy)衡量的是模型预测正确的比例。而召回率主要用于信息检索等任务,衡量的是模型能够正确检索出相关内容的比例。 在摘要任务中,一般用 ROUGE 指标,其中 ROUGE2 是把两个 sequence 按 2gram 的方式做切分做频次统计,然后计算 pred 和 gt 之间的召回率。 对于不同的 AI 任务,还有其他多种指标,如在 NLP 中: 信息检索任务常用 NDCG@K 指标,核心衡量最相关文档是否排序足够靠前。 文本生成任务可用 BitsperByte 指标。 针对二分类任务,一般用 ECE 指标(Expected Calibration Error)来度量模型输出概率 p 时,最终正确率真的为 p 的一致性。 此外,还有一些其他方面的评估指标,如不确定性(Calibration and Uncertainty)、鲁棒性(Robustness,包括 invariance 和 equivariance)、公平性(Fairness)、偏见程度(Bias and stereotypes)、有毒性(Toxicity)等。 传统的 RAG 解决方案在检索效率和准确性上存在问题,Anthropic 通过“上下文嵌入”解决了部分问题,但 RAG 的评估仍待解决,研究人员正在探索新的方法,如 Ragnarök。 在提示词设计方面,Claude 官方手册提出“链式提示”的方法理念,将复杂任务拆解为多个步骤,具有准确率高、清晰性好、可追溯性强等好处。ChatGPT 官方手册也有类似理念,同时还有相关论文如在 ICLR 2023 上发表的提出 LeasttoMost Prompting 提示词策略的论文,在文本理解和生成场景中表现优秀。
2025-04-09
工作流 和 智能体的区别?
工作流和智能体的区别主要体现在以下几个方面: 定义: 工作流是通过预定义代码路径来编排 LLM 和工具的系统。 智能体则是由 LLM 动态指导自身流程和工具使用的系统,能够自主控制任务完成方式。 功能: 智能体是一个自动化的“助手”,用来执行特定任务,擅长做一些具体的、重复性的任务,比如客服聊天、推荐商品、处理订单等,但只能按照预先设定的规则和任务来做事,如果遇到超出范围的情况,就不知道怎么办了。 工作流是一系列任务的流程,决定了每个步骤应该做什么,可以处理一个完整的过程,比如从客户下单、付款到发货和售后服务,涵盖了所有步骤和环节,更灵活,能够适应变化,可以调整步骤和规则来应对不同的情况,不需要一开始就固定下来。 范围: 智能体是特定任务的“助手”,用于局部执行任务。 工作流是一个“计划”或“路线图”,指导整个任务的流程。简单说,工作流是全局的,智能体是局部的。 在业务中,通常需要的是工作流而非单个智能体,因为整个业务流程设计至关重要。例如,在烹饪中,关键不在于使用多贵的锅,而是按步骤完成每道工序。因此,工作流才是解决问题的关键,它帮助优化思路、提升效率。设计好工作流才能大幅提升整体业务效率。
2025-04-08
在ai context中,token和word的区别是?
在 AI 领域中,Token 和 Word 有以下区别: 定义和范围:Token 通常是大语言模型处理文本数据时的一个单元,在不同语境下,可能代表一个字、一个词、一个句子、标点、词根、前缀等,更加灵活。而 Word 一般指能够表达一定意义的独立单位,如单词。 语言处理:在英文中,一个 Word 通常是一个词或标点符号。在一些汉语处理系统中,一个 Word 可能是一个字或一个词。而 Token 在不同的语言模型和处理系统中,对应的范围和形式有所不同。 作用和意义:Token 不仅是文本数据的单位,还可能携带丰富的语义、句法等信息,在模型中有着对应的向量表示。Word 主要用于传达相对明确和完整的意义。 计算和收费:大模型的收费计算方法以及对输入输出长度的限制,通常是以 Token 为单位计量的。 例如,在处理“ I’m happy ”这句话时,“I”、“’m”、“happy”可能被视为 Token,而“I’m happy”整体可看作一个 Word 。
2025-04-08
AI chatbot、agent、copilot区别
AI chatbot、agent、copilot 主要有以下区别: 1. 定义和角色: Copilot:翻译成副驾驶、助手,在帮助用户解决问题时起辅助作用。 Agent:更像主驾驶、智能体,可根据任务目标自主思考和行动,具有更强的独立性和执行复杂任务的能力。 Chatbot:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 核心功能: Copilot:更多地依赖于人类的指导和提示来完成任务,功能很大程度上局限于在给定框架内工作。 Agent:具有更高的自主性和决策能力,能够根据目标自主规划整个处理流程,并根据外部反馈进行自我迭代和调整。 3. 流程决策: Copilot:处理流程往往依赖于人类确定的静态流程,参与更多是在局部环节。 Agent:解决问题的流程由 AI 自主确定,是动态的,不仅可以自行规划任务步骤,还能根据执行过程中的反馈动态调整流程。 4. 应用范围: Copilot:主要用于处理简单、特定的任务,更多是作为工具或助手存在,需要人类引导和监督。 Agent:能够处理复杂、大型的任务,并在 LLM 薄弱的阶段使用工具或 API 等进行增强。 5. 开发重点: Copilot:主要依赖于 LLM 的性能,开发重点在于 Prompt Engineering。 Agent:同样依赖于 LLM 的性能,但开发重点在于 Flow Engineering,即在假定 LLM 足够强大的基础上,把外围的流程和框架系统化。 以下是一些 Agent 构建平台: 1. Coze:新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具。 2. Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及部署 Copilot 到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据需求打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景方面表现出色。 以上信息由 AI 大模型生成,请仔细甄别。
2025-04-07
人工智能搜索与百度搜索的区别
人工智能搜索与百度搜索存在以下区别: 1. 底层技术:人工智能搜索的底层技术常包括“RAG”,即“检索增强生成”,包括检索、增强和生成三个步骤。而百度搜索的技术构成相对复杂,不断融合新的技术和功能。 2. 发展路径:在中国市场,相较欧美,百度作为搜索巨头已将文心一言大模型融入搜索,提供对话式回答和创作功能。同时,市场上还涌现出如秘塔 AI 搜索等创新型产品,主打“无广告,直接答案”,提供结构化结果和引用来源等特色功能。 3. 产品更新与竞争态势:Google 仍在战斗前线密集释放技能,与其他公司竞争激烈。而百度在新模型发布方面相对较少。此外,Google 推出新功能曾引发大量用户不满,而百度的相关新功能在页面布局和使用体验上更靠近某些特定产品,并聚合了多种创作能力和智能体快捷调用窗口。百度文库也上线了“AI 全网搜”功能,打通了特定工作流,产品功能较为完整,但受限于模型能力,生成内容尚有提升空间。
2025-04-01
用ai建立知识库和直接使用ai有什么区别、
用 AI 建立知识库和直接使用 AI 主要有以下区别: 直接使用 AI 时,AI 生成的内容可能较为笼统模糊,就像遇到只会说“很急,今天就要”却不提供具体指导的领导。若想让 AI 成为得力助手,需对复杂任务进行拆解,提供方法论和定义输出格式。 建立知识库就如同为 AI 准备了“教科书”。知识库灵活,但偶尔会出现查不到内容而“猜题”的情况。例如,将《梦想与颠覆》卡牌等相关内容导入作为 AI 可调用的知识库,后续在创作中激活知识库,AI 会根据场景自动匹配库内素材,使输出更具针对性。 相比之下,微调类似于让 AI“自己真的学会了整本书”,答题更快更准,但训练成本高。微调适合高精度、长期任务,而知识库更适合临时查找、快速问答。
2025-03-30