Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

Dify如何调用飞书智能表格

Answer

Dify 调用飞书智能表格的方法如下:

  1. 部署完成后,可以通过以下方式使用飞书·稍后读助手:
    • 得益于飞书 app 的多平台支持,在电脑、手机端通过飞书机器人与稍后读助手进行对话。
    • 直接在 Coze 商店中与 bot 进行对话。
    • 如果还选择了部署到微信服务号、订阅号,也可以通过这些渠道调用 bot。
  2. 设置稍后读存储地址:
    • 首次使用,按以下步骤操作:
      • 访问稍后读管理模板
      • 点击「更多-创建副本」,然后复制新表格的分享链接。
      • 将新链接发送到智能体对话中。
    • 另外,还可以发送“查询存储位置”、“修改存储位置”,来更换飞书多维表格链接,调整稍后读存储位置。
  3. 收藏待阅读的页面链接:
    • 在对话中输入需要收藏的页面链接。如果是第一次使用,会要求授权共享数据。授权通过后,再次输入需要收藏的页面链接,即可完成收藏。
    • 目前部分页面链接可能会小概率保存失败,暂未定位原因。
  4. 智能推荐想看的内容:
    • 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。

此外,关于 Dify 在微信上的调用,可参考以下信息: GitHub: https://github.com/zhayujie/chatgpt-on-wechat Gitee: https://gitee.com/zhayujie/chatgpt-on-wechat

这里先暂时不过多介绍 Dify,它跟 AutoGPT、MetaGPT、FastGPT 等都是可以自己构建 Agent、工作流的 LLM 应用开发平台。AM 就是搭建在 Dify 上面的。

说回 LlamaEdge,可以自建一个 API 扩展来实现调用上面的 FLUX.1 API Server(套娃)。 API 扩展说明,可以查看:https://docs.dify.ai/zh-hans/guides/extension/api-based-extension,但貌似 0.8.3 的版本不再使用了(dify 里面有不少功能更新缺陷或版本冲突,所以使用时需要自行修改或提交 PR)。 也可以引入dify-on-wechat项目,在 bot/dify/新建一个 dify_image.py 的程序,将画图程序的调用过程写到 dify bot 中,如用 query“画”开头接提示来触发调用。dify_image.py 后续会更新到代码仓库中。

图片服务器,很简单,分别写一个 Flask app 程序和一个 html: app.py template/index.html

以上代码都可以由 Phind、Copilot、Cursor、Zed + ollama + 一个代码大模型代劳,但架构感觉整复杂了不够优雅,后面整理好打包一个解决方案再提交一个 repo。

Content generated by AI large model, please carefully verify (powered by aily)

References

一泽 Eze:Coze+飞书多维表格,打造专属 AI 智能体,享受 10 倍知识管理效率

在部署完成后,你可以:1.得益于飞书app的多平台支持,你可以电脑、手机端通过飞书机器人与稍后读助手进行对话2.直接在Coze商店中与bot进行对话3.如果你还选择了部署到微信服务号、订阅号,当然也可以通过这些渠道调用bot[heading2]1)设置稍后读存储地址[content]首次使用,请按以下步骤设置你的稍后读存储位置:1.访问[稍后读管理模板](https://zkv549gmz8.feishu.cn/wiki/C5JNwxjX1ijW8rkd1Vbc2VStnob)2.点击「更多-创建副本」,然后复制新表格的分享链接3.将新链接发送到智能体对话中另外,你还可以发送“查询存储位置”、“修改存储位置”,来更换飞书多维表格链接,调整你的稍后读存储位置。[heading2]2)收藏待阅读的页面链接[content]在对话中输入需要收藏的页面链接。如果是第一次使用,会要求授权共享数据:授权通过后,再次输入需要收藏的页面链接,即可完成收藏。注:目前部分页面链接可能会小概率保存失败,暂未定位原因。如果你对此有所了解,欢迎和我交流。[heading2]3)智能推荐想看的内容[content]在对话中发送“我想看xx”、“xx内容”,即可按个人兴趣推荐阅读计划。🎉至此,你的专属AI稍后读智能体终于大功告成啦!恭喜,你真是太棒了!!!🥳从现在开始,你就可以尽情享受一键收藏、光速吃灰的快感啦!😜

Coze+飞书多维表格,打造专属 AI 智能体,享受 10 倍知识管理效率

在部署完成后,你可以:1.得益于飞书app的多平台支持,你可以电脑、手机端通过飞书机器人与稍后读助手进行对话2.直接在Coze商店中与bot进行对话3.如果你还选择了部署到微信服务号、订阅号,当然也可以通过这些渠道调用bot[heading2]1)设置稍后读存储地址[content]首次使用,请按以下步骤设置你的稍后读存储位置:1.访问[稍后读管理模板](https://zkv549gmz8.feishu.cn/wiki/C5JNwxjX1ijW8rkd1Vbc2VStnob)2.点击「更多-创建副本」,然后复制新表格的分享链接3.将新链接发送到智能体对话中另外,你还可以发送“查询存储位置”、“修改存储位置”,来更换飞书多维表格链接,调整你的稍后读存储位置。[heading2]2)收藏待阅读的页面链接[content]在对话中输入需要收藏的页面链接。如果是第一次使用,会要求授权共享数据:授权通过后,再次输入需要收藏的页面链接,即可完成收藏。注:目前部分页面链接可能会小概率保存失败,暂未定位原因。如果你对此有所了解,欢迎和我交流。[heading2]3)智能推荐想看的内容[content]在对话中发送“我想看xx”、“xx内容”,即可按个人兴趣推荐阅读计划。🎉至此,你的专属AI稍后读智能体终于大功告成啦!恭喜,你真是太棒了!!!🥳从现在开始,你就可以尽情享受一键收藏、光速吃灰的快感啦!😜

大模型的快思慢想:适配自己的LLM使用场景II--在Mac/Edge设备及微信上运行Flux

GitHub:https://github.com/zhayujie/chatgpt-on-wechatGitee:https://gitee.com/zhayujie/chatgpt-on-wechat这里先暂时不过多介绍Dify,它跟AutoGPT,MetaGPT,FastGPT等等都是可以自己构建Agent,工作流的LLM应用开发平台。AM就是搭建在Dify上面的。以下是它的节点流预览图:说回LlamaEdge,我们可以自建一个API扩展来实现调用上面的FLUX.1 API Server(套娃)API扩展说明,可以查看:https://docs.dify.ai/zh-hans/guides/extension/api-based-extension,但貌似0.8.3的版本不再使用了(dify里面有不少功能更新缺陷或版本冲突,所以使用时需要自行修改或提交PR)也可以引入[dify-on-wechat](https://github.com/hanfangyuan4396/dify-on-wechat)项目,在bot/dify/新建一个dify_image.py的程序,将画图程序的调用过程写到dify bot中,如用query“画”开头接提示来触发调用。dify_image.py我将后面更新到我的代码仓库中。图片服务器,很简单,分别写一个Flask app程序和一个html:app.pytemplate/index.html以上代码都可以由Phind,Copilot,Cursor,Zed+ollama+一个代码大模型代劳,但架构感觉整复杂了不够优雅,后面整理好打包一个解决方案再提交一个repo。见效果图:

Others are asking
WaytoAGI与飞书有什么关系?
WaytoAGI 与飞书有着密切的关系。“飞书智能伙伴创建平台”(英文名:Aily)是飞书团队旗下的企业级 AI 应用开发平台,为企业构建和发布 AI 应用提供便利。云雀是字节跳动研发的语言模型。WaytoAGI 专属问答机器人基于 Aily 和云雀大模型。在飞书 5000 人大群里,内置了一个智能机器人「waytoAGI 知识库智能问答」,它是基于飞书 Aily 搭建的。用户可以通过在飞书群里发起话题时来使用,它能够自动回答用户关于 AGI 知识库内的问题,进行知识搜索、文档引用等多种操作,还支持多语言问答等功能。此外,关于飞书如何搭建 FAQ 机器人,会议介绍了相关情况,包括利用 AI 技术帮助用户检索知识库内容,引入 RAG 技术,使用飞书的智能伙伴功能搭建等。
2025-01-24
飞书知识库ai机器人
以下是关于飞书知识库 AI 机器人的相关信息: 简介:在飞书 5000 人大群里,内置了一个智能机器人「waytoAGI 知识库智能问答」,它是基于飞书 aily 搭建的。() 如何使用:在飞书群里发起话题时即可,它会根据 waytoAGI 知识库的内容进行总结和回答。 功能: 自动问答:自动回答用户关于 AGI 知识库内涉及的问题,可以对多文档进行总结、提炼。 知识搜索:在内置的「waytoAGI」知识库中搜索特定的信息和数据,快速返回相关内容。 文档引用:提供与用户查询相关的文档部分或引用,帮助用户获取更深入的理解。 互动教学:通过互动式的问答,帮助群成员学习和理解 AI 相关的复杂概念。 最新动态更新:分享有关 AGI 领域的最新研究成果、新闻和趋势。 社区互动:促进群内讨论,提问和回答,增强社区的互动性和参与度。 资源共享:提供访问和下载 AI 相关研究论文、书籍、课程和其他资源的链接。 多语言支持:支持多语言问答,满足不同背景用户的需求。 搭建问答机器人的分享:2024 年 2 月 22 日的会议首先介绍了 WaytoAGI 社区的成立愿景和目标,以及其在飞书平台上的知识库和社区的情况。接着,讨论了如何利用 AI 技术帮助用户更好地检索知识库中的内容,引入了 RAG 技术,通过机器人来帮助用户快速检索内容。然后,介绍了基于飞书的知识库智能问答技术的应用场景和实现方法,可以快速地给大模型补充新鲜的知识,提供大量新的内容。之后,讨论了如何使用飞书的智能伙伴功能来搭建 FAQ 机器人,以及智能助理的原理和使用方法。最后,介绍了企业级 agent 方面的实践。 背后的技术:「飞书智能伙伴创建平台」(英文名:Aily)是飞书团队旗下的企业级 AI 应用开发平台,提供了一个简单、安全且高效的环境,帮助企业轻松构建和发布 AI 应用,推动业务创新和效率提升。云雀是一款由字节跳动研发的语言模型,通过便捷的自然语言交互,能够高效的完成互动对话、信息获取、协助创作等任务。 关于“我是谁”:是 WaytoAGI 专属问答机器人,基于 Aily 和云雀大模型。 使用方法: 方法 1:在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(下图二维码仅作示意,请在找到最新二维码),然后点击加入,直接@机器人即可。 方法 2:在 WaytoAGI.com 的网站首页,直接输入问题,即可得到回答。 做问答机器人的原因: 整个知识库的内容已经非常庞大,内容越来越丰富的同时,作为一个刚进入知识库的用户,并没有办法可以很快的找到知识库的内容。 传统的搜索是基于关键词及关键词的相关性。例如搜索“吃了吗?”和“昨天晚上鸡腿好吃”,在字面意义上的差异和语义上的价值。 作为一个 AI 知识库,需要用更先进的办法来解决:RAG 技术。 在群中提供一个可以快速供大家检索信息的方式,使用更加便捷。
2025-01-24
Dify引用飞书智能表格
以下是关于 Dify 引用飞书智能表格打造专属 AI 智能体的相关内容: 首先是逐步搭建 AI 智能体: 1. 设计 AI 智能体架构:构思整个架构,规定稍后读阅读清单的元数据。新建飞书多维表格,根据管理需要定义元数据字段,如“内容”(超链接格式,显示页面标题,可点击跳转具体页面)、“摘要”(总结内容主题、关键信息、阅读价值,并指出适合的读者群体)、“作者”、“平台”、“状态”(阅读状态,收藏的默认态为“仅记录”)、“发布日期”、“收集时间”。为方便跟做,可直接复制准备好的模板: 2. 搭建整理入库工作流:这是支撑整个 AI 稍后读服务的前置流程。首先新建工作流「url2table」,根据弹窗要求自定义工作流信息。工作流全局流程设置如下: 开始节点:输入 url,由于希望收到用户输入的待收藏 url 就开始流程,所以不需要额外配置。 变量节点:引入 bot 变量中保存的飞书多维表格地址,将飞书多维表格链接存储在 bot 的变量中,在工作流运行时进行引用。 插件节点:获取页面内容,把开始节点的{{BOT_USER_INPUT}}引入到参数{{url}}中,随便设置{{timeout}}为 60000。
2025-01-21
WaytoAGI和飞书什么关系
WaytoAGI 与飞书存在密切关系。“飞书智能伙伴创建平台”(英文名:Aily)是飞书团队旗下的企业级 AI 应用开发平台,为企业构建和发布 AI 应用提供帮助。云雀是字节跳动研发的语言模型。WaytoAGI 专属问答机器人基于 Aily 和云雀大模型。在使用方面,您可以通过在 WaytoAGI 飞书知识库首页加入飞书群后@机器人,或者在 WaytoAGI.com 网站首页直接输入问题来获取回答。此外,飞书的知识库智能问答技术可利用智能伙伴功能搭建 FAQ 机器人,为用户快速检索内容。
2025-01-19
怎么用飞书ai助手在文档内部总结文档内容
以下是关于如何用飞书 AI 助手在文档内部总结文档内容的相关信息: 1. 大型语言模型在概括文本方面的应用:可在 Chat GPT 网络界面中完成,从入门代码开始,如导入 OpenAI、加载 API 密钥和使用 getCompletion 助手函数。还提到对产品评论进行摘要的任务及相关提示。包括文字总结、针对某种信息总结、尝试“提取”而不是“总结”、针对多项信息总结等方面。 2. 总结其他内容: 文章:可让 AI 总结不超过 2 万字的文章,如复制文章给 GPT 进行总结,GPT4 能识别重点内容。 B 站视频:通过获取视频字幕,将其提取后发给 AI 执行内容总结任务。可安装油猴脚本获取字幕,如 ,下载字幕并复制给 GPT 进行总结。 3. 实践:群总结工具 微信群聊总结 AI 助手:Mac 版可在技术支持。自己跑不起来的同学,可加机器人微信号:aoao_eth,把机器人拉进群。 新版本:有桌面应用,包括一键监控、总结、发送等功能。可使用桌面版或脚本版,下载后配置 app key 即可运行。暂时只有 mac 版本,windows 版本可自己构建或直接运行代码。提供了功能截图,如每日群聊监控和数据统计、一键总结等。
2025-01-11
在coze工作流中,怎样利用下一个代码节点合并前两个代码节点的输出,并以正确的格式输入传入飞书多维表格插件节点
在 Coze 工作流中利用下一个代码节点合并前两个代码节点的输出并以正确格式传入飞书多维表格插件节点的步骤如下: 1. 搭建整理入库工作流: 3.4 大模型节点:提取稍后读元数据。根据对稍后读阅读清单的元数据期望设置大模型节点,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000 以完整解析长内容网页,用户提示词需相应设置。 3.5 日期转时间戳。后续的飞书多维表格插件节点在入库日期字段时只支持 13 位时间戳,需使用「日期转时间戳time_stamp_13」插件进行格式转化,具体设置明确。 3.6 大模型节点:把稍后读元数据转换为飞书多维表格插件可用的格式。飞书多维表格插件目前(2024 年 08 月)只支持带有转义符的 string,以 Array<Object>格式输入,所以要将之前得到的元数据数组进行格式转换,大模型节点配置及用户提示词需相应设置。 3.7 插件节点:将元数据写入飞书表格。添加「飞书多维表格add_records」插件,设置{{app_token}}与{{records}}参数。 3.8 结束节点:返回入库结果。「飞书多维表格add_records」插件会返回入库结果,直接引用该信息用于通知外层 bot 工作流的入库是否成功。 2. 搭建选择内容推荐流: 4.1 开始节点:输入想阅读的内容主题。收到用户输入的“想看 xxx 内容”这类指令开始流程,无需额外配置。 4.2 变量节点:引入 bot 变量中保存的飞书多维表格地址,添加变量节点并设置。 4.3 插件节点:从飞书多维表格查询收藏记录。添加「飞书多维表格search_records」插件,设置{{app_token}}参数,并在{{app_token}}引用变量节点的{{app_token}},输出结果的{{items}}里会返回需要的查询结果,也可在这一步定向检索未读状态的收藏记录。 4.4 大模型节点:匹配相关内容。为处理稳定采用批处理,对检索出来的收藏记录逐个进行相关性匹配,用户提示词可优化以提升匹配精准度。 搭到这里,别忘了对整个工作流进行测试。
2025-01-09
dify编排框架是什么意思
Dify 编排框架是一种在 AI 领域中应用的可视化编排框架,例如在 workflow 可视化编排页面中使用(框架:React Flow)。它具有以下特点和优势: 1. 集各家所长,在用户体验方面表现出色。 2. 可以人为编排 Workflow 里的子任务,与 AutoGPT 由大模型编排任务的方式不同,这种手动编排方式带来了明显的优化,如在流程中加入人类 Knowhow 以补足模型知识的不足,通过专家测试试跑减少生产环境中的反复无效反思,引入图的概念灵活组织节点、连接各类工具等。 3. 加入图的概念后,workflow 的天花板变得非常高,可以在流程中任意增加节点和各种类型的节点,不仅能套工具、套其它 agent,还能写代码用硬逻辑处理或接大模型进行判断,能力上限很大程度取决于想象力。 4. 对于个人开发者构建高质量的 AI 数字人很有帮助,有大量开源工作者维护,集成了各种主流的模型供应商、工具以及算法实现等,可以通过它快速编排出自己的 AI Agent,赋予数字人灵魂。利用其编排和可视化交互能任意修改流程,构造不同的 AI Agent,并实现相对复杂的功能,如知识库搭建、工具使用等,无需任何编码和重新部署工作。同时,Dify 的 API 暴露了 audiototext 和 texttoaudio 两个接口,基于这两个接口可将数字人的语音识别和语音生成都交由 Dify 控制。如果有更加高度定制的模型,也可以在 Dify 中接入 XInference 等模型管理平台进行部署。此外,数字人 GUI 工程中仍保留了多个模块,能保持更好的扩展。 在使用 Dify 接口时,需要注意必须在应用编排功能中打开文字转语音和语音转文字功能,否则接口会返回未使能的错误。只有接入了支持 TTS 和 SPEECH2TEXT 的模型供应商,才会在功能板块中展示出来,Dify 的模型供应商图标下标签有展示该供应商支持哪些功能,可自行选择方便使用的。对于 TTS,不同的模型供应商支持的语音人物不同,可以根据个人喜好添加。
2025-01-21
如何使用dify
使用 Dify 主要包括以下步骤: 1. 构建知识库: 准备数据:收集文本数据,包括文档、表格等格式,并进行清洗、分段等预处理以确保数据质量。 创建数据集:在 Dify 中创建新数据集,上传准备好的数据,并编写良好的描述。 配置索引方式:Dify 提供三种索引方式,如高质量模式、经济模式和 Q&A 分段模式,根据实际需求选择合适的方式。 集成至应用:将数据集集成到 Dify 的对话型应用中,在应用设置中配置数据集的使用方式。 持续优化:收集用户反馈,持续优化知识库内容和索引方式,定期更新增加新内容。 2. 部署网站: 云服务版本:直接在官网 dify.ai 上注册账号使用。 部署社区版:开源可商用,但不能作为多租户服务使用,对个人使用无限制。部署前提条件为 2 核 4G 云服务器一台。 3. 特点和优势: Dify 是开源的大模型应用开发平台,结合后端即服务和 LLMOps 理念,提供直观界面构建和部署生产级别的生成式 AI 应用。 具备强大工作流构建工具,支持广泛模型集成,有功能丰富的提示词 IDE 和全面的 RAG Pipeline 用于文档处理和检索。 允许定义 Agent 智能体,通过 LLMOps 功能持续监控和优化应用程序性能。 提供云服务和本地部署选项,满足不同用户需求,开源特性确保对数据完全控制和快速产品迭代。 设计理念注重简单性、克制和快速迭代,为个人研究、创业团队、企业等提供支持和工具。 官方手册:https://docs.dify.ai/v/zhhans 。一般来说,个人研究可单独使用 Dify,企业级落地项目推荐多种框架结合。
2025-01-20
dify的使用教程
以下是 Dify 的使用教程: 1. 构建知识库: 准备数据:收集文本数据,包括文档、表格等格式,并进行清洗、分段等预处理以确保数据质量。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档,并编写良好的描述。 配置索引方式:Dify 提供三种索引方式,如高质量模式、经济模式和 Q&A 分段模式,根据实际需求选择合适的方式。 集成至应用:将数据集集成到 Dify 的对话型应用中,在应用设置中配置数据集的使用方式。 持续优化:收集用户反馈,对知识库内容和索引方式进行优化和迭代,定期更新知识库。 2. 部署网站: 云服务版本:直接在官网 dify.ai 上注册账号使用。 部署社区版:开源,可商用,但不能作为多租户服务使用,对个人使用无限制。部署前提条件为 2 核 4G 云服务器一台。 3. 接入企业微信: 创建聊天助手应用:在 Dify 平台创建基础编排聊天助手应用,获取 API 密钥和 API 服务器地址。 下载 Dify on WeChat 项目:下载并安装依赖。 填写配置文件:在项目根目录创建 config.json 文件,填写 API 密钥和服务器地址。 把基础编排聊天助手接入微信:快速启动测试,扫码登录,进行对话测试,可选择源码部署或 Docker 部署。 把工作流编排聊天助手接入微信:创建知识库,导入知识库文件,创建工作流编排聊天助手应用,设置知识检索节点和 LLM 节点,发布更新并访问 API。 把 Agent 应用接入微信:创建 Agent 应用,设置对话模型和添加工具,生成 API 密钥,填写配置文件,启动程序并进行测试。更多内容请访问原文:https://docs.dify.ai/v/zhhans/learnmore/usecases/difyonwechat
2025-01-18
Dify公司
Dify 是一个开源的大模型应用开发平台。它融合了后端即服务和 LLMOps 的理念,为用户提供直观界面,能快速构建和部署生产级别的生成式 AI 应用。 该平台具有以下特点: 1. 强大的工作流构建工具。 2. 支持广泛的模型集成。 3. 提供功能丰富的提示词 IDE。 4. 拥有全面的 RAG Pipeline,可用于文档处理和检索。 5. 允许用户定义 Agent 智能体。 6. 通过 LLMOps 功能持续监控和优化应用程序性能。 Dify 提供云服务和本地部署选项,满足不同用户需求。其开源特性确保对数据的完全控制和快速产品迭代。设计理念注重简单性、克制和快速迭代,能帮助用户将 AI 应用创意快速转化为现实。 对于个人研究,推荐单独使用 Dify;对于企业级落地项目,推荐多种框架结合,效果更佳。 Dify 官方手册:https://docs.dify.ai/v/zhhans
2025-01-16
有那些AI工具支持处理流程搭建,类似Dify那样
以下是一些支持处理流程搭建的 AI 工具,类似 Dify 那样: 1. Dify: 是一个开源的大模型应用开发平台。 结合后端即服务和 LLMOps 理念,提供直观界面快速构建和部署生产级别的生成式 AI 应用。 具备强大工作流构建工具,支持广泛模型集成,有功能丰富的提示词 IDE 和全面的 RAG Pipeline 用于文档处理和检索。 允许定义 Agent 智能体,通过 LLMOps 功能对应用程序性能持续监控和优化。 提供云服务和本地部署选项,满足不同用户需求。 开源特性确保对数据完全控制和快速产品迭代。 设计理念注重简单性、克制和快速迭代,为创业团队构建 MVP、企业集成 LLM 增强现有应用能力、技术爱好者探索 LLM 潜力提供支持和工具。 官方手册:https://docs.dify.ai/v/zhhans 。个人研究推荐单独使用,企业级落地项目推荐多种框架结合。 2. FastGPT:是成熟的高质量 AI 编排框架,有大量开源工作者维护,集成各种主流的模型供应商、工具及算法实现等。 3. Coze:服务端可用于在线编辑 Agent 应用,然后通过 API 方式集成。
2025-01-08
我给你一个excel表格,你可以快速生成甘特图吗?
目前我无法直接为您提供将 Excel 表格快速生成甘特图的服务。但您可以使用一些专业的软件,如 Microsoft Project、Excel 本身(通过特定的功能和插件)、Trello 等,它们都具备将相关数据转化为甘特图的功能。您可以根据自己的需求和使用习惯选择合适的工具,并按照其操作指南进行操作。
2025-01-24
WPS 表格公式AI
关于 WPS 表格公式的 AI 功能,目前有以下几种不同的工具和插件可以增强其数据处理和分析能力: 1. Excel Labs:这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,允许用户直接在 Excel 中利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了 Word、Excel、PowerPoint、Outlook、Teams 等办公软件。用户通过聊天形式告知需求,如数据分析或格式创建,Copilot 会自动完成任务。 3. Formula Bot:提供了数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:这是一款支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 这些工具通过 AI 技术提升了 Excel 的数据处理能力,使用户能更高效地进行数据分析和决策。随着技术不断发展,未来可能会有更多 AI 功能被集成,进一步提高工作效率和数据处理的智能化水平。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-24
有哪个大模型工具可以提供“word文本转excel表格”功能
以下是一些可以将 word 文本转 excel 表格的大模型相关方法: 1. Markdown 格式输出 Markdown 编辑器 Excel:将大模型的输出结果复制到 Markdown 编辑器(如 Typora),然后再直接复制到 Excel,就可以得到直接可用的数据文档。 2. Markdown 格式输出 Excel 数据分组:把大模型的输出直接复制到 Excel,一般使用 Excel 的数据分列功能,用“|”作为分隔符号处理数据。 3. Markdown 格式输出 Excel 数据分组:要求大模型把输出转换成 CSV 格式,然后把结果复制到 txt 文档,另存为成 csv 文件(注意:txt 另存为时,文件后缀名更改为.csv,编码选择 ANSI)。
2025-01-21
是否有关于AI辅助填写表格的应用
目前有以下几种关于 Excel 的 AI 应用可以辅助填写表格: 1. Excel Labs:这是一个 Excel 插件,基于 OpenAI 技术新增了生成式 AI 功能,允许用户在 Excel 中直接利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了 Word、Excel、PowerPoint、Outlook、Teams 等办公软件。用户通过聊天形式告知需求,Copilot 会自动完成如数据分析或格式创建等任务。 3. Formula Bot:提供了数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 这些工具通过 AI 技术提升了 Excel 的数据处理能力,使用户能更高效地进行数据分析和决策。随着技术不断发展,未来可能会有更多 AI 功能集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-01-19
Excel表格ai工具哪个最好用
以下是一些好用的 Excel 表格 AI 工具: 1. Excel Labs:这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,可在 Excel 中直接利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了包括 Excel 在内的多种办公软件,用户通过聊天形式告知需求,Copilot 会自动完成任务,如数据分析或格式创建。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户能通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 此外,还有以下在表格相关方面表现出色的 AI 产品: 1. Highcharts:6 月访问量 235 万,相对 5 月变化 0.389。 2. Fillout.com:6 月访问量 186 万,相对 5 月变化 0.147。 3. Coefficient:6 月访问量 46 万,相对 5 月变化 0.251。 4. Numerous.ai:6 月访问量 41 万,相对 5 月变化 0.087。 5. SheetGod:6 月访问量 31 万,相对 5 月变化 0.033。 6. GPTExcel:6 月访问量 25 万,相对 5 月变化 0.364。 7. 酷表 ChatExcel:6 月访问量 18 万,相对 5 月变化 0.159。 8. GPT Workspace:6 月访问量 17 万,相对 5 月变化 0.213。 9. OpenAI in Spreadsheet:6 月访问量 12 万,相对 5 月变化 0.314。 10. Ajelix AI Excel Tools:6 月访问量 10 万,相对 5 月变化 0.145。 需要注意的是,随着技术的不断发展,未来可能会有更多 AI 功能被集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。同时,内容由 AI 大模型生成,请仔细甄别。
2025-01-16
以豆包为例,如何通过API调用豆包大模型?
要通过 API 调用豆包大模型,以下是一些相关步骤和信息: 1. 直接调用大模型(之前完成过 coze 对接的同学,直接去二、百炼应用的调用): 百炼首页:https://bailian.console.aliyun.com/ 以调用“qwenmax”模型为例,在/root/chatgptonwechat/文件夹下,打开 config.json 文件,需要更改"model",和添加"dashscope_api_key"。 获取 key 的视频教程: 获取 key 的图文教程:以下是参考配置。 注意:需要“实名认证”后,这些 key 才可以正常使用,如果对话出现“Access to mode denied.Please make sure you are eligible for using the model.”的报错,那说明您没有实名认证,点击去,或查看自己是否已认证。 2. 创建大模型问答应用: 首先可以通过创建一个百炼应用,来获取大模型的推理 API 服务,用于实现 AI 助手。 创建应用: 进入百炼控制台的,在页面右侧点击新增应用。在对话框,选择智能体应用并创建。 在应用设置页面,模型选择通义千问Plus,其他参数保持默认。您也可以选择输入一些 Prompt,比如设置一些人设以引导大模型更好的应对客户咨询。 在页面右侧可以提问验证模型效果。不过您会发现,目前它还无法准确回答你们公司的商品信息。点击右上角的发布,我们将在后面的步骤中去解决这一问题。 获取调用 API 所需的凭证: 在我的应用>应用列表中可以查看所有百炼应用 ID。保存应用 ID 到本地用于后续配置。 在顶部导航栏右侧,点击人型图标,点击 APIKEY 进入我的 APIKEY 页面。在页面右侧,点击创建我的 APIKEY,在弹出窗口中创建一个新 APIKEY。保存 APIKEY 到本地用于后续配置。 3. 配置 FastGpt、OneAPI: 首先配置 OneAPI,还记得刚刚让您白嫖的大模型 API 吗?阿里的接口,这时要派上用场了,去阿里模型的链接里创建 ApiKey,并复制下来。然后在 OneAPI 的页面,点击【渠道】添加新渠道。添加时,类型选择阿里通义千问,名称自己取个,类型选择好后模型是会默认加进去,您不用删减,还有就把刚刚阿里那复制的 ApiKey 粘贴到秘钥里去。这样就 OK 了。后续有其他的大模型也是一样的添加方式。
2025-01-23
怎么调用qwen?
要调用 qwen ,有以下几种情况和步骤: 1. 调用百炼“应用”: 创建一个百炼应用,假设命名为“苏苏”。 在/root/chatgptonwechat/文件夹下,打开config.json文件。 更改"model":"qwen",并添加"qwen_access_key_id"、"qwen_access_key_secret"、"qwen_agent_key"、"qwen_app_id"四项配置。 配置项获取可参考视频教程: 图文教程及参考配置也有提供。 注意:需要“实名认证”后,这些key才可以正常使用,如果对话出现“Access to mode denied.Please make sure you are eligible for using the model.”的报错,那说明您没有实名认证,点击去,或查看自己是否已认证。 2. 直接调用大模型: 百炼首页:https://bailian.console.aliyun.com/ 在/root/chatgptonwechat/文件夹下,打开config.json文件。 以调用“qwenmax”模型为例,需要更改"model",和添加"dashscope_api_key"。 获取 key 可参考视频教程: 图文教程及参考配置也有提供。 注意:需要“实名认证”后,这些key才可以正常使用,如果对话出现“Access to mode denied.Please make sure you are eligible for using the model.”的报错,那说明您没有实名认证,点击去,或查看自己是否已认证。 3. 创建知识库应用并调用: 地址输入浏览器:http://这里替换为您宝塔左上角的那一串:3000/ 进入后,点击应用并创建,选择 qwen 模型。 创建知识库。点击知识库 选择 qwen Embedding 1 点击确认创建。 上传文件,等待处理,最后文本状态是“已就绪”。 回到刚刚创建的应用,关联上创建的知识库。 点击两个发布。之前第一个叫做保存。 点击新建,创建 key。创建后保存同时将 API 根地址最后加上/v1 也保存下来。 回到宝塔,打开【终端】 依次粘贴并回车:cd/root git clone https://github.com/zhayujie/chatgptonwechat cd chatgptonwechat/ pip install r requirements.txt pip install r requirementsoptional.txt 等待执行完成。 到“文件”菜单中去执行,点击文件 找到 root,进入 root 文件夹,找到 chatgptonwechat 文件夹,并进入。
2025-01-20
国内有哪些开源ai可以调用?
国内有以下一些开源 AI 可供调用: MiniMax 推出的 Hailuo Audio HD 此外,还有一些应用于不同领域的 AI 技术和产品,如: 在游戏领域,有根据玩家需求推荐游戏道具的 AI 游戏道具推荐系统。 在天气领域,彩云天气的分时预报利用了 AI 提供精准的分时天气预报。 在医疗领域,医渡云的病历分析系统利用 AI 分析医疗病历,辅助诊断。 在会议领域,讯飞听见的会议总结功能利用 AI 自动总结会议发言内容。 在书法领域,书法临摹软件利用 AI 识别书法作品的笔画和结构,为用户提供临摹指导和评价。
2025-01-20
如何准确调用知识库的内容?
要准确调用知识库的内容,可以从以下方面进行: 维护知识库内容: 为提升召回准确率,可删除、新增或修改知识库内容。 在知识库页面,能看到已创建的知识库及每个知识库内的单元数量和创建时间等信息。单击知识库或编辑图标,可进入知识库详情页面。在详情页可进行新增内容、删除内容、更新单元内的分段、开启引用等操作。若不开启引用,即便 Bot 中使用了所属的知识库,该单元内容也不会被召回。 使用知识库: 可以将知识库直接与 Bot 进行关联用于响应用户回复,也可以在工作流中添加知识库节点。 在 Bot 内使用知识库: 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 4. 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 5. (可选)添加知识库后,可在自动调用下拉界面内,调整知识库的配置项,如最大召回数量、最小匹配度、调用方式等。在预览与调试区域调试 Bot 能力时,扩展运行完毕的内容可以查看知识库命中并召回的分片内容。 在工作流内使用 Knowledge 节点: 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在页面顶部进入工作流页面,并打开指定的工作流。 4. 在左侧基础节点列表内,选择添加 Knowledge 节点。 关于让 AI+知识库回答更准确的示例: 以问答机器人为例,其配置包括 AI 模型、提示词、知识库。大语言模型如同拥有无穷智慧的人,提示词是设定其角色和专注技能,知识库则是工作手册。例如设定 AI 模型为阿里千问模型,提示词角色为“美嘉”,知识库为《爱情公寓》全季剧情,让“美嘉”拥有相关“记忆”。
2025-01-18
工作流中如何调用插件
在工作流中调用插件的方式如下: 1. 触发器触发: 为 Bot 设置触发器,可选择定时触发或事件触发。 触发时执行任务的方式包括 Bot 提示词、调用插件、调用工作流。 调用插件时,需为触发器添加一个插件,触发后 Bot 会调用该插件获取返回结果并发送给用户。 一个 Bot 内的触发器最多可添加 10 个,且仅当 Bot 发布飞书时生效。 2. 在 Bot 内使用插件: 在 Bots 页面,选择指定 Bot 并进入 Bot 编排页面。 在 Bot 编排页面的插件区域,单击加号图标添加插件,或者单击自动添加图标,让大语言模型自动添加适用的插件。使用大语言模型自动添加插件后,需检查被添加的插件是否可以正常使用。 在添加插件页面,展开目标插件查看工具,然后单击添加。单击我的工具,可查看当前团队下可用的插件。 在 Bot 的人设与回复逻辑区域,定义何时使用插件,然后在预览与调试区域测试插件功能是否符合预期。 3. 在工作流中使用插件节点: 在页面顶部进入工作流页面,然后创建工作流或选择一个已创建的工作流。 在页面左侧,单击插件页签。 搜索并选择插件,然后单击加号图标。 在工作流的画布内,连接插件节点,并配置插件的输入和输出。 需要注意的是,即使是官方插件也可能存在不稳定的情况,需要自己去尝试,找到适合当前场景的插件。
2025-01-14
国内coze调用api的例子
以下是国内 Coze 调用 API 的一些例子: 1. 通过已有服务 API 创建插件: 进入 Coze 个人空间,选择插件,新建一个插件并命名,如 api_1。 在插件的 URL 部分,填入 Ngrok 随机生成的 https 链接地址。 按照 Coze 的指引配置输出参数,测试后发布插件。 2. 手捏简单的 Bot 并接入创建的插件:创建测试 API 的 Bot,将创建的 api_1 插件接入,在 prompt 里让其调用插件。 3. 测试 AI Bot 时可能遇到的情况:Coze 国内版刚发布不久,有些官方和第三方插件的 API 调用和返回结果不太稳定,可能出现回答不完整的情况,但相信官方会尽快解决。 4. 获取 Coze 的 accessToken 和 botid: 获取 accessToken:在 Coze 界面右侧扣子 API 授权,或者打开链接 https://www.coze.cn/open/oauth/pats,添加令牌,设置名称、过期时间和权限,完成后点击确定按钮并复制下拉令牌。 获取 botid:通过工作空间获取,从“工作空间”打开一个 bot,点击商店按钮查看地址栏中的数字即为 botid。 发布为 bot api:注意在前端使用 bot 必须发布成为 API,点击发布并选择 API,等待审核通过后可按上述方法拿到 botid。 获取空间 id:进入 Coze 后,左边打开工作空间,找到 url 中的 id 并复制。
2025-01-12