Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

神经网络从架构上有哪几种类型,当前流行的大语言模型用哪种类型神经网络,为什么这种神经网络架构更为流行

Answer

神经网络从架构上主要有以下几种类型:

  1. 马尔科夫链:用于文本生成。
  2. 循环神经网络(RNN):可应用于文本生成。
  3. 长短时记忆网络(LSTMs):在文本生成等领域发挥作用。
  4. Transformer:当今最流行的模型大多基于此架构,包括流行的大型语言模型,如 GPT-3、GPT-J 或 BERT 等。
  5. Encoder-only:适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT。
  6. Encoder-decoder:同时结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,用例包括翻译和摘要,代表是 Google 的 T5。
  7. Decoder-only:更擅长自然语言生成任务,众多 AI 助手采用此结构。

当前流行的大语言模型,如 GPT-3、ChatGPT 等,多采用 Decoder-only 架构的神经网络。这种架构更为流行的原因在于:它更擅长自然语言生成任务,能够根据用户输入生成相应的内容。同时,Transformer 架构具有延长的注意力广度,能够更好地处理长序列数据,提高模型的性能和表现。

Content generated by AI large model, please carefully verify (powered by aily)

References

惊人算力成本背后,AI混战下如何选择基础设施?

生成式AI模型有很多种,推理和训练成本取决于模型的大小和类型。幸运的是,当今最流行的模型大多是基于Transformer(变换器)的架构,其中包括流行的大型语言模型(LLM),例如GPT-3、GPT-J或BERT。虽然Transformer的推理和学习的精确操作数是模型特定的(请参阅[本文](https://arxiv.org/abs/1706.03762)),但有一个相当准确的经验法则,即取决于模型的参数数量(即神经网络的权重)和输入和输出令牌的数量。令牌本质上是几个字符的短序列。它们对应于单词或单词的一部分(子词或字符)。了解令牌的最好方法是尝试使用公开可用的在线令牌器(例如,OpenAI)进行令牌化。对于GPT-3,令牌的平均长度是4个字符。Transformer的经验法则是,对于具有p个参数且长度为n个令牌的输入和输出序列的模型,前向传递(即推理)大约需要2np浮点运算(FLOP¹)。训练同样的模型,每个令牌大约需要6p*FLOPs(即,额外的反向传递需要四次更多的操作²)。您可以将其乘以训练数据中的令牌数量来估算总训练成本。

2024AIGC法律风险研究报告(更新版).pdf

文本生成(text generation)涉及使用机器学习(machine learning)模型,根据从现有文本数据中学习的模式生成新的文本。用于文本生成的模型可以是马尔科夫链(Markov Chains)、循环神经网络(RNN)、长短时记忆网络(LSTMs),2AIGC法律风险研究报告以及凭借其延长的注意力广度(attention span)而彻底改变了AI领域的Transformer等。文本生成在自然语言处理、聊天机器人和内容创建领域(自动写作、文本摘要)有许多应用。[heading1]一些具有代表性的海外项目:[content]➢GPT-4(OpenAI):目前最先进的自然语言生成模型,可用于回答问题、撰写文章等。➢Gemini Ultra(Google):多模态人工智能模型,采用神经网络架构,对标GPT-4,可用于回答问题、生成代码、处理文本等。➢Claude 3 Opus(Anthropic):多模态模型,能处理超过1百万token的输入,具有实时聊天、数据处理、分析预测等功能;实现了接近完美的召回率。[heading1]一些具有代表性的国内项目:[content]➢“悟道・天鹰”(北京智源人工智能研究院):“悟道・天鹰”(Aquila)是首个具备中英文双语知识、支持商用许可协议、国内数据合规需求的开源语言大模型。➢文心一言(百度):大语言模型,可用以文学创作、商业文案创作、数理逻辑推算、中文理解、多模态生成。

从 0 到 1 了解大模型安全,看这篇就够了

encoder-only:这些模型通常适用于可以自然语言理解任务,例如分类和情感分析.最知名的代表模型是BERTencoder-decoder:此类模型同时结合了Transformer架构的encoder和decoder来理解和生成内容。该架构的一些用例包括翻译和摘要。encoder-decoder的代表是google的T5decoder-only:此类模型更擅长自然语言生成任务。典型使用包括故事写作和博客生成。这也是我们现在所熟知的众多AI助手的结构我们目前耳熟能详的AI助手基本都来自左侧的灰色分支,当然也包括ChatGPT。这些架构都是根据谷歌2017年发布的论文“attention is all you need”中提出的transformer衍生而来的,在transformer中,包括Encoder,Decoder两个结构目前的大型语言模型就是右侧只使用Decoder的Decoder-only架构的模型大模型又大在哪呢?第一,大模型的预训练数据非常大,这些数据往往来自于互联网上,包括论文,代码,以及可进行爬取的公开网页等等,一般来说,现在最先进的大模型一般都是用TB级别的数据进行预训练。第二,参数非常多,Open在2020年发布的GPT-3就已经达到170B的参数在GPT3中,模型可以根据用户输入的任务描述,或给出详细的例子,完成任务但这与我们熟知的ChatGPT仍然有着很大的差距,使用ChatGPT只需要像和人类一样对话,就可以完成任务。除了形式上的不同之外,还有一个更加重要的差距,那就是安全性上的差别。

Others are asking
SVM与神经网络的区别是啥
SVM(支持向量机)和神经网络在以下方面存在区别: 1. 原理和模型结构: SVM 基于寻找能够最大化分类间隔的超平面来进行分类或回归任务。 神经网络则是通过构建多层神经元组成的网络结构,通过神经元之间的连接权重和激活函数来学习数据的特征和模式。 2. 数据处理能力: SVM 在处理小样本、高维度数据时表现较好。 神经网络通常更适合处理大规模数据。 3. 模型复杂度: SVM 相对较简单,参数较少。 神经网络结构复杂,参数众多。 4. 对特征工程的依赖: SVM 对特征工程的依赖程度较高。 神经网络能够自动从数据中学习特征。 5. 应用场景: 在图像识别、语音识别、机器翻译等领域,神经网络占据主导地位。 SVM 在一些特定的小数据集或特定问题上仍有应用。
2025-02-26
SVM与前馈神经网络的区别是什么
SVM(支持向量机)和前馈神经网络在以下方面存在区别: 数据处理方式:SVM 主要基于特征工程,而前馈神经网络可以自动从大量数据中学习特征。 模型结构:SVM 是一种线性分类器的扩展,具有相对简单的结构;前馈神经网络具有更复杂的多层结构。 应用场景:在图像识别、语音识别、语音合成、机器翻译等领域,早期常使用 SVM 结合特征工程,而现在神经网络逐渐占据主导地位。例如,图像识别中,早期由特征工程和少量机器学习(如 SVM)组成,后来通过使用更大数据集和在卷积神经网络结构空间中搜索,发现了更强大的视觉特征;语音识别中,以前涉及大量预处理和传统模型,现在几乎只需要神经网络;语音合成中,历史上采用各种拼接技术,现在 SOTA 类型的大型卷积网络可直接产生原始音频信号输出;机器翻译中,之前常采用基于短语的统计方法,而神经网络正迅速占领统治地位。
2025-02-26
前馈神经网络、循环网络、对称连接网络区别是什么,当前大语言模型属于前面说的哪种网络架构,为什么这种网络架构流行
前馈神经网络、循环网络和对称连接网络的区别如下: 1. 前馈神经网络:这是实际应用中最常见的神经网络类型。第一层是输入,最后一层是输出。若有多个隐藏层,则称为“深度”神经网络。各层神经元的活动是前一层活动的非线性函数,通过一系列变换改变样本相似性。 2. 循环网络:在连接图中存在定向循环,意味着可以按箭头回到起始点。它们具有复杂的动态,训练难度较大,但更具生物真实性。目前如何高效地训练循环网络正受到广泛关注,它是模拟连续数据的自然方式,相当于每个时间片段具有一个隐藏层的深度网络,且在每个时间片段使用相同权重和输入,能长时间记住隐藏状态信息,但难以训练其发挥潜能。 3. 对称连接网络:有点像循环网络,但单元之间的连接是对称的(在两个方向上权重相同)。比起循环网络,对称连接网络更易分析。没有隐藏单元的对称连接网络被称为“Hopfield 网络”,有隐藏单元的则称为玻尔兹曼机。 当前的大语言模型通常基于 Transformer 架构,它属于前馈神经网络的一种变体。这种架构流行的原因包括:能够处理长序列数据、并行计算效率高、具有强大的特征提取和表示能力等。
2025-02-25
神经网络与大脑实际工作的原理区别
神经网络与大脑实际工作的原理存在以下区别: 1. 神经网络本质上是运行在多层面上的软件,由人工建立的一层层互相连接的神经元模型组成,模仿大脑处理复杂问题,如视觉和语言等。它可以自行学习与工作,不需要人为提示或参与控制。 2. 早期由于电脑处理能力不足,神经网络的发展受限。而大脑则具有强大的天然处理能力。 3. 神经网络的计算风格受神经元及其适应性连接启发,与传统的序列计算不同。 4. 对于循环网络,其连接图中存在定向循环,动态复杂,更具生物真实性。 5. ChatGPT 是通过获取大量人类创作的文本样本进行训练,生成类似的文本。其神经网络由简单元素组成,基本操作简单,从积累的“传统智慧统计数据”中提取“连贯的文本线索”,但不像大脑那样具有全面和复杂的功能。 总之,神经网络是对大脑的一种模拟,但与大脑真实的工作方式仍存在诸多差异。
2025-02-25
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
我是一个有23年软件系统开发和设计经验的架构师,但是对AI还没有系统化了解过,请问我该如何开始?如何在短时间内掌握AI的使用、原理以及二次开发?
以下是为您提供的在短时间内系统化学习 AI 的建议: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。我建议您一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 如果希望继续精进,对于 AI,可以尝试了解以下内容作为基础: 1. AI 背景知识 (1)基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 (2)历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础 (1)统计学基础:熟悉均值、中位数、方差等统计概念。 (2)线性代数:了解向量、矩阵等线性代数基本概念。 (3)概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型 (1)监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 (2)无监督学习:熟悉聚类、降维等算法。 (3)强化学习:简介强化学习的基本概念。 4. 评估和调优 (1)性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 (2)模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础 (1)网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 (2)激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 此外,以证件照为例,Code AI 应用开发教学中,智能体开发从最初的 chatbot 只有对话框,到有了更多交互方式,因用户需求扣子推出了 AI 应用,其低代码或零代码的工作流等场景做得较好。但 AI CODING 虽强,目前适用于小场景和产品的第一个版本,复杂应用可能导致需求理解错误从而使产品出错。在创建 AI 应用时,要学习操作界面、业务逻辑和用户界面,包括布局、搭建工作流、用户界面及调试发布,重点熟悉桌面网页版的用户界面。
2025-02-17
你的知识库架构是怎样的,普通人如何迅速找到目标靶向,比如我想学ai绘画
以下是关于您想学习 AI 绘画的相关内容: 1. 知识库提到明天银海老师将详细讲解 AI agent,同时表示知识库内容丰富,您可挑选感兴趣的部分学习,比如较轻松的 AI 绘画等。 2. 强调 AI 绘画是视觉基础,还介绍了针对 AI 绘画学社做的关键词词库精选活动。 3. 讲述了 AI 绘画中的 stable diffusion 扩散模型的运作方式,是通过加噪和去噪,随机生成种子来形成最终图像,还提到生成式 AI 做高清放大可增加细节的原理。 您可以根据以上信息,逐步深入了解 AI 绘画的相关知识。
2025-02-15
大型语言模型(LLM)基于Transformer架构的模型的优缺点是什么,有什么局限性
大型语言模型(LLM)基于 Transformer 架构的模型具有以下优点: 1. 在大量数据集上进行预训练,展现出卓越的语言处理能力,能预测接下来的 Token。 然而,也存在一些缺点和局限性: 1. 瞬态状态:天生缺乏持久的记忆或状态,需要额外的软件或系统来保留和管理上下文。 2. 概率性质:随机性导致响应的不确定性,对相同提示词可能产生不同回答。 3. 过时信息:依赖预训练数据,只能访问历史知识,无法获取实时更新。 4. 内容制造:可能生成看似合理但不准确的信息,即“幻觉”。 5. 资源密集:巨大规模意味着显著的计算和财务成本,影响可扩展性和可访问性。 6. 领域特定性:本质上通用,但通常需要特定领域数据才能在专业任务中表现出色。 7. 缺乏创造性:像一个高性能的知识检索工具,超出检索范围时表现差,甚至出现“幻觉”。面对复杂逻辑推导和新的知识推演能力不足,无法基于新的语料推演出新知识。 8. 对于特定领域或高度专业化的查询,容易产生错误信息或“幻觉”,特别是当查询超出训练数据或需要最新信息时。
2025-02-13
企业级应用集成AI大模型架构白皮书
以下是关于企业级应用集成 AI 大模型架构的相关内容: 从整体分层的角度来看,目前大模型整体架构可以分为以下几层: 1. 基础层:为大模型提供硬件支撑,数据支持等,例如 A100、数据服务器等等。 2. 数据层:这里的数据层指的不是用于基层模型训练的数据基集,而是企业根据自己的特性,维护的垂域数据。分为静态的知识库,和动态的三方数据集。 3. 模型层:包括 LLm 或多模态模型。LLm 即 largelanguagemodel 大语言模型,例如 GPT,一般使用 transformer 算法来实现。多模态模型即市面上的文生图、图生图等的模型,训练所用的数据与 llm 不同,用的是图文或声音等多模态的数据集。 4. 平台层:模型与应用间的平台部分,比如大模型的评测体系,或者 langchain 平台等,提供模型与应用间的组成部分。 5. 表现层:也就是应用层,用户实际看到的地方。 此外,以下报告也涉及相关内容: 1. 量子位智库发布的《》概述了大模型技术在多个行业中的应用和发展趋势。强调大模型在编程、教育、医疗等领域的重要性,并预测其将推动生产力和创新服务的增长。大模型业务模式涵盖应用开发、模型 API 和模型服务,其中模型服务和 API 是核心。报告还讨论了大模型在不同地域和行业的落地情况,以及企业在大模型技术投资方面的需求。 2. 亿欧智库发布的《》聚焦于企业中人工智能大模型的应用和落地情况。报告涵盖了 AI 大模型在企业中的应用现状、发展趋势以及面临的挑战。它详细分析了 AI 技术如何推动企业创新、提高效率和降低成本,并探讨了不同行业如何利用 AI 大模型实现数字化转型。此外,白皮书还提供了关于如何克服实施过程中的障碍和最大化 AI 大模型价值的见解。 对于大模型 API,与大模型对话产品的提示词不同。对于大模型 API,需要利用插件预先获取的网页内容变量、提示词和 API 请求参数,拼搭出完整的 API 提示请求,精确引导 API 返回想要的生成结果。根据 BigModel 官网给出的请求示例,可以看到需要在请求中传递 Model 类型、系统提示词、用户提示词、top_p、temperature 等关键参数。可以构建相应的 API 请求内容,包括设定系统提示词定义基础任务、设定用户提示词提供具体任务数据并要求大模型按 JSON 格式返回生成结果等。如果缺少参数设定的经验,也可以先询问 AI 文本总结类的模型 API 请求,temperature 设定多少合适,再逐步调试效果即可。
2025-02-06
有哪些可以生成系统架构图的工具
以下是一些可以生成系统架构图的工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,有拖放界面方便操作。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源建模语言,与 Archi 工具配合可创建逻辑视图。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持多种架构视图创建。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,有丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现称 diagrams.net):免费在线图表软件,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建逻辑视图和部署视图。 需要注意的是,虽然这些工具可以辅助创建架构视图,但它们不都是基于 AI 的。AI 在绘图工具中的应用通常涉及到智能推荐布局、自动生成图表代码或识别图表中的模式和关系。在选择工具时,您应该考虑您的具体需求,比如是否需要支持特定的建模语言、是否需要与特定的开发工具集成、是否偏好在线工具或桌面应用程序等。
2025-01-17
AI如何运用到集装箱物流行业?
AI 在集装箱物流行业有以下应用方式: 1. 物流路线优化:利用 AI 分析各种数据,如货物数量、目的地、运输条件等,优化物流路线,降低运输成本。 2. 配送计划制定:通过 AI 制定更合理的配送计划,提高配送效率和准确性。 3. 集装箱管理:借助数据分析和机器学习技术,优化集装箱的分配和使用,提高利用率。 4. 预测需求:利用 AI 预测货物的需求,提前做好准备,减少库存和延误。 5. 风险评估:分析潜在的风险因素,如天气变化、交通拥堵等,提前制定应对策略。 例如,像丰巢快递柜管理系统利用 AI 和物联网技术管理柜子的使用情况,提高快递配送效率。未来,AI 在集装箱物流行业的应用还将不断拓展和深化。
2025-01-24
我需要一款AI可以帮我做玩具行业的流行趋势分析
目前可能没有专门针对玩具行业流行趋势分析的特定 AI 工具。但您可以考虑使用一些通用的数据分析和市场研究工具,结合相关数据来进行分析。例如,利用大数据分析平台获取市场数据,或者使用一些具有数据挖掘和分析功能的软件,对玩具行业的销售数据、消费者评价等进行综合分析,以推断流行趋势。同时,也可以关注一些行业报告和专业的市场研究机构发布的信息。
2024-12-12
最近比较流行的c端ai应用有哪些
以下是一些比较流行的 C 端 AI 应用: 500px 摄影社区:这是一个 AI 摄影比赛平台,使用图像识别、数据分析技术,市场规模达数亿美元。它举办摄影比赛,展示优秀摄影作品,利用 AI 技术对参赛作品进行评选和分类,为摄影爱好者提供展示和交流的平台。 Logic Pro X 教学软件:作为 AI 音乐制作教学平台,运用机器学习、音频处理技术,市场规模达数亿美元。它为用户提供个性化的音乐制作教学服务,帮助用户掌握音乐制作技巧。 鲁班到家 APP:这是一个 AI 家居维修服务平台,采用数据分析、自然语言处理技术,市场规模达数亿美元。它能分析用户的维修需求和地理位置,为用户推荐附近的专业维修人员。 雪球财经 APP:作为 AI 金融投资教育平台,使用数据分析、自然语言处理技术,市场规模达数亿美元。它为用户提供个性化的金融投资教育服务,包括投资课程、市场分析和投资策略等。 彩云天气 APP:这是一个 AI 天气预报预警系统,运用数据分析、机器学习技术,市场规模达数亿美元。它提供准确的天气预报和预警信息,帮助用户提前做好防范措施。 腾讯觅影:作为 AI 医疗影像分析平台,使用数据分析、机器学习技术,市场规模达数十亿美元。它对医疗影像进行分析,辅助医生诊断疾病。 钉钉会议管理功能:这是一个 AI 会议管理系统,采用自然语言处理、数据分析技术,市场规模达数亿美元。它能管理会议流程,提高会议效率。 微拍堂书法作品拍卖频道:这是一个 AI 书法作品销售平台,运用图像识别、数据分析技术,市场规模达数亿美元。它为书法爱好者提供作品销售渠道。 彩云天气专业版:这是一个 AI 天气预报定制服务,使用数据分析、机器学习技术,市场规模达数亿美元。它能根据用户需求提供个性化天气预报服务。 微医 APP:作为 AI 医疗健康管理平台,运用数据分析、机器学习技术,市场规模达数十亿美元。它能管理用户健康数据,提供健康建议。 腾讯会议策划工具:这是一个 AI 会议策划助手,采用自然语言处理、数据分析技术,市场规模达数亿美元。它协助用户策划会议,提高会议效率和质量。 雅昌艺术网拍卖频道:这是一个 AI 书法作品拍卖平台,运用图像识别、数据分析技术,市场规模达数亿美元。它为书法爱好者提供作品拍卖服务。
2024-11-19
最近有哪些流行的AI产品
以下是一些近期流行的 AI 产品: 在制作 PPT 方面: Gamma:在线 PPT 制作网站,可通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。网址:https://gamma.app/ 美图 AI PPT:由美图秀秀开发团队推出,通过输入简单文本描述生成专业 PPT 设计,有丰富模板库和设计元素。网址:https://www.xdesign.com/ppt/ Mindshow:AI 驱动的 PPT 辅助工具,提供智能设计功能,如自动布局、图像选择和文本优化等。网址:https://www.mindshow.fun/ 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 在搜索和信息获取方面: You.com:多种搜索模式且重隐私的搜索引擎 Genspark:通过 Sparkpages 满足用户个性化搜索需求 Rockset:刚被 OpenAI 收购,提供实时搜索和分析数据库服务 Butterflies AI:人类与 AI 共存的社交软件 MeetRecord:可以对销售通话进行记录和辅导的 AI 助手 在获取高质量 Prompt 方面: GPTs:用对话引导获取用户信息 Jasper:拆解场景流程,按步骤收集信息 Leonardo:用画布、实时反馈加速 Prompt 提升 Novel:用交互式、渐进式续写 c.ai:卷生态卷模型 筑梦岛:探索更多场景的对话玩法 FlowGPT:以 Prompt 的分享为核心 小悟空:数据驱动优化 Prompt 需要注意的是,当前阶段的 AI 产品还普遍体现出初级产品化、强行产品化的特征,与传统互联网产品中的佼佼者相比,在需求和体验上仍存在巨大差距。或许等到用户无法直接感知 AI 产品所使用的模型时,其形态和范式才算真正成熟。
2024-10-09
如果我现在想用claude但是无法登陆,有哪几种可以体验到claude模型的方式
以下是几种可以体验到 Claude 模型的方式: 1. 通过:这是一个优秀的 AI 助手工具,付费后可使用 Claude 3.5 sonnet、ChatGPT4O 等顶级大模型。 2. 访问:Claude 官方原版,注册后可每日限额免费体验,但存在较高的封号风险。 3. 还可以通过 Cursor、Windsurf 等 AI 编程产品,调用 Claude AI API,但不支持 Artifacts 这种即时预览的使用方式,需要单独保存代码文件后查看。不过好处是,可以用 MD、CSV 等格式的文件,存储提示词、更新记录和 AI 交互数据。 Claude AI 是一款由 Anthropic 公司开发的 AI 助手,是基于自然语言处理技术和人工智能算法的聊天机器人。以开创性计算机科学家克劳德·香农(Claude Shannon)的名字命名,利用先进的机器学习技术、自然语言处理和深度学习算法,为各种应用提供支持。 Anthropic 发布了 Claude 3 模型,该模型更擅长遵循复杂的多步指令,特别擅长遵循品牌语调和响应指南,并开发用户可以信任的客户体验。此外,Claude 3 模型更擅长生成流行的结构化输出,如 JSON 格式。Opus 和 Sonnet 现已可在 API 中使用,该 API 现已普遍可用,使开发人员能够立即注册并开始使用这些模型。Haiku 将很快可用。现在可以在上使用新的 Claude 3 模型。 要注册 Claude.ai,可以按照以下步骤进行: 1. 访问 Claude 的官方网站。 2. 点击注册或登录界面中的“Sign Up”或“Continue with email”选项。 3. 填写邮箱地址并设置密码,然后提交表单。 4. 系统会向邮箱发送一封验证邮件,打开邮件并使用其中的验证码来完成邮箱验证。 如果在注册过程中遇到需要海外手机号接收验证码的问题,可能的解决方案有: 1. 使用虚拟海外号服务,如 SMSActivate、SMSPool 等,购买一个海外虚拟手机号来接收 Claude 的验证码。 2. 借助第三方服务网站如 uiuihao.com 完成注册 Claude 账号。 3. 如果有海外朋友,可以请他们帮忙接收验证码,并将验证码告知。 完成注册后,如果希望升级到 Claude Pro 版本以获取更强大的功能和更高的 API 调用限额,需要填写支付信息并选择一个合适的订阅计划。值得注意的是,订阅 Claude Pro 可能需要使用海外支付方式。请注意,Claude.ai 目前处于公开测试阶段,未付费用户使用平台可能会受到一些限制。如果在注册过程中遇到任何问题,可以参考其他用户分享的详细注册教程和解决策略。
2024-12-23
提示词分为哪几种?如提问式、指示式等
提示词主要分为以下几种: 1. 头脑风暴类: Brainwriting Prompt:通过写下尽可能多的想法来为特定主题进行头脑风暴。 Reverse Brainstorming Prompt:通过提出故意不好的想法来激发创造力。 Mind Mapping Prompt:为特定主题创建完整的思维导图。 Assumptions Prompt:列出关于特定主题的假设,并挑战这些假设以产生创新想法。 SWOT Analysis Prompt:对特定主题进行 SWOT 分析。 SCAMPER Prompt:使用 SCAMPER 检查表来构思。 Six Thinking Hats Prompt:使用六顶思考帽方法从不同角度构思。 Worst Possible Idea Prompt:为特定主题头脑风暴故意糟糕的想法。 Trigger Words Prompt:利用随机单词触发与特定主题相关的新想法。 Questioning Prompt:生成关于特定主题的问题,并将其转化为想法。 Rolestorming Prompt:从特定角色的角度进行构思。 2. 通用类: 以问题或指示的形式出现,例如简单的问题、详细的描述或特定的任务。在生成式人工智能模型中,它可以引导模型产生期望的输出。 通常包含指令、问题、输入数据和示例。为了从 AI 模型中得到期望的回应,提示词必须包含指令或问题,其他元素则是可选的。 基本的提示词可以简单到直接提问或提供特定任务的指令,高级提示词则涉及更复杂的结构,如“思维链”提示词,引导模型遵循逻辑推理过程来得出答案。
2024-08-28