端到端语音技术目前取得了显著进展。
在语音合成方面:
在全模态智能体方面:
语音合成(Speech Synthesis)将文本转换为可听的声音信息,它赋予了像人一样说话的能力,是人机交互的重要接口。一般来说,语音合成的概念比文语转换(Text-to-Speech,TTS)的涵盖范围更广,语音合成包括TTS、歌唱合成等领域,但大多数情况下可以混用。[awesome-tts-samples](https://github.com/seungwonpark/awesome-tts-samples)提供了一些端到端语音合成模型的样例,可以简单感受下目前语音合成的发展。人类可以通过一整套发音器官合成语音,具体来说,肺相当于动力源,喉相当于调制器,声道相当于滤波器,口唇相当于扩音器。研究人员提出了以源-滤波器(source-filter)模型为代表的多种模型建模该过程,语音中存在清音和浊音,分别由声带周期性振动对应的周期声源和声带不振动时紊乱气流对应的非周期声源产生。当代工业界主流语音合成系统包括文本前端和声学后端两个部分。文本前端将输入文本转换为层次化的语音学表征,主要包括文本规范化、韵律分析和文本转音素等模块。声学后端基于文本前端给出的层次化语言学表征(linguistics feature)来生成语音,主要技术路线包括单元挑选波形拼接、统计参数和端到端语音合成方法,当代主要采用端到端声学后端。端到端声学后端一般包括声学模型和声码器两部分,同时也出现了直接从音素映射为波形的完全端到端语音合成系统。声学模型负责将语言学特征转换为中间声学特征,比如梅尔频谱,直接决定合成语音的韵律;声码器将中间声学特征转换为语音波形,直接决定合成语音的音质。
和统计参数语音合成系统类似,深度学习语音合成系统也可大致分为两个部分:文本前端和声学后端。文本前端的主要作用是文本预处理,如:为文本添加韵律信息,并将文本词面转化为语言学特征序列(Linguistic Feature Sequence);声学后端又可以分为声学特征生成网络和声码器,其中声学特征生成网络根据文本前端输出的信息产生声学特征,如:将语言学特征序列映射到梅尔频谱或线性谱;声码器利用频谱等声学特征,生成语音样本点并重建时域波形,如:将梅尔频谱恢复为对应的语音。近年来,也出现了完全端到端的语音合成系统,将声学特征生成网络和声码器和合并起来,声学后端成为一个整体,直接将语言学特征序列,甚至文本词面端到端转换为语音波形。
每一次平台型技术的出现,都会催生出新的人机交互方式,个人电脑时代的鼠标与键盘,移动时代的触摸屏,现在是智能时代,我们一度认为ChatGPT的LUI(自然语言对话式界面)就是这个时代交互的终点,但事实并非如此,知名科幻电影HER中,那种人类与AI全感知无障碍的对话形式,才是我们想要的。“通过语音、文本和视觉进行推理非常重要,因为我们正在研究与机器交互的未来”,Muri Murati在今年五月十三日那场不到半小时的超快发布会上这样告诉大家。那天OpenAI发布了最新的模型GPT-4o,并且用了个很前卫的新概念,全模态模型-Omnimoda Model。GPT-4o是OpenAI之前所有技术的集大成者,新模型通过端到端的神经网络,把视觉、语音和文本数据混合训练,而不是用大家常用的工程手段,先各种数据先转换成文本后,交给LLM处理,然后再把输出的文本转换成对应的媒体形式。这样,GPT-4o对音频输入的平均反应时间为300毫秒,与人类对话的反应时间相似;而且直接拿音频数据来训练的好处就是模型能从数据中感悟到人类表达的情绪、语调、风格等等,你能听到几乎真实的人类的声音,在一段演示中感觉连训练时的环境声音都给还原出来了。OpenAI并没有公开GPT-4o的任何技术细节,唯一的线索就是来自他们内部模型炼丹师的一篇博客,项目名是AudioLM,2023年中启动,目标是用端到端的方式扩大语音模型的能力。