Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

现在市场的中的AI大模型都有哪些,各自有什么特点

Answer

目前市场中的部分 AI 大模型及特点如下:

  • 北京企业机构:
    • 百度:文心一言,网址:https://wenxin.baidu.com
    • 抖音:云雀大模型,网址:https://www.doubao.com
    • 智谱 AI:GLM 大模型,网址:https://chatglm.cn
    • 中科院:紫东太初大模型,网址:https://xihe.mindspore.cn
    • 百川智能:百川大模型,网址:https://www.baichuan-ai.com/
  • 上海企业机构:
    • 商汤:日日新大模型,网址:https://www.sensetime.com/
    • MiniMax:ABAB 大模型,网址:https://api.minimax.chat
    • 上海人工智能实验室:书生通用大模型,网址:https://intern-ai.org.cn

这些大模型在聊天状态下具有不同特点:

  • 能生成 Markdown 格式的:智谱清言、商量 Sensechat、MiniMax
  • 目前不能进行自然语言交流的:昇思、书生
  • 受限制使用:MiniMax(无法对生成的文本进行复制输出,且只有 15 元的预充值额度进行体验,完成企业认证后可以进行充值)
  • 特色功能:昇思——生图,MiniMax——语音合成

此外,阿里通义千问、360 智脑、讯飞星火等均不在首批获批名单中。据悉,广东地区获批公司分别为华为、腾讯,科大讯飞系其他地区获批产品。

中国大模型面临的真实问题包括:

  • 原创大模型:稀少而珍贵,需要强大技术积累和持续高投入,风险大,一旦竞争力不足,投入可能付诸东流。
  • 套壳开源大模型:务实的发展路径,需在借鉴中实现突破创新。
  • 拼装大模型:将小模型拼接,试图整合资源实现飞跃,但整体性能并非简单相加。

在 AI 市场与 AI 产品经理方面:

  • AI 创业市场:一方面行业大佬认为是比移动互联网更大的红利;另一方面观点有碰撞。当前 OpenAI 虽估值高但未盈利,大模型创业可能成泡沫,但 AI 应用不会。小参数大模型盛行,利于开发者。2024 下半年会有一批有代表性的 AI 应用出现。
  • 对于 agent 智能体,个人看好在社交和游戏中的应用。
Content generated by AI large model, please carefully verify (powered by aily)

References

8月正式上线的国内大模型

5⃣️五家北京企业机构:百度(文心一言)https://wenxin.baidu.com抖音(云雀大模型)https://www.doubao.com智谱AI(GLM大模型)https://chatglm.cn中科院(紫东太初大模型)https://xihe.mindspore.cn百川智能(百川大模型)https://www.baichuan-ai.com/3⃣️三家上海企业机构:商汤(日日新大模型)https://www.sensetime.com/MiniMax(ABAB大模型)https://api.minimax.chat上海人工智能实验室(书生通用大模型)https://intern-ai.org.cn今天这8个大模型,在聊天状态下——能生成Markdown格式的:智谱清言、商量Sensechat、MiniMax目前不能进行自然语言交流的:昇思(可以对文本进行是否由AI生成的检测,类似论文查重,准确度不错)、书生受限制使用:MiniMax(无法对生成的文本进行复制输出,且只有15元的预充值额度进行体验,完成企业认证后可以进行充值)特色功能:昇思——生图,MiniMax——语音合成阿里通义千问、360智脑、讯飞星火等均不在首批获批名单中,广东省2家和其他省市1家也将陆续开放据悉,广东地区获批公司分别为华为、腾讯,科大讯飞系其他地区获批产品

中国大模型面临的真实问题:登顶路远,坠落一瞬

1.第一类是原创大模型。这类模型就像是AI世界中的"独角兽",稀少而珍贵。创造原创大模型需要强大的技术积累,同时还需要持续的高投入。然而,这条路充满风险。正如马斯克所说:"当某件事情足够重要时,即使概率对你不利,你也要去做。"原创大模型的开发者们正是秉持着这种精神,在未知的领域不断探索。但是,一旦模型未能展现出足够的竞争力,这些大规模的投入就可能付诸东流。2.第二类是套壳开源大模型。这种策略反映了一种务实的发展路径,利用现有资源快速迭代和改进。在这条“赛道”上,需要思考如何在借鉴中实现真正的突破和创新。3.第三类是拼装大模型。这种方法将过去的小模型拼接在一起,形成一个参数量看似很大的大模型。这种策略体现了一种独特的创新思维,试图通过整合已有资源来实现质的飞跃。然而,正如系统理论所示,整体的性能并不仅仅是各部分的简单相加。在这三类模型中,原创大模型的数量最少,也最具挑战性。它们需要强大的技术积累、持续的高投入,以及面对巨大风险的勇气。然而,当市场上已经出现了足够好的基础大模型时,其他公司应该转向挖掘新的价值点。比如,探索大模型在不同领域的应用,或者开发中间层服务,如训练、数据处理、算力服务等。但现实是,大多数参与者仍在追逐所谓的原创大模型,又担心风险太高,导致大量套壳和拼装大模型的出现。

AI 市场与 AI 产品经理分析——2024 是否是 AI 应用创业的好机会

一方面,是行业大佬做出预判,这是一波比移动互联网更大的红利。另一方面,很多观点在碰撞。我个人认同傅盛和朱啸虎两位老总的观点(两位老总在去年这个时候有一些观点碰撞,今年达成了和解),详见《傅盛朱啸虎一年再辩AI大模型一年之变》。个人总结:1)当前OpenAI虽然估值高但还没盈利,是否会成为泡沫是一个可讨论的话题。个人看法:就看GPT5什么时候出来了,大模型创业可能会成为泡沫,但AI应用不会,还是认可这是堪比移动互联网的红利。2)小参数大模型开始盛行,苹果等公司也专注小参数,为了在手机端即可跑模型应用,对开发者是利好。3)2024下半年会有一批有代表性的AI应用跑出来。个人看法:仅针对agent智能体来说的话,个人看好在社交和游戏中的应用,传统游戏如诸神、赛马娘等,带有模拟经营和养成的属性,玩家是上帝视角,但不是真养成,之前的可能性都是预设好的。而agent智能体能实现模拟现实的养成,不同角色在游戏中恋爱结婚生子,每个家庭再养育出不同属性的新角色,此时一个游戏就是一个虚拟世界。有没有一种可能,我们其实就是造物者创作的一个个智能体?再推荐由前PDD与前今夜酒店特价的两位老师主理的《AI炼金术》,新一期播客中也聊到了AI产品与创业,里面几个观点很有意思:1)站在AI很重要的角度,AI创业没有蓝海,都是红海;2)先考虑这个市场有多少肉,再考虑这个市场有多少狼抢;

Others are asking
有哪些公司主要做数据处理,比如把文档转化成ai可理解的东西
以下是一些主要从事数据处理,将文档转化为 AI 可理解内容的公司: 在基础模型领域,有 OpenAI、Google、Cohere、AI21、Stability.ai 等公司,它们在构建大型语言模型方面展开竞争。此外,还有新兴的开源选项如 Eleuther。 像 Hugging Face 这种共享神经网络模型的社群,在软件 2.0 时代可能成为智慧的枢纽和人才中心。 还有一些独立应用公司,例如 Jasper(创意文案)、Synthesia(合成语音与视频)等,它们涉及 Creator&Visual Tools、Sales&Marketing、Customer Support、Doctor&Lawyers、Assistants、Code、Testing、Security 等各种行业。
2025-03-25
如何部署本地AI?
部署本地 AI 可以参考以下内容: 1. 平台选择: 线上平台:出图速度快,不吃本地显卡配置,无需下载大模型,能参考其他创作者作品,但出图尺寸受限。 线下平台:可添加插件,不卡算力,出图质量高,但使用时电脑可能宕机,配置不高可能爆显存导致出图失败。 建议充分发挥线上和线下平台的优势,线上找参考、测试模型,线下作为主要出图工具。 2. 开始方式: 本地部署:如果电脑是 M 芯片的 Mac 电脑或 2060Ti 及以上显卡的 Windows 电脑,可以选择本地部署,强烈建议在配有 N 卡的 Windows 电脑上进行。 在线平台:电脑不符合要求的可使用在线工具,在线工具分为在线出图和云电脑两种,根据实际情况选择。 配台电脑:不建议一开始就配主机,玩几个月后还有兴趣再考虑,主机硬盘要大,显卡在预算内买最好。 3. 具体步骤(以把大模型接入小米音箱为例): 第四步:填写 API 服务,如智普、硅基等,其他模型的 API 端口参考官方文档。 第五步:语音服务,可参考官方说明,若有问题可自行尝试并反馈。 第六步:启动服务,在最上方可导出编辑内容为 json 格式,每次调整设置都需重置后重新启动,建议回答完毕后增加结束提示语以提高连续对话稳定性。 希望以上内容对您有所帮助。
2025-03-25
国内ai变成应用
国内 AI 应用发展迅速,在多个领域取得了突破: 早期应用:主要基于 NLP 技术,如聊天机器人和客服机器人。随后,中英文翻译、语音识别、人脸识别等技术取得突破,应用广泛,如语音助手、智能翻译设备、人脸识别支付系统等。但这些技术突破大多限于特定领域,模型应用范围相对狭窄。 新发展路线:OpenAI ChatGPT 等大型语言模型展示了新方向,通过大规模模型预训练,涌现出多功能于一体的智能应用。 编程工具:字节的 Trae 是很厉害的 AI 编程工具,国内版已上线,支持多款模型。目前处于公测阶段免费,能让不懂技术的人开发简单应用程序,未来超级产品经理或成为现实。 图像类产品: 可灵:由快手团队开发,用于生成高质量图像和视频,图像质量高,最初采用内测邀请制,现开放使用,价格相对较高,有不同收费选项。 通义万相:作为国产 AI 工具,在中文理解和处理方面出色,可选择多种艺术和图像风格,生成图像质量高、操作界面简洁直观、用户友好度高,可与阿里其他产品和服务无缝整合,目前免费,但存在一些局限性,如某些类型图像无法生成、处理非中文或国际化内容可能不够出色等。
2025-03-25
如何训练AI智能体
以下是关于训练 AI 智能体的一些信息: 1. 可以将一些创新的 prompt 融入工作流中,以更高效地训练智能体。这种方法不仅能改进现有的大语言模型,还能探索新的应用领域,实现低成本、高效能和模型效益最大化,突破单纯依赖算法的方式。 2. 采用流式训练方式提升训练速度和质量,例如将孔明灯换成泡泡,基于 Transformer 模型进行流匹配,这种方式优于扩大模型。 3. 利用多种 AI 生成工具,如输入简单提示词就能创作音乐的 so no 音频生成工具,能创建个人 AI 智能体的豆包,输入文本可生成播客的 Notebook LN。 4. 了解 AI 工程平台,如 define 等,涉及数据清洗管道、数据存储和检索、编辑生成平台、构建 prompt 技巧、智能体概念、插件调用、运维平台、模型层和缓存机制等,还能接入多家大模型。以 coach 平台为例,新版本有很多模板,有众多插件工具,包括必应搜索、链接读取、代码执行器等,还有工作流,可创建应用 APP,有新手教程和文档,可创建智能体,通过工作流节点调用和 prompt 构建提示词,还能调用插件、图像流、知识库等,商城中有各种智能体和插件模板,知识库可添加多种格式内容。 5. 了解一些为大模型提供数据、企业模型和算力服务的平台,如魔搭社区等,有按任务划分的模型库、数据集和在线应用供体验。
2025-03-25
mermaid编辑工具
Mermaid 是一款用于创建各种图表的工具,它支持多种类型的图表,如思维导图、时序图、UML 图等。以下是关于 Mermaid 编辑工具的一些信息: 可以使用 Mermaid 语法创建简单的思维导图,例如:GRAPH CODE 判断 大语言模型 自然语言处理 机器学习 深度学习 执行 文本分析 情感分析 算法优化 神经网络 结束。 可用于将代码转化为图表,如在“code to diagram”的搜索结果中,Mermaid 不仅支持十几种图像,还提供了在线编辑器,生成器的网址为:https://mermaid.live/ 。 可以通过 ChatGPT 结合自然语法生成 Mermaid 图形语法,生成流程包括确定制作目标、通过自然语言描述逻辑、在线校验测试是否成功。例如,要求 ChatGPT 基于给定内容生成高速公路上车辆切入场景的时序图。
2025-03-25
怎么零基础学习ai
以下是零基础学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,无论是零基础还是中学生,学习 AI 可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能。
2025-03-25
如果调教ai助力成为网文作家?选用市面上哪种ai模型好一些
如果想调教 AI 助力成为网文作家,以下是一些建议和可选用的 AI 模型: 借助 AI 分析好的文章: 找出您最喜欢的文章,投喂给 DeepSeek R1(理论上来说适合大多数 AI,尤其是有推理模型)。 分三次询问:第一次从写作角度分析;第二次从读者角度分析;第三次指出文章的缺点、不足及改善和提升的空间。 对作者进行侧写,分析成长背景、个人经历和知识结构对文章的影响。 让 AI 对您写的文章进行点评:使用类似“现在我希望你是一名资深中文写作教师/小学语文老师/中学语文老师/公文写作培训师,拥有 30 年教育经验,是一名传授写作技巧的专家。请先阅读我提供给你的文章,然后对文章进行分析,然后教我如何提升写作水平。请给出详细的优缺点分析,指出问题所在,并且给出具体的指导和建议。为了方便我能理解,请尽量多举例子而非理论陈述”的提示词。 分享一个根据文章内容对作者心理侧写的提示词:“我希望你扮演一个从业 20 多年,临床诊治过两千多例心理分析案例的人性洞察和意识分析方面的专家,精通心理学、人类学、文史、文化比较。先阅读后附文章全文,然后对作者进行人格侧写。要尖锐深刻,不要吹捧包装,不要提出一些只能充当心理安慰的肤浅的见解。包括作者的基本画像、核心性格特质、认知与价值观、潜在心理动机、行为模式推测、矛盾与盲点、文化符号映射。” 在模型选择方面: 目前只推荐 Claude 3.7 Sonnet,Anthropic 对 Claude 在编程和美学方面有深度优化,效果较好。但您也可以使用 DeepSeek 等模型进行尝试。 对于模型的选用,没有强制必须用某个模型的说法。而是根据自己的习惯、实测的响应速度、生成质量、调用费用进行综合选择。比如 Doubao Function Call 模型,对于插件调用、Coze 内 json 格式输出比较擅长;MiniMax 处理文字速度很快;GLM 对于用户提示词的理解比较好。每个模型都有自己擅长的特点,而且每家模型都在不断的迭代。所以模型的选用,需要根据实测情况综合调整。一般可选择豆包·function call 32k,“function call”代表有着更好的 Coze 的工具调用能力,“32k”代表模型的上下文窗口大小,即模型在处理文本时能够考虑的单词或标记的数量。如果输出和输入的类型不是纯文本时,比如是 array、object 结构,请根据实测情况,考虑替换上豆包 function call 版本,其他的 LLM 可能会输出格式比较混乱。
2025-03-25
怎么用大模型赚钱
以下是关于如何用大模型赚钱的一些分析和建议: 1. 面向各国政府做基础大模型本土化预训练:很多 Global 的量化基金在中国会水土不服,大模型也存在类似情况。OpenAI、Google、Meta 的模型在中文能力和对中国国情的优化上存在不足,不符合政策要求。这给了国内大模型公司做本土化预训练的机会,只要做到国内领先,即使和世界领先的模型有代际差,也能有市场。 2. 关注行业应用:大模型在企业中的落地应用是关键。目前大模型是典型的赢家通吃领域,巨头在资金、技术和数据方面有优势。但大模型企业需要将技术与更多场景结合,打造落地应用。例如,Gartner 预测到 2028 年至少有 15%的日常工作决策将由代理型 AI 自主做出。 3. 竞争格局与成绩:国内大模型行业已形成以百度、阿里、字节等科技大厂和创业“AI 六小虎”为主要玩家的竞争格局。2024 年是国内大模型落地元年,中标项目数量和金额大幅增长。如百度在中标数量和金额上排名领先,在金融等细分行业也表现出色。 需要注意的是,大模型领域竞争激烈,只有极少数公司能成功,且需要将大模型商业化,否则企业可能在赛道比拼中失败。同时,大模型的发展与国家政策密切相关,需要受到有效监管才能健康发展。
2025-03-25
Qwen 多模态模型哪一个最顶?
目前阿里发布的 Qwen 多模态模型中,Qwen2.5VL 较为突出。它可处理长达数小时的视频,并在电脑上执行自动化任务。提供 3B、7B、72B 三种规模,旗舰版对标 GPT4o、Claude 3.5 Sonnet。具备全文档解析能力,支持手写、表格、图表、化学公式等多场景识别,还可操作电脑或手机界面,执行自动化任务,如点击按钮、填表等。详情可参考:https://www.xiaohu.ai/c/xiaohuai/qwen25vl285cee 。此外,Qwen2.5Max 也是阿里通义千问的大型专家模型(MoE),基于 SFT 和 RLHF 策略训练,在多项基准如 Arena Hard、LiveBench、LiveCodeBench、GPQADiamond 上超越 DeepSeek V3,引发社区关注。更多体验方式包括支持官方 Chat、API 接口、Hugging Face Demo 等,详情可参考:https://qwenlm.github.io/blog/qwen2.5max/ 、https://chat.qwenlm.ai 、https://alibabacloud.com/help/en/modelstudio/gettingstarted/firstapicalltoqwen?spm=a2c63.p38356.helpmenu2400256.d_0_1_0.1f6574a72ddbKE 、https://huggingface.co/spaces/Qwen/Qwen2.5MaxDemo 。
2025-03-25
我想搭建个人rag知识库,实现本地化部署,可以调用本地大模型去分析知识库的内容进行解答
以下是搭建个人 rag 知识库并实现本地化部署,调用本地大模型分析知识库内容进行解答的详细步骤: 一、通过 Open WebUI 使用大模型 1. 访问相关网址,使用邮箱注册账号。 2. 登陆成功后,Open WebUI 一般有两种使用方式,包括聊天对话和 RAG 能力(让模型根据文档内容回答问题,这是构建知识库的基础之一)。 3. 如果要求不高,此时已搭建本地大模型,并通过 Web UI 实现与大模型对话。ChatGPT 访问速度快且回答效果好的原因在于其服务器配置高、训练参数多、数据更优及训练算法更好。 二、本地知识库进阶 1. 若要更灵活掌控知识库,需使用额外软件 AnythingLLM,其包含 Open WebUI 的所有能力,并额外支持选择文本嵌入模型和向量数据库。 2. 安装地址:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 3. 在 AnythingLLM 中有 Workspace 的概念,可创建独有 Workspace 与其他项目数据隔离。首先创建工作空间,然后上传文档并在工作空间中进行文本嵌入,选择对话模式(包括 Chat 模式和 Query 模式),最后进行测试对话。 三、RAG 是什么 利用大模型搭建知识库是 RAG 技术的应用。在进行本地知识库搭建实操前,需对 RAG 有大概了解。RAG 应用可抽象为 5 个过程: 1. 文档加载:从多种来源加载文档,LangChain 提供 100 多种不同的文档加载器,包括非结构化、结构化数据及代码等。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或“文档片”。 3. 存储:涉及将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 4. 检索:通过检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示生成更合理的答案。 文本加载器是将用户提供的文本加载到内存中,便于后续处理。
2025-03-25
大神解读大模型底层
大模型的底层原理主要包括以下几个方面: 1. 生成式:大模型根据已有的输入为基础,不断计算生成下一个字词(token),逐字完成回答。例如,从给定的提示词“how”开始,通过计算推理依次输出“are”“you”等,直到计算出下一个词是“”时结束输出。 2. 预训练:大模型“脑袋”里存储的知识都是预先学习好的,这个预先学习并把对知识的理解存储记忆在“脑袋”里的过程称为预训练。以 GPT3 为例,训练它使用了约 4990 亿 token 的数据集,相当于 86 万本《西游记》。预训练需要花费大量时间和算力资源,且在没有外部帮助的情况下,大模型所知道的知识信息是不完备和滞后的。 3. 转换器模型(Transformer):Transformer 是一种处理文本内容的经典模型架构,虽然其具体细节不清楚不影响使用大模型,但感兴趣的可以通过相关链接进一步了解。 4. 参数规模:依靠概率计算逐字接龙的方法看似难以生成高质量回答,但随着参数规模的增加,如从 GPT1 的 1.5 亿到 GPT3.5 的 1750 亿,实现了量变到质变的突破,“涌现”出惊人的“智能”。这种“涌现”现象在人类的进化和个体学习成长历程中也存在。
2025-03-24
模型理解汉字能力很差
目前模型在理解汉字方面存在一些问题,主要表现为: 1. 语义理解较差,例如在某些应用场景中对中文的理解不够准确。 2. 中文汉字的集合较大,纹理结构更复杂,增加了理解难度。 3. 缺少中文文字的图文对数据,影响了模型对汉字的学习和理解。 为了提升模型对中文文字的生成能力,采取了以下措施: 1. 选择 50000 个最常用的汉字,机造生成千万级的中文文字图文对数据集,但机造数据真实性不足。 2. 实用 OCR 和 MLLM 生成海报、场景文字等真实中文文字数据集,约百万量级。通过结合高质量真实数据,提升了中文文字生成能力的真实性,即使是真实数据中不存在的汉字的真实性也有所提高。
2025-03-24
可以给出国内出名的大语言模型的信息吗,包括其模型名称,版本,发布时间,发布公司,模型参数,性能特点等信息,尽可能覆盖更多的大模型,使用表格输出,并按照发布时间排序
|模型名称|版本|发布时间|发布公司|模型参数|性能特点|适合应用| |||||||| |Baichuan213BChat|Baichuan2192K|10月31日|百川智能|未提及|在逻辑推理、知识百科、生成与创作、上下文对话等基础能力上排名200亿参数量级国内模型第一,在计算和代码能力上有一定优化空间|场景相对广泛且可以私有化部署,重点推荐在小说/广告/公文写作等内容创作场景、智能客服/语音助手以及任务拆解规划等场景,可部署在教育、医疗、金融等垂直行业中应用,同时可部署在低算力终端处理基础智能任务| |文心一言|V4.0|10月17日|百度|未提及|在计算、逻辑推理、生成与创作、传统安全这4大基础能力上排名国内第一,在代码、知识与百科、语言理解与抽取、工具使用能力上排名国内前三,各项能力表现均衡且绝大部分能力有很高的水平|能力栈较为广泛,可应用的场景较多,重点推荐在查询搜索知识应用、任务拆解规划Agent、文案写作以及代码编写及纠错等方面的应用,由于在逻辑推理方面的不俗表现,可以重点关注在科学研究、教育、工业方面的落地能力| |通义千问 2.0|2.0|10月31日|阿里云|千亿级参数|未提及|未提及|
2025-03-15
grok3 有什么特点
Grok 3 具有以下特点: 1. 包含两个模型版本:Grok 3 和 Grok 3mini。 2. 在 AIME 和 GPQA 在内的基准测试中显著优于其他模型,在数学推理、代码处理、科学问题方面表现优秀。 3. 具备推理能力,在提供更多测试计算时间的情况下,优于 o1 和 R1。 4. 新增“Deep Search”能力,能深入了解用户目的,访问并交叉验证多个信息源,确保研究内容更准确,并公开执行搜索所采取的步骤。 5. 可以调用 Big Brain 功能,加强计算来解决问题。 6. 现场演示中能生成游戏设计方案。 7. 语音模式在大约一周内推出。 8. API 几周后推出。 9. 今天向所有 Premium+订阅者推出(IOS、网页版都有),完整版在网页版,APP 上的 Grok 3 有一定削弱。(还有单独会员叫:SuperGrok)今天所有该类用户都能用上。 10. Grok 2 将在 Grok 3 正式可用后开源,xAI 计划也会开源 Grok 3 。 在评测方面,Grok 3 在基准测试中领先,但与竞争模型差距不大,整体表现比其他模型高出约 1 2%。Andrej Karpathy 认为 Grok 3 + Thinking 比 DeepSeek R1 强一些,接近 OpenAI 顶级模型,在测试中成功解决了多个复杂问题,但“DeepSearch”能进行高质量的检索类问题回答,尚需改进。 地址:https://huggingface.co/smirki/UIGENT1Qwen7b
2025-02-26
LLama特点和优缺点
Llama 的特点包括: 基于大规模神经网络,特别是 Transformer 架构。 Llama 的优点有: 具有强大的语言理解、生成和对话能力。 Llama 的缺点是: 计算资源消耗大。 可能存在偏见和误解。
2025-02-18
deepseek相比国内其他的AI,特点有哪些
DeepSeek 相比国内其他 AI 具有以下特点: 1. 在推理过程中通过多头隐式注意力减少内存需求,并且改进了 MoE 架构。 2. 在 LMSYS 排行榜上取得优异成绩,尤其在数学和编程方面表现出色。 3. 训练成本远高于传闻,约 13 亿美元,定价低于实际成本导致高额亏损。 4. 其最好的“产品”除了模型,还有高质量的论文,如 V2 和 V3 发布时的对应论文得到全球研究者的仔细阅读、分享、引用和大力推荐。 5. 中国的最强模型之一,能与美国生产的第二强前沿模型竞争,在某些子任务上挑战了 SOTA,且更能优先考虑计算效率,以弥补 GPU 访问的限制,并学会比美国同行更有效地利用资源。 同时,DeepSeek 区别于大多数中国的 AI 创业公司,更像是一家研究机构。它有钱,有不输于巨头、远多于创业公司的弹药。但并非所有巨头都愿意有一个自己的 DeepMind。此外,DeepSeek 的“极简算力”模式使其在竞争中具有一定优势,如迅速赶超了法国的 Mistral AI。
2025-02-10
什么ai好用,目前主流ai有什么特点
目前主流的 AI 工具各有特点和用途: 邮件写作方面: Grammarly:提供语法检查、拼写纠正、风格建议和语气调整等功能,易于使用,支持多种平台和语言,网站是 https://www.grammarly.com/ 。 Hemingway Editor:简化句子结构,提高可读性,标记复杂句和冗长句,界面简洁,重点突出,网站是 http://www.hemingwayapp.com/ 。 ProWritingAid:全面的语法和风格检查,提供详细的写作报告和建议,功能强大,支持多种平台和集成,网站是 https://prowritingaid.com/ 。 Writesonic:基于 AI 生成各种类型的文本,包括电子邮件、博客文章、广告文案等,生成速度快,网站是 https://writesonic.com/ 。 Lavender:专注于邮件写作优化,提供个性化建议和模板,帮助提高邮件打开率和回复率。 大语言模型方面: OpenAI 系统:包括 3.5 和 4.0 版本,3.5 模型在 11 月启动了当前的 AI 热潮,4.0 模型功能更强大。新的变种使用插件连接到互联网和其他应用程序,Code Interpreter 是一个强大的 ChatGPT 版本,可以运行 Python 程序。未为 OpenAI 付费只能使用 3.5 版本。微软的 Bing 使用 4 和 3.5 的混合,通常是 GPT4 家族中首个推出新功能的模型,连接到互联网。 谷歌:一直在测试自己的人工智能 Bard,由各种基础模型驱动,最近是 PaLM 2 模型。 Anthropic:发布了 Claude 2,其有一个非常大的上下文窗口,不太可能恶意行事。 对于刚入坑 AI 的学习路径: 第一步是带着好奇心去尝试,记住“生成”两个字。现在大部分人说的 AI 本质上是“生成式人工智能”Generative AI。可以随便找一个国产 AI 聊聊,比如小学奥数题、写演讲稿、对 996 的看法等,看看其擅长和不擅长的地方,有没有能帮助到自己的地方,哪些地方做得不够好。如果条件允许,也可以直接使用 ChatGPT 或者 Claude 处理复杂任务。
2025-01-24
transfer的特点是什么
Transformer 模型具有以下特点: 1. 基于注意力机制,能够处理单词的上下文,使单词的向量表示更具语义准确性。 2. 是一种使用注意力机制的编码器解码器模型,可以利用多元化的优势,同时处理大量数据。 3. 由编码器和解码器组成,编码器对输入序列进行编码并将其传递给解码器,解码相关任务的表示。 4. 编码器在结构上相同但具有不同的权重。 5. 可以非常有效地并行化,只要有合适的硬件,就能训练出非常大的模型。 6. 扩展性极佳,与巨大的数据集结合能产生令人惊讶的效果。 在数据转移方面,其特点包括: 1. 数据主体已明确同意拟议的转移,并在被告知由于缺乏充分性决定和适当保障措施而可能存在的风险后。 2. 转移对于数据主体与控制者之间合同的履行或应数据主体请求采取的合同前措施的实施是必要的。 3. 转移对于为数据主体的利益而在控制者与另一自然人或法人之间订立或履行合同是必要的。 4. 转移对于公共利益的重要原因是必要的。 5. 转移对于确立、行使或辩护法律主张是必要的。 6. 转移对于保护数据主体或其他人的重大利益是必要的,前提是数据主体在身体上或法律上无法给予同意。
2025-01-10
你是一个财务总监,市场分析师,但是你没有数据,现在需要你寻找一下有没有可以自动查找数据,并且根据数据生成饼状图的 AI工具
以下是为您推荐的可以自动查找数据并根据数据生成饼状图的 AI 工具: 1. Claude Financial Data Analyst:可视化金融数据分析工具,能生成多种图表,包括饼图。上传文档后可快速生成动态图表,适用于趋势分析和分布分析。详细介绍:https://xiaohu.ai/p/14811 ,GitHub:https://github.com/anthropics/anthropicquickstarts/tree/main/financialdataanalyst ,https://x.com/imxiaohu/status/1847617781594030583 。 2. PandasAI:让 Pandas DataFrame“学会说人话”的工具,用户可以以 Pandas DataFrame 的形式提出有关数据的问题,会以自然语言、表格或者图表等形式进行回答,目前仅支持 GPT 模型,OpenAI API key 需自备。示例:pandas_ai.run 。GitHub 链接:https://github.com/gventuri/pandasai 。 3. DataSquirrel:自动进行数据清理并可视化执行过程,帮助用户在无需公式、宏或代码的情况下快速将原始数据转化为可使用的分析/报告的数据分析工具。平台符合 GDPR/PDPA 标准。链接:https://datasquirrel.ai/ 。
2025-03-25
我现在想做个AI社区应该干什么
如果您想做一个 AI 社区,可以考虑以下方面: 1. 举办多轮比赛并发放高额奖金,例如设置第一名奖金 6000 多,第二名 4000 等,并制作动态海报。 2. 与小红书进行战略合作,鼓励成员在小红书开设自媒体账号,为优质作者提供流量扶持和问题解决帮助。 3. 在北京亚运村设置线下场地,例如赛博禅新的大聪明常驻,方便成员面基。 4. 规划酒吧相关事宜,比如准备开酒吧,名字叫 Bard AGI,并规划好相关细节,还可考虑在北京五道口附近开正式酒吧。 5. 注重社区搭建及成员互动,社区可由朋友圈发起,成员因兴趣相聚,线下见面能增强成员归属感,大家共同成长,一起创业。 6. 为学习者提供清晰的学习路径,从 AI 基础知识到进阶技术,逐步培养他们成为创作者和引领者。 7. 为创作者提供资源,帮助其创作出优质的内容与服务,满足企业需求,为社区发展注入活力。 8. 与企业合作,为其提供优质的 AI 内容与服务,从学习者中获取潜在的工具推广流量。 9. 组织各类活动,如线上线下的活动让对 AI 感兴趣的同学见面,拉近彼此距离,后续还有十几节课。 10. 建立高质量的交流社群,例如讨论话题仅围绕实际需求与 AI 创新应用玩法,持续探索人与 AI 共生新模式,审核门槛尽可能拉高,要求有发布过立足真实需求、有真价值的、让人兴奋的原创 AI 实践分享,群内时刻有脑暴,互相启发,开阔眼界,并整理日常价值讨论成内部总结文。
2025-03-25
现在Ai作图用什么?还是以前的Stable Diffusion吗?还是又出现了新的开源软件?
目前在 AI 作图领域,Stable Diffusion 仍然是常用的工具之一。Stable Diffusion 是 AI 绘画领域的核心模型,能够进行文生图和图生图等图像生成任务,其完全开源的特点使其能快速构建强大繁荣的上下游生态。 除了 Stable Diffusion,也出现了一些新的相关开源软件和工具,例如: :Stability AI 开源的 AI 图像生成平台。 :拥有超过 700 种经过测试的艺术风格,可快速搜索查找各类艺术家,并支持一键复制 Prompt。 同时,市面上主流的 AI 绘图软件还有 Midjourney,其优势是操作简单方便,创作内容丰富,但需要科学上网并且付费。如果您想尝试使用 Stable Diffusion,可以参考 B 站【秋葉 aaaki】这个 Up 主的视频了解具体的安装方法。
2025-03-24
我是一名ai小白,我现在系统学习ai的一切创作,并利用于工作中,请问怎么从头开始学习
对于 AI 小白想要系统学习 AI 并应用于工作,您可以按照以下步骤从头开始: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 参考「」,其中有一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后也进行分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 参考他人的学习经验: 可以参考《雪梅 May 的 AI 学习日记》,了解他人的学习模式和经验。比如作者采用输入→模仿→自发创造的模式,并且学习资源都是免费开源的。 总之,学习 AI 需要耐心和持续的努力,祝您学习顺利!
2025-03-24
现在ai生成ppt好用的工具有哪些
以下是一些好用的 AI 生成 PPT 的工具: 1. Gamma:在线 PPT 制作网站,可通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式,如 GIF 和视频,网址:https://gamma.app/ 2. 美图 AI PPT:由美图秀秀开发团队推出,通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素,网址:https://www.xdesign.com/ppt/ 3. Mindshow:AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,网址:https://www.mindshow.fun/ 4. 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术优势,提供智能文本生成、语音输入、文档格式化等功能,网址:https://zhiwen.xfyun.cn/ 此外,还有以下工具: 1. 爱设计 2. 闪击 3. Process ON 4. WPS AI 目前市面上大多数 AI 生成 PPT 按照以下思路完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 推荐您阅读以下扩展文章: 1. 《》 2. 《》 请注意,内容由 AI 大模型生成,请仔细甄别。
2025-03-24
现在哪个ai搜索工具最好用
以下是一些好用的 AI 搜索工具: 1. 秘塔 AI 搜索:由秘塔科技开发,具有多模式搜索、无广告干扰、结构化展示和信息聚合等功能,能提升搜索效率和体验。 2. Perplexity:聊天机器人式的搜索引擎,允许用自然语言提问,通过生成式 AI 技术从各种来源收集信息并给出答案。 3. 360AI 搜索:360 公司推出,通过 AI 分析问题,生成清晰有理的答案,并支持增强模式和智能排序。 4. 天工 AI 搜索:昆仑万维推出,采用生成式搜索技术,支持自然语言交互和深度追问,未来还将支持多模态搜索。 5. Flowith:创新的 AI 交互式搜索和对话工具,基于节点式交互方式,支持多种 AI 模型和图像生成技术,有插件系统和社区功能。 6. Devv:面向程序员的 AI 搜索引擎,专注于提供编程、软件开发和人工智能等领域的专业建议和指导。 7. Phind:专为开发者设计,利用大型语言模型提供相关搜索结果和动态答案,擅长处理编程和技术问题。 此外,能联网检索的 AI 有: 1. ChatGPT Plus 用户现在可以开启 web browsing 功能,实现联网。 2. Perplexity,结合了 ChatGPT 式的问答和普通搜索引擎的功能,允许用户指定希望聊天机器人在制定响应时搜索的源类型。 3. Bing Copilot,作为 AI 助手,旨在简化在线查询和浏览活动。 4. You.com 和 Neeva AI 等搜索引擎,提供基于人工智能的定制搜索体验,并保持用户数据的私密性。 在 2025 年必用的 AI 搜索工具中,Perplexity 被认为是年度最佳 AI 搜索。早在 2022 年,它就开始探索 AI 搜索领域,对许多后续产品有启发。一个 AI 搜索产品的优劣取决于 AI 的理解和整理能力,以及引用信息的质量。Perplexity 的官网是:https://perplexity.ai/,Pro 会员每月 20 美元,成为 Pro 会员后,可以使用高级模型,并享受无限制的 Pro 搜索。在专业搜索模式(Pro 搜索)中,对于复杂问题,可分别进行多次搜索以获取更全面的信息。
2025-03-24