Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI现在发展到什么程度了

Answer

目前 AI 的发展呈现出以下特点和程度:

  1. 在弱人工智能(ANI)方面取得了巨大进展,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等,这些应用只专注于特定任务。
  2. 通用人工智能(AGI)尚未取得巨大突破,但一直在努力发展。AGI 被分为五个等级:
    • 聊天机器人:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。
    • 推理者:具备人类推理水平,能够解决复杂问题,如 ChatGPT,能根据上下文和文件提供详细分析和意见。
    • 智能体:不仅具备推理能力,还能执行全自动化业务,但目前许多产品在执行任务后仍需人类参与。
    • 创新者:能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可加速科学研究和新药发现。
    • 组织:最高级别的 AI,能够自动执行组织的全部业务流程,包括规划、执行、反馈、迭代、资源分配和管理等。
  3. 机器学习方面,监督学习因数据增长、神经网络规模发展以及算力提升而快速发展。
  4. 数据方面,数据集是数据的集合,通常以表格形式出现,包括结构化数据和非结构化数据。获取数据的方式有手动标注、观察行为和网络下载等。同时,数据处理中会面临不正确、缺少数据等问题,需要有效处理。
  5. 大模型方面,开源大模型爆发,未来 AGI 竞争的关键是云端超级大模型,但通用大模型也遇到瓶颈,如算力和知识不足的问题。训大模型需要将饱含人类智慧的高含量知识融入。
Content generated by AI large model, please carefully verify (powered by aily)

References

问:AGI 的 5 个等级是什么?

OpenAI在其内部会议上分享了关于通用人工智能(AGI)的五个发展等级。OpenAI自2015年成立以来,一直将AGI作为其战略目标之一,随着ChatGPT、多模态大模型和AI Agent等技术的发展,我们似乎越来越接近实现这一目标。AGI的五个等级分别为:1.聊天机器人(Chatbots):具备基本对话能力的AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。2.推理者(Reasoners):具备人类推理水平的AI,能够解决复杂问题,如ChatGPT,能够根据上下文和文件提供详细分析和意见。3.智能体(Agents):不仅具备推理能力,还能执行全自动化业务的AI。目前许多AI Agent产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。4.创新者(Innovators):能够协助人类完成新发明的AI,如谷歌DeepMind的AlphaFold模型,可以预测蛋白质结构,加速科学研究和新药发现。5.组织(Organizations):最高级别的AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。

学习笔记:AI for everyone吴恩达

AI分为ANI和AGI,ANI得到巨大发展但是AGI还没有取得巨大进展。ANI,artificial narrow intelligence弱人工智能。这种人工智能只可做一件事,如智能音箱,网站搜索,自动驾驶,工厂与农场的应用等。AGI,artificial general intelligence,做任何人类可以做的事[heading5]机器学习[content]监督学习,从A到B,从输入到输出。为什么近期监督学习会快速发展,因为现有的数据快速增长,神经网络规模发展以及算力快速发展。[heading5]什么是数据?[content]数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。如何获取数据,一,手动标注,二,观察行为,三,网络下载。使用数据的方法,如果开始搜集数据,可以马上将数据展示或者喂给某个AI团队,因为大多数AI团队可以反馈给IT团队,说明那种类型数据需要收集,以及应该继续构建那种类型的IT基础框架。数据不一定多就有用,可以尝试聘用AI团队要协助梳理数据。有时数据中会出现,不正确,缺少的数据,这就需要有效处理数据。数据同时分为结构化数据与非结构化数据。结构化数据可以放在巨大的表格中,人们理解图片,视频,文本很简单,但是这种非结构化数据机器处理起来更难一些。

周鸿祎免费课AI系列第二讲-企业如何拥抱AI

当开源大模型爆发,大模型无处不在。未来AGI竞争的关键是云端超级大模型,最近美国的巨头都在进军这个领域。大模型现在越做越小,一加推出手机,这两天斯坦福推了一个叫章鱼的大模型,可以跑在手机上。杨元庆这两天是不是在推AIPC。我们今天的重点是讲企业大模型市场崛起。因为现在通用大模型也遇到瓶颈。算力可能遇到点瓶颈,英伟达挣的盆满钵满,算力的背后是能源。但我今天还发了一个短视频,他们碰到知识不够的问题了。因为人工智能也在超越人类,之前还在跟人类学习,人类原来也没有意识把很多知识沉淀下来。所以他们现在发展到什么程度呢?像他们最近发现,百度贴吧里的“弱智吧”原来是特别好的学习知识的地方。这个“弱智吧”名字没起好,其实里边一点都不弱智,里边的问题都挺难回答的。我去看了看,好多问题我都回答不出来。比如说明明是睡觉,为什么要去酒店?明明是喝酒,为什么要去夜店?睡觉应该去夜店睡觉,喝酒才去酒店喝酒对吧?所以不要看互联网上满是数据,数据不等于信息,信息不等于知识,知识不等于智慧。所以训大模型就需要把饱含人类智慧的高含量的知识训进去。

Others are asking
ai在营销方面的应用
以下是 AI 在营销方面的应用: 1. 营销 AI 产品: Synthesia:允许用户创建由 AI 生成的高质量视频,包括数字人视频,提供多种定价计划,可用于制作营销视频、产品演示等。 HeyGen:基于云的 AI 视频制作平台,用户可从 100 多个 AI 头像库中选择,并通过输入文本生成数字人视频,适合制作营销视频和虚拟主持人等。 Jasper AI:人工智能写作助手,可用于生成营销文案、博客内容、电子邮件等,提供多种语气和风格选择,写作质量较高。 Copy.ai:AI 营销文案生成工具,可快速生成广告文案、社交媒体帖子、电子邮件等营销内容,有免费和付费两种计划。 Writesonic:AI 写作助手,专注于营销内容创作,如博客文章、产品描述、视频脚本等,提供多种语气和行业定制选项。 更多的营销产品可以查看 WaytoAGI 网站:https://www.waytoagi.com/sites?tag=8 。 2. 生成式人工智能在营销中的改变: DALLE 2 和其他图像生成工具已用于广告,如亨氏使用番茄酱瓶的图像论证“这就是人工智能眼中‘番茄酱’的样子”,雀巢使用维米尔画作的人工智能增强版销售酸奶品牌,Stitch Fix 服装公司使用 DALLE 2 根据客户偏好创建服装可视化,美泰使用该技术生成用于玩具设计和营销的图像。 3. 2025 年数字营销趋势中的 AI 驱动营销: AI 将继续成为未来数字营销的基石,但使用需要具备战略性和明确目的,以确保品牌真实性,应追求提升用户体验。 预计到 2025 年,全球 AI 在数字营销领域的市场规模将达到 1260 亿美元。采用 AI 技术的公司在广告点击率上提高了 35%,广告成本减少了 20%,显示出 AI 在提升效率和成本优化方面的作用。 以上内容由 AI 大模型生成,请仔细甄别。
2025-01-24
AI教育都有哪些应用
AI 教育的应用主要包括以下几个方面: 1. 个性化学习平台:通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。例如 Knewton 平台,通过对数百万学生的行为模式分析,精准预测学习难点并提前给出解决方案,大幅提升学习效率。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生的作文和开放性答案题。如 Pearson 的 Intelligent Essay Assessor,能够分析和理解学生写作内容,给出准确评分和反馈,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学工具:如 AI 教师能够引导学生通过对话学习,解答疑问并提供即时反馈。Google 的 AI 教育工具 AutoML 用于创建定制学习内容,提高学习动机,加深知识掌握。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟化学实验室进行安全实验操作,并立即得到 AI 系统反馈。例如 Labster 的虚拟实验室平台,提供高科技实验室场景,让学生尝试复杂实验流程。 此外,AI 在教育领域的应用还体现在为每个学生提供定制化学习体验、帮助教师生活更轻松和课程更有效、用于自学学习等方面。但使用时需注意对关键数据根据其他来源仔细检查,以防人工智能产生幻觉。
2025-01-24
通义灵码AI程序员
通义灵码是基于通义大模型的 AI 研发辅助工具,具有以下特点和能力: 提供代码智能生成、研发智能问答、多文件代码修改、自主执行等能力,为开发者带来智能化研发体验,引领 AI 原生研发新范式。 具备多文件代码修改和工具使用的能力,可与开发者协同完成编码任务,如需求实现、问题解决、单元测试用例生成、批量代码修改等。 核心能力包括:从片段级到多文件级的 AI 编码,能完成涉及工程内多文件级的编码任务;新增多种上下文感知、意图理解、反思迭代、工具使用等能力,可与开发者协同完成更复杂的编码任务;自动完成工程内多个文件的代码修改的 Diff 生成,并提供多文件的变更审查视图,高效完成 AI 生成代码的确认;构建人机协同工作流,通过多轮对话逐步完成编码任务,产生多个快照版本,可任意切换、回退。 “AI 实训营”第二期:大咖带你快速上手通义灵码 AI 程序员 讲师:梦飞,WaytoAGI Agent 核心创作者,词元映射 CEO。 课表: 01/22 20:00(直播回放:https://b23.tv/iQcVksx ) 0 基础入门篇:写代码像聊天一样简单 可以进入钉钉群获取更多文档:https://alidocs.dingtalk.com/i/nodes/yQod3RxJKGvvkP3rfj5Lgoy7Jkb4Mw9r?utm_scene=person_space AI 编程的能力与边界 通义灵码上手指南 一句话 AI 编程小游戏展示 01/23 20:00(直播回放:https://waytoagi.feishu.cn/minutes/obcnazg6vi2c7y25xn3898tw?from=ai_minutes ) AI 编程实战篇:人人都能“福从天降” 0 基础带练“福从天降”小游戏 自然语言生成更多小游戏 如何在 Github 部署并生成在线链接 本期共学直播地址: 会议时间:20:00 21:30 会议 ID:932 264 694 会议链接:vc.feishu.cn/j/932264694 加入通义灵码钉钉共学群(钉钉群号:78080029971),大咖在线答疑!春节专题,现场发红包!2 天课程,带你从小白到进阶,从学习到实践,全面了解 AI 应用开发!和百万开发者一起共学、共享、共实践!
2025-01-24
绘图ai工具有哪些
以下是一些常见的绘图 AI 工具: 1. Lucidchart:这是一个流行的在线绘图工具,支持多种图表的创建,包括逻辑视图、功能视图和部署视图等。具有拖放界面,易于使用,支持团队协作和实时编辑,还有丰富的模板库和自动布局功能。官网:https://www.lucidchart.com/ 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,包括逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源的建模语言,专门用于企业架构,支持逻辑视图的创建,可与 Archi 工具一起使用,该工具提供图形化界面创建 ArchiMate 模型。 4. Enterprise Architect:强大的建模、设计和生成代码的工具,支持创建多种架构视图,包括逻辑、功能和部署视图。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富的模板用于创建逻辑视图、功能视图和部署视图等。集成 Office 365,方便与其他 Office 应用程序协同工作。官网:https://www.microsoft.com/enus/microsoft365/visio/flowchartsoftware 6. draw.io(现在称为 diagrams.net):免费的在线图表软件,允许用户创建各种类型的图表,包括软件架构图,支持本地和云存储(如 Google Drive、Dropbox),多种图形和模板,易于创建和分享图表,可与多种第三方工具集成。官网:https://www.diagrams.net/ 7. PlantUML:文本到 UML 的转换工具,通过编写描述性文本来自动生成序列图、用例图、类图等,从而帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费的开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图的创建。 10. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包括逻辑视图和部署视图。 此外,还有一些可以辅助或自动生成 CAD 图的 AI 工具: 1. CADtools 12:Adobe Illustrator 插件,为 AI 添加 92 个绘图和编辑工具,包括图形绘制、编辑、标注、尺寸标注、转换、创建和实用工具。 2. Autodesk Fusion 360:集成了 AI 功能的云端 3D CAD/CAM 软件,能创建复杂的几何形状和优化设计。 3. nTopology:基于 AI 的设计软件,帮助用户创建复杂的 CAD 模型,包括拓扑优化、几何复杂度和轻量化设计等。 4. ParaMatters CogniCAD:基于 AI 的 CAD 软件,可根据用户输入的设计目标和约束条件自动生成 3D 模型,适用于拓扑优化、结构设计和材料分布等领域。 对于绘制示意图,以下工具也值得推荐: 1. Lucidchart:集成了 AI 功能,可以自动化绘制流程图、思维导图、网络拓扑图等多种示意图。 2. Microsoft Visio:专业的图表绘制工具,适用于复杂的流程图、组织结构图和网络图,其 AI 功能可以帮助自动化布局和优化图表设计。 3. draw.io(现在称为 diagrams.net):免费且开源的在线图表绘制工具,适用于各种类型的示意图绘制。
2025-01-24
如何优化自己的prompt,提升AI结果输出的稳定性
以下是优化自己的 prompt 以提升 AI 结果输出稳定性的方法: 1. 明确具体的描述:使用更具体、细节的词语和短语来表达需求,避免过于笼统。 2. 添加视觉参考:在 prompt 中插入相关图片参考,提高 AI 理解意图和细节要求的能力。 3. 注意语气和情感:根据需求,用合适的形容词、语气词等调整 prompt 的整体语气和情感色彩,以生成期望的语境和情绪。 4. 优化关键词组合:尝试不同的关键词搭配和语序,找到最有针对性、最准确表达需求的描述方式。 5. 增加约束条件:在 prompt 中添加限制性条件,如分辨率、比例等,避免意外输出。 6. 分步骤构建 prompt:将复杂需求拆解为逐步的子 prompt,引导 AI 先生成基本结构,再逐步添加细节和完善。 7. 参考优秀案例:研究 AI 社区流行的、有效的 prompt 范例,借鉴写作技巧和模式。 8. 反复试验、迭代优化:通过多次尝试不同的 prompt 写法,并根据输出效果反馈持续优化完善,直至达到理想结果。 此外,如果提示词效果不符合预期,可以和 AI 再进行几轮对话来调整输出结果。最终通过询问 AI“怎么样修改现有的 Prompt,可以让你稳定输出当前的预期”来进行 prompt 的迭代。得到 prompt 后,可以新开一个 AI 对话,把 prompt 输入到对话中,开始验证其可用性和稳定性。例如输入 MECE 法则进行测试。
2025-01-24
图片转漫画的国内AI工具
以下是一些国内的图片转漫画的 AI 工具: 1. 星流一站式 AI 设计工具: 可以使用图像控制功能,如空间关系、线稿、人物长相、姿势等,精准控制生成图像的内容和风格。 入门模式下有多种参考功能,包括原图、景深、线稿轮廓、姿势、Lineart 线稿、Scribble 线稿、光影、Segmant 构图分割等。 2. Anifusion: 是一款基于人工智能的在线工具,用户输入文本描述,AI 就能将其转化为完整的漫画页面或动漫图像。 具有 AI 文本生成漫画、直观的布局工具、强大的画布编辑器、多种 AI 模型支持、商业使用权等功能。 适用于独立漫画创作、快速原型设计、教育内容创作、营销材料制作、粉丝艺术和同人志创作等场景。 优点是非艺术家也可轻松创作漫画,基于浏览器无需额外安装软件,具有快速迭代和原型设计能力,且拥有创作的全部商业权利。 更多相关工具您可以查看: 内容由 AI 大模型生成,请仔细甄别。
2025-01-24
当前ai发展到什么程度了
当前 AI 的发展程度可以从以下几个方面来看: 1. 在通用人工智能(AGI)的发展等级方面: 聊天机器人:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 推理者:具备人类推理水平,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 智能体:不仅具备推理能力,还能执行全自动化业务,但目前许多产品在执行任务后仍需人类参与。 创新者:能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可加速科学研究和新药发现。 组织:最高级别,能够自动执行组织的全部业务流程。 2. 技术发展历程: 早期阶段(1950s 1960s):有专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理得到发展。 统计学习时期(1990s 2000s):出现机器学习算法,如决策树、支持向量机、贝叶斯方法等。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等兴起。 3. 当前前沿技术点: 大模型:如 GPT、PaLM 等。 多模态 AI:包括视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:涉及模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。 同时,开源大模型爆发,企业大模型市场崛起,但通用大模型也遇到瓶颈,如算力和知识沉淀等问题。
2025-01-11
Al发展到什么程度
目前 AI 的发展呈现出多方面的特点和趋势: 1. 千脑理论:新皮层由数以万计的皮质柱组成,每根柱子都会学习物体的模型,多模型设计发挥作用的关键是投票。智能机器的“大脑”也应由许多几乎相同的元素(模型)组成,并连接到各种可移动的传感器。大脑中的知识储存在参考框架中,机器也需要学会一个世界的模型。 2. 通用化趋势:AI 将从专用方案过渡到更多的通用方案。通用电脑因更好的成效比导致技术更快进步,更多努力用于加强受欢迎的设计和支持其生态系统,导致成本降低和性能提升。同时,一些重要的未来应用如探索火星等需要通用方案的灵活性,而当前专用的深度学习模型无法满足。 3. 游戏领域:随着生成式人工智能革命的进展,它将重塑用户生成内容(UGC),创造任何人都能构建游戏的世界,游戏创作将变得真正民主化,数以百万计的新游戏制作者将被创造出来。 4. 企业发展:OpenAI 公司成立于 2015 年,总部位于美国旧金山,早期是非营利机构,后来改成有限营利形式。其使命是推进人工智能技术发展,为全球创造更安全、智能的未来。关于 OpenAI 公司的时间线,可参考 Wiki(https://timelines.issarice.com/wiki/Timeline_of_OpenAI)和 OpenAI Blog(https://openai.com/blog/)。
2025-01-09
现在ai发展到什么程度了
目前 AI 的发展呈现出多方面的特点和进展: 1. 在通用人工智能(AGI)方面,尚未取得巨大进展,但 OpenAI 等机构提出了 AGI 的五个发展等级,包括聊天机器人、推理者、智能体、创新者和组织。其中,聊天机器人具备基本对话能力,推理者能解决复杂问题,智能体可执行全自动化业务但仍需人类参与,创新者能协助人类完成新发明,组织则能自动执行全部业务流程。 2. 在应用方面,ANI(弱人工智能)得到了巨大发展,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等。 3. 大模型方面,开源大模型爆发,未来 AGI 竞争的关键在于云端超级大模型,但通用大模型也面临瓶颈,如算力和知识不足的问题。 4. 机器学习方面,监督学习因数据增长、神经网络规模发展和算力提升而快速发展。 5. 数据方面,数据集是由数据组成的集合,分为结构化和非结构化数据,获取数据的方式包括手动标注、观察行为和网络下载,同时需要有效处理数据中可能存在的不正确和缺失等问题。
2025-01-07
端到端语音技术现在进展到什么程度了
端到端语音技术目前取得了显著进展。 在语音合成方面: 语音合成将文本转换为可听的声音信息,是人机交互的重要接口,一般包括 TTS、歌唱合成等领域。 当代工业界主流语音合成系统包括文本前端和声学后端两个部分。文本前端将输入文本转换为层次化的语音学表征,声学后端基于此生成语音,主要技术路线包括单元挑选波形拼接、统计参数和端到端语音合成方法,当代主要采用端到端声学后端。 端到端声学后端一般包括声学模型和声码器两部分,也出现了直接从音素映射为波形的完全端到端语音合成系统。 在全模态智能体方面: OpenAI 发布的 GPT4o 是新模型通过端到端的神经网络,把视觉、语音和文本数据混合训练,对音频输入的平均反应时间为 300 毫秒,与人类对话的反应时间相似。 直接拿音频数据来训练的好处是模型能从数据中感悟到人类表达的情绪、语调、风格等,能听到几乎真实的人类的声音。 OpenAI 未公开 GPT4o 的技术细节,唯一线索来自内部模型炼丹师的一篇博客,项目名是 AudioLM,目标是用端到端的方式扩大语音模型的能力。
2025-01-03
作为新手,如何掌握AI?要掌握到什么程度?
对于新手掌握 AI,您可以参考以下步骤和内容: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。建议一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 2. 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 六、如果希望继续精进 1. 了解 AI 背景知识 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 掌握数学基础 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 熟悉算法和模型 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 评估和调优:了解如何评估模型性能,包括交叉验证、精确度、召回率等;学习如何使用网格搜索等技术优化模型参数。 神经网络基础:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN);了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 4. 掌握 Python 基础 基本语法:了解 Python 的基本语法规则,比如变量命名、缩进等。 数据类型:熟悉 Python 中的基本数据类型,如字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等。 控制流:学习如何使用条件语句(if)、循环语句(for 和 while)来控制程序的执行流程。 函数:定义和调用函数,理解函数如何接收参数和返回结果;了解作用域和命名空间,包括局部变量和全局变量的概念,以及它们是如何在 Python 中工作的。 模块和包:学习如何导入 Python 标准库中的模块或者第三方库,理解如何安装和使用 Python 包来扩展程序的功能。 面向对象编程(OOP):了解面向对象编程的基本概念,包括类的定义和实例化;学习如何为类定义属性和方法,以及如何通过对象来调用它们,了解类之间的继承关系以及如何实现多态。 异常处理:理解什么是异常,以及它们在 Python 中是如何工作的;学习如何使用 try 和 except 语句来处理程序中可能发生的错误。 文件操作:学习如何打开文件、读取文件内容以及写入文件,理解如何使用 Python 来处理文件路径,以及如何列举目录下的文件。 至于要掌握到什么程度,这取决于您的具体需求和目标。如果您只是想初步了解和应用一些简单的 AI 技术,掌握基本概念和一些常用工具的使用就可以。如果您希望在 AI 领域深入发展,可能需要系统地学习数学、算法、编程等知识,并不断实践和研究。
2024-12-11
作为新手,如何才能掌握好AI?做到什么程度算是学会了AI?
对于新手来说,要掌握好 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 如果希望在掌握基础后继续精进,最好体系化地了解编程以及 AI,至少熟悉以下 Python 相关内容: 1. Python 基础: 基本语法:了解 Python 的基本语法规则,比如变量命名、缩进等。 数据类型:熟悉 Python 中的基本数据类型,如字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等。 控制流:学习如何使用条件语句(if)、循环语句(for 和 while)来控制程序的执行流程。 2. 函数: 定义和调用函数:学习如何定义自己的函数,以及如何调用现有的函数。 参数和返回值:理解函数如何接收参数和返回结果。 作用域和命名空间:了解局部变量和全局变量的概念,以及它们在 Python 中是如何工作的。 3. 模块和包: 导入模块:学习如何导入 Python 标准库中的模块或者第三方库。 使用包:理解如何安装和使用 Python 包来扩展程序的功能。 4. 面向对象编程(OOP): 类和对象:了解面向对象编程的基本概念,包括类的定义和实例化。 属性和方法:学习如何为类定义属性和方法,以及如何通过对象来调用它们。 继承和多态:了解类之间的继承关系以及如何实现多态。 5. 异常处理: 理解异常:了解什么是异常,以及它们在 Python 中是如何工作的。 异常处理:学习如何使用 try 和 except 语句来处理程序中可能发生的错误。 6. 文件操作: 文件读写:学习如何打开文件、读取文件内容以及写入文件。 文件与路径操作:理解如何使用 Python 来处理文件路径,以及如何列举目录下的文件。 至于做到什么程度算是学会了 AI,这没有一个绝对的标准。但一般来说,当您能够熟练运用所学的 AI 知识和技能解决实际问题,能够理解和解释常见的 AI 应用和模型的工作原理,并且能够在特定领域进行创新和改进,就可以认为在一定程度上掌握了 AI。
2024-12-11
现在有哪些开源的文生图大模型?
以下是一些开源的文生图大模型: Kolors: 2024 年 7 月 6 日开源,基于数十亿图文对进行训练,支持 256 的上下文 token 数,支持中英双语。技术细节参考 。 已支持 Diffusers,使用方式可参考 。 支持了 。 支持了 。 关于 Kolors 模型的教学视频: ,作者:BlueBomm 。 ,作者:AI 算法工程师 01 。 ,作者:峰上智行 。 ,作者:设计师学 Ai 。 Kolors 模型能力总结:改进全面,有更强的中文文本编码器、机造的高质量文本描述、人标的高质量图片、强大的中文渲染能力,以及巧妙的 noise schedule 解决高分辨率图加噪不彻底的问题。实测效果很不错,在看到 Kling 视频生成的强大表现,能体现快手的技术实力。
2025-01-24
在医疗场景,现在有哪些应用
在医疗场景中,AI 有以下应用: 1. 医学影像分析:可用于分析 X 射线、CT 扫描和 MRI 等医学图像,辅助诊断疾病。 2. 药物研发:能够加速药物研发过程,比如识别潜在的药物候选物和设计新的治疗方法。 3. 个性化医疗:通过分析患者数据,为每个患者提供个性化的治疗方案。 4. 机器人辅助手术:用于控制手术机器人,提高手术的精度和安全性。 5. 疾病的诊断与预测:例如利用大模型进行疾病的早期诊断和病情发展预测。 6. 新药物发现:如麻省理工学院利用 AI 发现新型广谱抗生素 Halicin。 7. 中医应用:将人工智能与中医结合,辅助看诊,提高诊疗效率,未来有望实现 24 小时独立问诊开药。 8. 医学问答:像 DoctorGPT 这样的模型,能够准确回答各种医学问题。
2025-01-20
现在有哪些好用的图片生成,或者是修改美化的人工智能,尽量少要一些国内的
目前比较成熟的国外图片生成或修改美化的 AI 产品主要有: 1. Artguru AI Art Generator:在线平台,能生成逼真图像,为设计师提供灵感,丰富创作过程。 2. Retrato:AI 工具,可将图片转换为非凡肖像,有 500 多种风格可选,适合制作个性头像。 3. Stable Diffusion Reimagine:新型 AI 工具,通过稳定扩散算法生成精细、具细节的全新视觉作品。 4. Barbie Selfie Generator:专为喜欢梦幻童话风格的人设计的 AI 工具,能将上传的照片转换为芭比风格,效果很好。 这些 AI 模型通过组合技术如扩散模型、大型视觉转换器等,可根据文本或参考图像生成有创意且质量不错的相似图像输出,但仍存在一些局限,如偶尔性能不稳定、生成内容不当等问题。
2025-01-20
现在市场的中的AI大模型都有哪些,各自有什么特点
目前市场中的部分 AI 大模型及特点如下: 北京企业机构: 百度:文心一言,网址:https://wenxin.baidu.com 抖音:云雀大模型,网址:https://www.doubao.com 智谱 AI:GLM 大模型,网址:https://chatglm.cn 中科院:紫东太初大模型,网址:https://xihe.mindspore.cn 百川智能:百川大模型,网址:https://www.baichuanai.com/ 上海企业机构: 商汤:日日新大模型,网址:https://www.sensetime.com/ MiniMax:ABAB 大模型,网址:https://api.minimax.chat 上海人工智能实验室:书生通用大模型,网址:https://internai.org.cn 这些大模型在聊天状态下具有不同特点: 能生成 Markdown 格式的:智谱清言、商量 Sensechat、MiniMax 目前不能进行自然语言交流的:昇思、书生 受限制使用:MiniMax(无法对生成的文本进行复制输出,且只有 15 元的预充值额度进行体验,完成企业认证后可以进行充值) 特色功能:昇思——生图,MiniMax——语音合成 此外,阿里通义千问、360 智脑、讯飞星火等均不在首批获批名单中。据悉,广东地区获批公司分别为华为、腾讯,科大讯飞系其他地区获批产品。 中国大模型面临的真实问题包括: 原创大模型:稀少而珍贵,需要强大技术积累和持续高投入,风险大,一旦竞争力不足,投入可能付诸东流。 套壳开源大模型:务实的发展路径,需在借鉴中实现突破创新。 拼装大模型:将小模型拼接,试图整合资源实现飞跃,但整体性能并非简单相加。 在 AI 市场与 AI 产品经理方面: AI 创业市场:一方面行业大佬认为是比移动互联网更大的红利;另一方面观点有碰撞。当前 OpenAI 虽估值高但未盈利,大模型创业可能成泡沫,但 AI 应用不会。小参数大模型盛行,利于开发者。2024 下半年会有一批有代表性的 AI 应用出现。 对于 agent 智能体,个人看好在社交和游戏中的应用。
2025-01-20
chatgpt现在进化到什么地步了
ChatGPT 目前的发展情况如下: 早期 OpenAI 推出 ChatGPT 时称其为一种模型,后来在帮助页面中又称其为一种服务。目前我们所熟知的 ChatGPT 逐渐演变成了一种可以兼容多种 GPT 模型的聊天应用(服务)。 GPT4 于 2022 年 8 月完成训练,是 OpenAI 的旗舰项目,特别强调指令遵循能力,但存在可靠性问题,还不是最终的进化完成体,不过综合能力优秀。 开发过程中,研究人员将指令型数据和聊天数据混合,希望创造出既可以处理具体任务又能流畅聊天的模型,结果表明 chat 模型使用更简单,能更好地了解并处理自身潜在局限性,展现出更连贯的特征和更稳定的行为。 ChatGPT 的出现标志着聊天机器人技术的巨大进步,为人机交互带来了更加自然、智能的体验。它的“Generative”是通过结合上文计算下一个字的概率生成内容,“Pretrained”是基于海量的预训练数据集学习知识。
2025-01-20
ai现在主要用于哪个方面
人工智能(AI)目前已广泛应用于多个领域,主要包括以下方面: 1. 医疗保健: 医学影像分析,辅助诊断疾病。 药物研发,加速研发过程。 个性化医疗,提供个性化治疗方案。 机器人辅助手术,提高手术精度和安全性。 2. 金融服务: 风控和反欺诈,降低金融机构风险。 信用评估,辅助贷款决策。 投资分析,帮助投资者做出明智决策。 客户服务,提供 24/7 服务。 3. 零售和电子商务: 产品推荐,根据客户数据推荐感兴趣的产品。 搜索和个性化,改善搜索结果和购物体验。 动态定价,根据市场需求调整价格。 聊天机器人,回答客户问题。 4. 制造业: 预测性维护,避免机器故障停机。 质量控制,检测产品缺陷。 供应链管理,优化供应链提高效率。 机器人自动化,提高生产效率。 5. 交通运输: 自动驾驶技术,实现自主导航驾驶。 车辆安全系统,预防事故。 个性化用户体验,根据偏好调整车辆设置。 预测性维护,减少停机和维修成本。 生产自动化,提高制造效率和质量。 销售和市场分析,制定营销策略。 电动化和能源管理,优化电池使用和充电策略。 共享出行服务,提高服务效率和满意度。 语音助手和车载娱乐,方便控制和获取信息。 车辆远程监控和诊断,及时了解车辆状况。
2025-01-19
1.Gpt在教育邻域的快速发展
GPT 在教育领域的快速发展表现为以下方面: 训练方式:包括预训练、有监督微调、奖励建模、强化学习等阶段,每个阶段都有相应的数据集、算法和模型。 在教育中的影响:以 ChatGPT 为代表的生成式人工智能技术的出现,为教育带来冲击。许多教育工作者认识到大模型技术的进步对教育的意义。但目前市场上虽看好 AI 对各行业的赋能,却尚未诞生出相关的 Super APP,存在对 AI 发展的不同看法和预期。
2025-01-22
ai快速发展在教育领域的应用
AI 在教育领域的应用十分广泛,主要包括以下几个方面: 1. 个性化学习平台:通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。例如 Knewton 平台,通过对数百万学生行为模式分析,精准预测学习难点并提前给出解决方案,大幅提升学习效率。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生作文和开放性答案题。如 Pearson 的 Intelligent Essay Assessor,能够分析和理解写作内容,给出准确评分和反馈,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学工具:使课堂教学更丰富和互动,如 AI 教师引导学生通过对话学习、解答疑问并提供即时反馈。Google 的 AI 教育工具 AutoML 用于创建定制学习内容,提高学习动机,加深知识掌握。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟实验室,安全进行实验操作并得到 AI 系统反馈。例如 Labster 的虚拟实验室平台,提供高科技实验室场景,让学生尝试复杂实验流程,无需昂贵设备或专业环境。 然而,AI 技术在教育领域的广泛应用也对传统教育体系带来冲击,教育体系内部的惯性、教师技能更新、课程内容调整、评估和认证机制改革等问题成为 AI 教育创新面临的重要挑战。
2025-01-22
大模型的发展路径是什么样的
大模型的发展大致可以分为三个阶段: 1. 准备期:自 2022 年 11 月 30 日 ChatGPT 发布后,国内产学研迅速形成大模型共识。 2. 成长期:国内大模型数量和质量开始逐渐增长。 3. 爆发期:各行各业开源闭源大模型层出不穷,形成百模大战的竞争态势。 在发展过程中,大模型主要有以下几类: 1. 原创大模型:这类模型稀少而珍贵,需要强大的技术积累、持续的高投入,风险较大,但一旦成功竞争力强。 2. 套壳开源大模型:利用现有资源快速迭代和改进,需要在借鉴中实现突破和创新。 3. 拼装大模型:将过去的小模型拼接在一起,试图通过整合已有资源来实现质的飞跃,但整体性能并非各部分简单相加。 此外,360 作为国内唯一又懂大模型又懂安全的双料厂商,提出以“模法”打败魔法的理念,打造专业的安全大模型,只依赖大模型本身的能力,在恶意流量分析和恶意邮件检测效果方面超越 GPT 4,并与 360 积累的工具结合,提升攻击事件的检测和发现能力。同时,企业在运用大模型时,要将好的知识和算法结合,从数据中提炼出真正的实战知识。
2025-01-20
我想系统了解有关agent的应用及发展情况
智能体(Agent)在现代计算机科学和人工智能领域是一个基础且重要的概念,具有广泛的应用和不断发展的技术。 应用领域: 1. 自动驾驶:汽车中的智能体感知周围环境,做出驾驶决策。 2. 家居自动化:智能家居设备根据环境和用户行为自动调节。 3. 游戏 AI:游戏中的对手角色和智能行为系统。 4. 金融交易:金融市场中的智能交易算法根据市场数据做出交易决策。 5. 客服聊天机器人:通过自然语言处理与用户互动,提供自动化的客户支持。 6. 机器人:各类机器人中集成的智能控制系统。 设计与实现: 通常涉及以下几个步骤: 1. 定义目标:明确智能体需要实现的目标或任务。 2. 感知系统:设计传感器系统,采集环境数据。 3. 决策机制:定义智能体的决策算法,根据感知数据和目标做出决策。 4. 行动系统:设计执行器或输出设备,执行智能体的决策。 5. 学习与优化:如果是学习型智能体,设计学习算法,使智能体能够从经验中改进。 发展情况: Agent 算是从年前到现在比较火的一个概念,也被很多人认为是大模型的未来的一个主要发展方向。目前行业里主要用到的是一个叫 langchain 的框架,它把大模型(LLM)和 LLM 之间,以及 LLM 和工具之间,通过代码或 prompt 的形式进行了串接。为 LLM 增加了工具、记忆、行动、规划等能力。 随着 AI 的发展,大家对 AI 的诉求变得越来越具体,简单的 ChatBot 的弊端日渐凸显,基于 LLM 对于 Agent 的结构设计,Coze、Dify 等平台在应用探索上有了很大的进展。但这些平台都有着固有局限,对于专业 IT 人士不够自由,对于普通用户完成复杂业务场景又有限制。
2025-01-19
我不会AI我可以往AI上面发展吗
如果您不会 AI ,完全可以往这方面发展。以下是一些您需要了解和学习的基础内容: 1. AI 背景知识: 基础理论:明确人工智能、机器学习、深度学习的定义及相互关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:掌握向量、矩阵等基本概念。 概率论:了解基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:熟悉常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:了解聚类、降维等算法。 强化学习:知晓其基本概念。 4. 评估和调优: 性能评估:学会如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:掌握使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:熟悉常用的激活函数,如 ReLU、Sigmoid、Tanh。 另外,鉴于人工智能依赖的神经网络基础,专家 AI 可能通过元学习(或学会学习)比预期更快地获得知识,并推动人类一同进步。开发具有潜在空间层次结构的堆叠 AI 模型,能帮助 AI 模型理解模式和关系。创建专门从事特定领域的 AI 可能比创建全能 AI 更容易,我们更需要特定领域的专家 AI 。同时,要让 AI 从在线基础投入到原子的世界中,让人类专家配备可穿戴设备收集互动供 AI 学习,避免复制危险的偏见。
2025-01-18
如何忘AI这方面发展
如果您想在 AI 方面发展,可以参考以下几点: 1. 持续学习和跟进:AI 是一个快速发展的领域,新的研究成果和技术不断涌现。您需要关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。同时,考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 2. 对于创新者来说,在前沿工作并开发新技术时,应对监管制度可能具有挑战性。英国确认致力于推进帕特里克·瓦伦斯爵士提出的为 AI 建立监管沙盒的关键建议,这将使监管机构能够直接支持创新者,并帮助他们将产品推向市场。 3. 英国已退出欧盟,可以建立一种监管方法,使英国成为 AI 超级大国。这种方法将积极支持创新,同时解决风险和公众关注。英国拥有蓬勃发展的初创企业,监管框架将支持其扩大规模并参与国际竞争。这种支持创新的方法也将对海外的 AI 企业在英国设立业务产生强大的激励作用。 4. 英国在制定 AI 监管方法时依靠政府、监管机构和企业之间的协作。最初,不打算引入新的立法。过早匆忙立法可能会给企业带来不必要的负担。同时,在赋予监管机构领导权的同时,也在设定相关内容。
2025-01-18