神经网络从架构上主要有以下几种类型:
当前流行的大语言模型,如 GPT-3、ChatGPT 等,多采用 Decoder-only 架构的神经网络。这种架构更为流行的原因在于:它更擅长自然语言生成任务,能够根据用户输入生成相应的内容。同时,Transformer 架构具有延长的注意力广度,能够更好地处理长序列数据,提高模型的性能和表现。
生成式AI模型有很多种,推理和训练成本取决于模型的大小和类型。幸运的是,当今最流行的模型大多是基于Transformer(变换器)的架构,其中包括流行的大型语言模型(LLM),例如GPT-3、GPT-J或BERT。虽然Transformer的推理和学习的精确操作数是模型特定的(请参阅[本文](https://arxiv.org/abs/1706.03762)),但有一个相当准确的经验法则,即取决于模型的参数数量(即神经网络的权重)和输入和输出令牌的数量。令牌本质上是几个字符的短序列。它们对应于单词或单词的一部分(子词或字符)。了解令牌的最好方法是尝试使用公开可用的在线令牌器(例如,OpenAI)进行令牌化。对于GPT-3,令牌的平均长度是4个字符。Transformer的经验法则是,对于具有p个参数且长度为n个令牌的输入和输出序列的模型,前向传递(即推理)大约需要2np浮点运算(FLOP¹)。训练同样的模型,每个令牌大约需要6p*FLOPs(即,额外的反向传递需要四次更多的操作²)。您可以将其乘以训练数据中的令牌数量来估算总训练成本。
文本生成(text generation)涉及使用机器学习(machine learning)模型,根据从现有文本数据中学习的模式生成新的文本。用于文本生成的模型可以是马尔科夫链(Markov Chains)、循环神经网络(RNN)、长短时记忆网络(LSTMs),2AIGC法律风险研究报告以及凭借其延长的注意力广度(attention span)而彻底改变了AI领域的Transformer等。文本生成在自然语言处理、聊天机器人和内容创建领域(自动写作、文本摘要)有许多应用。[heading1]一些具有代表性的海外项目:[content]➢GPT-4(OpenAI):目前最先进的自然语言生成模型,可用于回答问题、撰写文章等。➢Gemini Ultra(Google):多模态人工智能模型,采用神经网络架构,对标GPT-4,可用于回答问题、生成代码、处理文本等。➢Claude 3 Opus(Anthropic):多模态模型,能处理超过1百万token的输入,具有实时聊天、数据处理、分析预测等功能;实现了接近完美的召回率。[heading1]一些具有代表性的国内项目:[content]➢“悟道・天鹰”(北京智源人工智能研究院):“悟道・天鹰”(Aquila)是首个具备中英文双语知识、支持商用许可协议、国内数据合规需求的开源语言大模型。➢文心一言(百度):大语言模型,可用以文学创作、商业文案创作、数理逻辑推算、中文理解、多模态生成。
encoder-only:这些模型通常适用于可以自然语言理解任务,例如分类和情感分析.最知名的代表模型是BERTencoder-decoder:此类模型同时结合了Transformer架构的encoder和decoder来理解和生成内容。该架构的一些用例包括翻译和摘要。encoder-decoder的代表是google的T5decoder-only:此类模型更擅长自然语言生成任务。典型使用包括故事写作和博客生成。这也是我们现在所熟知的众多AI助手的结构我们目前耳熟能详的AI助手基本都来自左侧的灰色分支,当然也包括ChatGPT。这些架构都是根据谷歌2017年发布的论文“attention is all you need”中提出的transformer衍生而来的,在transformer中,包括Encoder,Decoder两个结构目前的大型语言模型就是右侧只使用Decoder的Decoder-only架构的模型大模型又大在哪呢?第一,大模型的预训练数据非常大,这些数据往往来自于互联网上,包括论文,代码,以及可进行爬取的公开网页等等,一般来说,现在最先进的大模型一般都是用TB级别的数据进行预训练。第二,参数非常多,Open在2020年发布的GPT-3就已经达到170B的参数在GPT3中,模型可以根据用户输入的任务描述,或给出详细的例子,完成任务但这与我们熟知的ChatGPT仍然有着很大的差距,使用ChatGPT只需要像和人类一样对话,就可以完成任务。除了形式上的不同之外,还有一个更加重要的差距,那就是安全性上的差别。