以下是一些可以梳理文档知识形成知识库的 AI 工具:
Cursor有一个功能是针对一个很大的代码库,也能精准地找到相关的函数,并且用它的信息来帮助撰写代码。对于非开发性质的问答来说,这天然就是一个RAG引擎。当我们在问答窗口不是使用回车,而是使用Command加回车来发出问题的时候,它会首先在当前的文件夹下做一轮搜索,并且在文本框下面显示出排在前面的文档和相关度,最后使用这些信息构建提示词完成最终的生成。这些中间结果都是可以在界面上展开并且查看的。而且这个功能不仅在Chat里可以使用,它也可以作为Agentic AI的一步来使用,这是因为搜索这个功能也是Cursor Composer可以调用的一个Agent Tool。上图这个例子里,我把我所有的Blog文章放在了当前文件夹下,然后问了Cursor一个相当复杂的问题。我问他在Chat GPT发布后的这两年时间里,作者也就是我对AI的观点和态度发生了哪些变化。Cursor的回答非常惊艳,他首先自己组织了一些关键字,然后用这些关键字做了Retrieval,结果看上去都挺靠谱的。接下来他针对这些文章进行了总结和对比,给出了相当有深度的回答。所以即便是对于非开发性质的任务,Cursor也可以非常自然的和私有文档进行结合以及问答。而且相比于单纯的对话性质的聊天界面,Cursor天然就可以把这些新生成的insights进一步沉淀成新的文档,在后来的搜索中继续使用,这就形成了一个知识闭环。这种附用性和知识探索沉淀和新增的能力,对于知识管理来说是非常重要的。因此如果你使用obsidian之类的软件来进行知识管理的话,也不妨使用Cursor来增加知识检索和管理的效率。
接下来,我们可以尝试让大模型在面对客户问题时参考这份文档,以产出一个更准确的回答和建议。1.上传文件:在百炼控制台的[数据管理](https://bailian.console.aliyun.com/#/data-center)中的非结构化数据页签中点击导入数据,根据引导上传我们虚构的百炼系列手机产品介绍:2.根据您上传的文档大小,百炼需要一定时间解析,通常占用1~6分钟,请您耐心等待。3.1.2.建立索引:进入[知识索引](https://bailian.console.aliyun.com/#/knowledge-base),根据引导创建一个新的知识库,并选择刚才上传的文件,其他参数保持默认即可。知识库将为上一步骤中准备的文档建立索引,以便后续大模型回答时检索参考。3.选择向量存储类型时,如果您希望集中存储、灵活管理多个应用的向量数据,可选择ADB-PG。4.1.2.1.2.引用知识:完成知识库的创建后,可以返回[我的应用](https://bailian.console.aliyun.com/#/app-center)进入到刚才创建的应用设置界面,打开知识检索增强开关、选择目标知识库,测试验证符合预期后点击发布。Prompt中会被自动添加一段信息,以便大模型在后续回答时参考检索出来的信息。3.1.[heading3]4.2检验效果[content]有了参考知识,AI助手就能准确回答关于您公司的商品的问题了。
日常活动文案输出(读书社ing,AI复核型玩法“高阶”,依托传音智库+飞书妙记+在线思维导图Markmap):有了AI赋能加持,读书会活动yyds✔️运营一个读书俱乐部(策划方案,欢迎仪式,互动玩法)✔️筹办一场趣味性活动(主题拆解,魔性流程,头脑风暴)✔️完成一次结构化总结(快速记录,分秒总结,一键同频)方法一:一键知识图谱1.用kimichat让ai拆解这本书的三级章节并按照markdown产出内容:1.1.Prompt:帮我拆解《爱的五种语言》,生成全书内容的思维导图,要求每个章节后面有三级展开,下一级是主要知识点,下下一级是知识点的论述。先输出对应的markdown1.2.访问地址:[https://kimi.moonshot.cn/](https://kimi.moonshot.cn/)2.复制ai内容粘贴到在线思维导图Markmap中,一键生成思维导图,还可以自定义微调内容,并免费导出图片:2.1.访问地址:[https://www.min2k.com/tools/markmap/](https://www.min2k.com/tools/markmap/)方法二:推导知识图谱(可以参考下面prompt自己构建)