在 Coze 创建一个符合需求的智能体(带工作流)之前,需要梳理以下内容:
例如,在搭建“结构化外文精读专家”Agent 时,要从制定关键方法与流程开始梳理任务目标。另外,搭建整理入库工作流时,新建工作流“url2table”,包括开始节点输入 url(无需额外配置)、变量节点引入 bot 变量中保存的飞书多维表格地址、插件节点获取页面内容等。
在上篇文章[Prompt工程|样例驱动的渐进式引导法:利用AI高效设计提示词,生成预期内容](https://mp.weixin.qq.com/s/3pFG_Tx7gcnnjOyqgM1P_w)中,我已经提到过Prompt工程的必备能力:通过逻辑思考,从知识经验(KnowHow)中抽象表达出关键方法与要求。这一理念同样适用在Coze中创建AI Agent。本文主要讨论工作流驱动的Agent,搭建工作流驱动的Agent,简单情况可分为3个步骤:1.规划:制定任务的关键方法总结任务目标与执行形式将任务分解为可管理的子任务,确立逻辑顺序和依赖关系设计每个子任务的执行方法2.实施:分步构建和测试Agent功能在Coze上搭建工作流框架,设定每个节点的逻辑关系详细配置子任务节点,并验证每个子任务的可用性3.完善:全面评估并优化Agent效果整体试运行Agent,识别功能和性能的卡点通过反复测试和迭代,优化至达到预期水平接下来,我们从制定关键方法与流程,梳理「结构化外文精读专家」Agent的任务目标。
在上篇文章[Prompt工程|样例驱动的渐进式引导法:利用AI高效设计提示词,生成预期内容](https://mp.weixin.qq.com/s/3pFG_Tx7gcnnjOyqgM1P_w)中,我已经提到过Prompt工程的必备能力:通过逻辑思考,从知识经验(KnowHow)中抽象表达出关键方法与要求。这一理念同样适用在Coze中创建AI Agent。本文主要讨论工作流驱动的Agent,搭建工作流驱动的Agent,简单情况可分为3个步骤:1.规划:制定任务的关键方法总结任务目标与执行形式将任务分解为可管理的子任务,确立逻辑顺序和依赖关系设计每个子任务的执行方法2.实施:分步构建和测试Agent功能在Coze上搭建工作流框架,设定每个节点的逻辑关系详细配置子任务节点,并验证每个子任务的可用性3.完善:全面评估并优化Agent效果整体试运行Agent,识别功能和性能的卡点通过反复测试和迭代,优化至达到预期水平接下来,我们从制定关键方法与流程,梳理「结构化外文精读专家」Agent的任务目标。
接下来开始在Coze中逐步搭建AI智能体。首先搭建整理入库工作流。这一步是支撑整个AI稍后读服务的前置流程。需要实现以下功能流程:在搭建内容入库工作流这一步,我花了相当长的时间,调试飞书多维表格插件的使用方式,因为篇幅原因,不在此详述,我将直接分享最终的设置方式。首先新建工作流「url2table」:根据弹窗要求,自定义工作流信息。工作流全局流程设置如下:[heading3]3.1开始节点:输入url[content]由于希望收到用户输入的待收藏url,就开始流程,所以不需要额外配置(至于如何判断哪些用户输入是需要收藏的url,则交由外层bot的大模型判断):[heading3]3.2变量节点:引入bot变量中保存的飞书多维表格地址[content]为了便于维护充当稍后读存储地址的飞书多维表格链接,我们需要将这个链接存储在bot的变量中,并在工作流运行时进行引用。添加变量节点,设置如下:这样一来,在bot整体运行时,就能从外层bot获取变量{{app_token}},用于告知「飞书多维表格」插件需要在哪个地址新增数据。[heading3]3.3插件节点:获取页面内容[content]这一步直接把开始节点的{{BOT_USER_INPUT}},引入到参数{{url}}中;随便设置{{timeout}}为60000。