Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我想系统了解有关agent的应用及发展情况

Answer

智能体(Agent)在现代计算机科学和人工智能领域是一个基础且重要的概念,具有广泛的应用和不断发展的技术。

应用领域

  1. 自动驾驶:汽车中的智能体感知周围环境,做出驾驶决策。
  2. 家居自动化:智能家居设备根据环境和用户行为自动调节。
  3. 游戏 AI:游戏中的对手角色和智能行为系统。
  4. 金融交易:金融市场中的智能交易算法根据市场数据做出交易决策。
  5. 客服聊天机器人:通过自然语言处理与用户互动,提供自动化的客户支持。
  6. 机器人:各类机器人中集成的智能控制系统。

设计与实现: 通常涉及以下几个步骤:

  1. 定义目标:明确智能体需要实现的目标或任务。
  2. 感知系统:设计传感器系统,采集环境数据。
  3. 决策机制:定义智能体的决策算法,根据感知数据和目标做出决策。
  4. 行动系统:设计执行器或输出设备,执行智能体的决策。
  5. 学习与优化:如果是学习型智能体,设计学习算法,使智能体能够从经验中改进。

发展情况: Agent 算是从年前到现在比较火的一个概念,也被很多人认为是大模型的未来的一个主要发展方向。目前行业里主要用到的是一个叫 langchain 的框架,它把大模型(LLM)和 LLM 之间,以及 LLM 和工具之间,通过代码或 prompt 的形式进行了串接。为 LLM 增加了工具、记忆、行动、规划等能力。

随着 AI 的发展,大家对 AI 的诉求变得越来越具体,简单的 ChatBot 的弊端日渐凸显,基于 LLM 对于 Agent 的结构设计,Coze、Dify 等平台在应用探索上有了很大的进展。但这些平台都有着固有局限,对于专业 IT 人士不够自由,对于普通用户完成复杂业务场景又有限制。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:什么是智能体 Agent

智能体在各种应用中扮演重要角色,以下是一些典型的应用领域:1.自动驾驶:自动驾驶汽车中的智能体感知周围环境,做出驾驶决策。2.家居自动化:智能家居设备(如智能恒温器、智能照明)根据环境和用户行为自动调节。3.游戏AI:游戏中的对手角色(NPC)和智能行为系统。4.金融交易:金融市场中的智能交易算法,根据市场数据做出交易决策。5.客服聊天机器人:通过自然语言处理与用户互动,提供自动化的客户支持。6.机器人:各类机器人(如工业机器人、服务机器人)中集成的智能控制系统。[heading3]智能体的设计与实现[content]设计和实现一个智能体通常涉及以下几个步骤:1.定义目标:明确智能体需要实现的目标或任务。2.感知系统:设计传感器系统,采集环境数据。3.决策机制:定义智能体的决策算法,根据感知数据和目标做出决策。4.行动系统:设计执行器或输出设备,执行智能体的决策。5.学习与优化:如果是学习型智能体,设计学习算法,使智能体能够从经验中改进。[heading3]总结[content]智能体在现代计算机科学和人工智能领域是一个基础且重要的概念。它们通过自主感知和行动,在广泛的应用领域中发挥重要作用。从简单的反应型系统到复杂的学习型系统,智能体技术的不断发展和应用正在改变我们的生活方式和工作模式。内容由AI大模型生成,请仔细甄别

(筹划中)「Agent共学」之"两天学会用AI建站"

|月日20:00开始|备选:coze应用制作|0基础小白|健健||-|-|-|-||月日<br>20:00开始|用AI打造你专属的浏览器插件|进阶级|银海||月日<br>20:00开始|用AI打造个人网站|0基础小白|大雨||月日<br>20:00开始|大消费得奖者bot拆解分享|0基础小白|作者x罗文||月日<br>20:00开始|优秀作品启发:创意分享|0基础小白|元子||月日<br>20:00开始|卡片+快捷指令+消息|0基础小白|Stuart||月日<br>20:00开始|成功bot背后的男人(们)|0基础小白|维恩||月日<br>20:00开始|知识库基础||大圣|随着AI的发展,大家对AI的诉求变得越来越具体,简单的ChatBot的弊端日渐凸显,基于LLWeng对于Agent的结构设计,Coze,Dify等平台在应用探索上有了很大的进展。年初吴恩达基于Agent应用,场景,需求等分析以后,做了4个分类:--然而这些平台都有着固有局限,正如低代码平台,无代码平台历经数十年的发展,依然无法很好平衡复杂业务场景无法满足,简单业务场景ROI不高等限制。对于专业IT人士,coze等平台不够自由,局限性过大,对于普通用户,想要完成复杂的业务场景又有着诸多的限制。软件技术的发展,一直在对抗需求的日益复杂化,最终不得不借助编程这个朴实的手段。

Ranger:【AI 大模型】非技术背景,一文读懂大模型(长文)

agent算是从年前到现在,比较火的一个概念了,也被很多人认为是大模型的未来的一个主要发展方向。首先我们看这个很经典的一张图看起来还是蛮复杂的,然后市面上的很多描述agent的文章写的也比较复杂,说智能体是啥智能的最小单元,相较于copilot,是可以给他设定一个目标后主动完成任务的等等。当然这些说法都没错,但是我觉得还是有些不好理解的。所以我们依然先从原理着手去理解下,agent是个什么东西。首先这张图里,中间的“智能体”,其实就是llm,或者说大模型。四个箭头,分别是我们为llm增加的四个能力。工具、记忆、行动、规划。那么这个是怎么新增的呢?目前行业里主要用到的是一个叫langchain的框架,这个框架可以简单理解为,他把llm和llm之间,以及llm和工具之间,通过代码或prompt的形式,进行了串接。这个其实也像是在rag的基础上再进了一步。因为我们知道rag其实是给了大模型一个浏览器工具来使用嘛,那agent,其实就是给了大模型更多的工具。比如像是长期记忆,其实就是给了大模型一个数据库工具让其往里记录重要信息。规划和行动,其实就是在大模型的prompt层做的些逻辑,比如让其将目标进行每一步的拆解,拆解完成后,每一步去输出不同的固定格式action指令,给到工具作为输入。当然langchain或者说agent还不止这些,也会有很多其他的代码逻辑体现在其中,不过其主要的主干逻辑,其实还是在prompt层和工具层,完成的设计。

Others are asking
如何解决agent幻觉问题
在大型语言模型(LLM)中,幻觉通常指模型生成不忠实、捏造、不一致或无意义的内容。幻觉主要分为两种类型: 1. 上下文内幻觉:模型输出应与上下文中的源内容一致。 2. 外部幻觉:模型输出应基于预训练数据集,与预训练数据中的知识相符。由于预训练数据集规模庞大,每次生成都去检索和识别冲突成本太高。若将预训练数据语料库视为世界知识的代表,应努力确保模型输出是事实的,且在不知答案时明确表示。 为避免幻觉,LLM 需做到: 1. 输出符合事实的内容。 2. 适用时承认不知道答案。 在 LLM 驱动的自主 Agents 中,启发式函数可决定轨迹是否低效或包含幻觉。低效规划指花费过长时间未成功的轨迹,幻觉指遇到一系列连续相同动作导致环境中出现相同观察。自我反思可通过向 LLM 展示示例创建,并添加到 Agents 的工作记忆中。在 AlfWorld 中,幻觉比低效规划更常见。 对于处理 ChatGPT 的“幻觉”,有以下经验: 1. 明确告诉它想要准确答案,无幻觉。 2. 改变 temperature 参数(如改到 0)或控制创造力水平。 3. 得到答案后,要求它为每个引用产生精确的引用和页面,以便交叉检查。
2025-01-22
AI agent
以下是关于 AI Agent 的相关信息: AI Agent 是当您经常使用各种 AI 聊天工具但觉得不太够用,希望大模型搭配更多工具和能力以提供更稳定服务和输出时可以关注的板块。AI Agent 相关的平台和产品众多,百宝箱是其中一款来自阿里系的产品,登录链接为:https://tbox.alipay.com/proabout 。如果您是不会写代码、对 AI Agent 毫无使用经验的小白,或者看到宣传想尝试百宝箱的使用方法和能力,这篇分享可能对您有帮助。 最近测试百宝箱的原因是作者的小队伍“来都来了”参加比赛时发现其在大力搞比赛。百宝箱具有当前大模型随便用的特点,如通义千问·Max、月之暗面、智谱、百灵等统统免费。在文旅和传媒方面,支付宝为其提供了天然渠道,作者刚好在考虑相关探索,试用时看到首页相关标签栏露出,期待能带来渠道和流量,而且刚推广力度大。 此外,为您提供一些生成式人工智能的相关链接: Ask a Techspert:What is generative AI? https://blog.google/insidegoogle/googlers/askatechspert/whatisgenerativeai/ Build new generative AI powered search&conversational experiences with Gen App Builder: https://cloud.google.com/blog/products/aimachinelearning/creategenerativeappsinminuteswithgenappbuilder What is generative AI? https://www.mckinsey.com/featuredinsights/mckinseyexplainers/whatisgenerativeai Google Research,2022&beyond:Generative models: https://ai.googleblog.com/2023/01/googleresearch2022beyondlanguage.htmlGenerativeModels Building the most open and innovative AI ecosystem: https://cloud.google.com/blog/products/aimachinelearning/buildinganopengenerativeaipartnerecosystem Generative AI is here.Who Should Control It? https://www.nytimes.com/2022/10/21/podcasts/hardforkgenerativeartificialintelligence.html Stanford U&Google’s Generative Agents Produce Believable Proxies of Human Behaviors: https://syncedreview.com/2023/04/12/stanfordugooglesgenerativeagentsproducebelievableproxiesofhumanbehaviours/ Generative AI:Perspectives from Stanford HAI: https://hai.stanford.edu/sites/default/files/202303/Generative_AI_HAI_Perspectives.pdf Generative AI at Work: https://www.nber.org/system/files/working_papers/w31161/w31161.pdf
2025-01-22
国内优秀Agent应用案例
以下是一些国内优秀的 Agent 应用案例: 1. Coze:新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具拓展 Bot 能力边界。 2. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据需求打造产品能力。 3. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等多种场景,提供多种成熟模板,功能强大且开箱即用。 4. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景如销售、客服、行程安排等方面表现出色,提供更深入的环境感知和记忆功能。
2025-01-19
怎么做 agent,有什么 coze做 agent 的视频教程
以下是一些关于如何做 Agent 以及相关的 Coze 视频教程: 基础教程: 大圣:胎教级教程:万字长文带你使用 Coze 打造企业级知识库 (https://waytoagi.feishu.cn/wiki/CT3UwDM8OiVmOOkohPbcV3JCndb) 大聪明:保姆级教程:Coze 打工你躺平 (https://waytoagi.feishu.cn/wiki/PQoUwXwpvi2ex7kJOrIcnQTCnYb) 安仔:Coze 全方位入门剖析 免费打造自己的 AI Agent (https://waytoagi.feishu.cn/wiki/SaCFwcw9xi2qcrkmSxscxTxLnxb) 基础教程:Coze“图像流”抢先体验 (https://waytoagi.feishu.cn/wiki/AHs2whOS2izNJakGA1NcD5BEnuf) YoYo:Coze 图像流小技巧:探索视觉艺术的隐藏宝藏 (https://waytoagi.feishu.cn/wiki/CTajwJnyZizxlJk8a4AcJYywnfe) 【智能体】让 Coze 智能体机器人连上微信和微信群详细配置文档 (https://waytoagi.feishu.cn/wiki/ExHMwCDZ7i6NA7knCWucFvFvnvJ) 历史活动教程: 5 月 7 号():大聪明分享|主题:Agent 的前世今生,每个分享人分享最初是怎么接触 Coze 的,以及现在用 Coze 做什么 5 月 8 号():大圣分享|主题:我眼中的 AI Agent 以及通过搭建知识库实例入门 Coze 5 月 9 号():艾木分享|主题:Agent 系统的核心构成:Workflow 和 Multiagent Flow(以“Dr.Know”和“卧底”为例,线上答疑 5 月 10 号():罗文分享|主题:一个方法解锁 COEZ 所有插件的用法+如何自动化解锁每天抓取 X 内容+改写+发布到飞书 5 月 11 号():Itao 分享|主题:和 AI 成为搭子,线上答疑
2025-01-18
李飞飞最近出的agent综述文章哪里可以看到
以下是李飞飞相关文章的获取渠道: 《》 《》
2025-01-17
AI agent平台
以下是一些常见的 AI Agent 构建平台: 1. Coze:新一代一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具,能拓展 Bot 能力边界。 2. Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者根据需求打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等场景,提供多种成熟模板,功能强大且开箱即用。 6. 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 此外,还有来自阿里系的百宝箱,登录链接为:https://tbox.alipay.com/proabout 。如果您是对 AI Agent 使用没有经验的小白,或者想尝试其使用方法和能力,这可能是一个不错的选择。它当前有很多大模型可免费使用,如通义千问·Max、月之暗面、智谱、百灵等。在文旅和传媒方面,依托支付宝有天然渠道,刚推广时力度较大。
2025-01-17
ai快速发展在教育领域的应用
AI 在教育领域的应用十分广泛,主要包括以下几个方面: 1. 个性化学习平台:通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。例如 Knewton 平台,通过对数百万学生行为模式分析,精准预测学习难点并提前给出解决方案,大幅提升学习效率。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生作文和开放性答案题。如 Pearson 的 Intelligent Essay Assessor,能够分析和理解写作内容,给出准确评分和反馈,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学工具:使课堂教学更丰富和互动,如 AI 教师引导学生通过对话学习、解答疑问并提供即时反馈。Google 的 AI 教育工具 AutoML 用于创建定制学习内容,提高学习动机,加深知识掌握。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟实验室,安全进行实验操作并得到 AI 系统反馈。例如 Labster 的虚拟实验室平台,提供高科技实验室场景,让学生尝试复杂实验流程,无需昂贵设备或专业环境。 然而,AI 技术在教育领域的广泛应用也对传统教育体系带来冲击,教育体系内部的惯性、教师技能更新、课程内容调整、评估和认证机制改革等问题成为 AI 教育创新面临的重要挑战。
2025-01-22
系统学习并最终应用ai辅助工作
以下是关于系统学习并最终应用 AI 辅助工作的相关内容: 在医疗保健领域,鉴于人工智能依赖的神经网络基础,专家 AI 可能通过元学习更快地获得知识,并可能成为下一代专家的教师。我们可以通过构建系统深入探索其内部工作机制,创造学习的飞轮。 企业级 AI 应用开发知识点: 智能体应用(Assistant):基于上下文对话,自主决策并调用工具完成复杂任务的对话式 AI 应用。可用于客户服务、个人助理、技术支持等场景。 工作流应用(Workflow):将复杂任务拆解为若干子任务,以提高工作流程可控性的流程式 AI 应用。例如 AI 翻译。 智能体编排应用:支持多智能体协作的流程式 AI 应用,可编排多个智能体的执行逻辑。如综合调研报告、软件开发团队的组建。 教师使用 AI 的小技巧: 可控地引导学生,将部分课程、任务用 AI 辅助,同时限制部分课程的 AI 使用以培养独立思考和解决问题的能力。 人工智能用于集思广益和构建想法,但最终的工作必须由人类创作,对于想法发展和外语课程很有用。相关活动包括协作集思广益、创建结构化大纲、研究协助。 学生使用生成式人工智能来完善和编辑他们的作品,有利于语言改进和多模式内容。相关活动包括纠正语法/拼写、建议同义词、结构编辑、可视化编辑。 完全使用 AI,在整个任务中使用 AI,具体由学生或教师自行决定。适合那些生成式 AI 对学习结果非常关键的任务。相关活动包括共同创作、探索生成式 AI、实时反馈以及创建生成式 AI 产品。
2025-01-21
ai在教育领域的应用
AI 在教育领域有以下应用: 1. 个性化学习平台:通过集成算法和大数据分析,实时跟踪学生学习进度,诊断学习难点,提供个性化学习建议和资源。例如 Knewton 平台,通过对数百万学生行为模式分析,精准预测学习难点并提前给出解决方案,大幅提升学习效率。 2. 自动评估:利用自然语言处理技术(NLP)自动批改学生作文和开放性答案题。如 Pearson 的 Intelligent Essay Assessor,能够分析和理解写作内容,给出准确评分和反馈,减轻教师批改负担,提高评估效率和一致性。 3. 智能辅助教学工具:使课堂教学更丰富和互动,如 AI 教师引导学生通过对话学习、解答疑问并提供即时反馈。Google 的 AI 教育工具 AutoML 用于创建定制学习内容,提高学习动机,加深知识掌握。 4. 虚拟现实(VR)和增强现实(AR):学生可通过 VR 头盔进入虚拟实验室,安全进行实验操作并得到 AI 系统反馈。例如 Labster 的虚拟实验室平台,提供高科技实验室场景,让学生尝试复杂实验流程,无需昂贵设备或专业环境。 然而,AI 技术在教育领域的广泛应用也带来了一些挑战,如教育体系内部的惯性、教师技能更新、课程内容适时调整、评估和认证机制改革等。
2025-01-21
扣子应用搭建示例
以下是关于扣子应用搭建的相关内容: 白嫖 Groq 平台算力的落地应用: 通过扣子工作流,用代码模块进行 HTTP 访问,实现 0 token 脱离扣子模型来使用 Groq 作为 LLM,可参考梦飞大佬教程将扣子接入微信机器人(有微信封号风险)。 由于 Groq 的 API 与 OpenAI 的 API 几乎兼容,可以适配到任何 APP 产品填 APIKEY 调用的场景,以沉浸式翻译为例。 接入手机类 APP,比如通过快捷方式接入 Siri。 接入扣子工作流:搭建细节可移步 WaytoAGI 自学。建立工作流只需一个代码节点,需配置代码节点的输入引用、输出等。可建立 Bot 调用工作流,但建议不发布,以免代理流量被他人使用。 在扣子调用已有的 API 制作插件: Body:用于传递请求主体部分,GET 方法中通常不用于传递参数。 Path:用于定义请求路径部分,GET 方法中可传递参数,常编码为 URL 一部分。 Query:用于定义请求查询部分,是 GET 方法中常用的参数传递方式。 Header:用于定义 HTTP 请求头信息部分,GET 方法中通常不用于传递参数。配置输出参数,填对后可点击自动解析,调试与校验工具是否能正常运行。 搭建邮票收藏馆应用: 业务背景与逻辑梳理:源于客户需求,功能包括生成邮票、收藏邮票、收藏列表、查看藏品详情,规划了生成和查看两个页面。 页面设计: 第一页:导航栏有应用名称、查看收藏入口、用户头像;陈列展示生成的图片;生成和收藏部分可输入关键字生成并收藏。 第二页:收藏列表会加载用户所有收藏,数量超 100 需优化加翻页;收藏详情可查看大图、关键字、收藏时间。
2025-01-21
国内哪款AI应用在咨询解答方面比较好
以下是国内在咨询解答方面表现较好的一些 AI 应用: 1. 抖音搜索:是一个独立 App,增加了 AI 问答功能。字节旗下还有“豆包”这一国民级的 AI 应用入口。 2. 小红书: 点点:独立的 AI 搜索 App,基于小红书和少量外部数据,回答用户提出的攻略、美食、经验等问题。 问点点:小红书 App 内的 AI 问答页面,从检索框可以进入。 3. 作业帮智能辅导:为学生提供个性化学习辅导,使用机器学习、自然语言处理技术,市场规模百亿美元以上。 4. 法信智能法律咨询:解答法律问题提供法律咨询,使用自然语言处理、知识图谱技术,市场规模数亿美元。 此外,国内免费的大模型 APP 有 Kimi 智能助手(Moonshot AI 出品)、文心一言(百度出品)、通义千问(阿里云开发)。
2025-01-21
在医疗场景,现在有哪些应用
在医疗场景中,AI 有以下应用: 1. 医学影像分析:可用于分析 X 射线、CT 扫描和 MRI 等医学图像,辅助诊断疾病。 2. 药物研发:能够加速药物研发过程,比如识别潜在的药物候选物和设计新的治疗方法。 3. 个性化医疗:通过分析患者数据,为每个患者提供个性化的治疗方案。 4. 机器人辅助手术:用于控制手术机器人,提高手术的精度和安全性。 5. 疾病的诊断与预测:例如利用大模型进行疾病的早期诊断和病情发展预测。 6. 新药物发现:如麻省理工学院利用 AI 发现新型广谱抗生素 Halicin。 7. 中医应用:将人工智能与中医结合,辅助看诊,提高诊疗效率,未来有望实现 24 小时独立问诊开药。 8. 医学问答:像 DoctorGPT 这样的模型,能够准确回答各种医学问题。
2025-01-20
我想系统性的了解AI,你能为我画一个思维导图吗,或者结构性的帮我介绍。譬如:第一级:人工智能,第二级人工智能下的所有分支
以下是为您系统性介绍 AI 的结构内容: 第一级:人工智能 第二级: 1. 基本概念 术语和基础概念 主要分支(机器学习、深度学习、自然语言处理等) 分支之间的联系 2. 学习之旅 入门课程推荐(李宏毅老师的课程等) 在线教育平台课程 3. 特定模块 图像 音乐 视频等 4. 提示词技巧 5. 实践尝试 实践巩固知识 作品分享 6. 体验产品 ChatGPT Kimi Chat 智谱 文心一言等 此外,为您推荐三本神经科学书籍: 1. 《认知神经学科:关于心智的生物学》(作者:Michael S.Gazzaniga;Richard B.Lvry;George R.Mangun) 2. 《神经科学原理》(作者:Eric R.Kandel;James H.Schwartz) 3. 《神经生物学:从神经元到脑》(作者:John G.Nicholls 等著) 还有《雪梅 May 的 AI 学习日记》中提到的学习经验,如第一阶段迈出第一步,看书听课进社区,包括系统性学习、初步探索、加入 AI 社区等。
2025-01-21
一句话向完全不了解AI的人介绍什么是AI,并且让他理解什么是AI
AI 是一种模仿人类思维,可以理解自然语言并输出自然语言的存在。对于不具备理工科背景的人来说,可以把它当成一个黑箱。它就像某种可以理解人类文字但不是人的魔法精灵或器灵,其生态位是似人而非人的。 AI 包含多种技术和概念,比如: 1. 生成式 AI 生成的内容称为 AIGC。 2. 机器学习是电脑找规律学习,包括监督学习(有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归)、无监督学习(学习的数据没有标签,算法自主发现规律,如聚类)、强化学习(从反馈里学习,最大化奖励或最小化损失,类似训小狗)。 3. 深度学习是一种参照人脑有神经网络和神经元的方法(因为有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。 4. 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 5. LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2025-01-17
我该如何了解AI相关的知识 通往AHI之路有手机端吗
以下是一些了解 AI 相关知识的途径: 1. 访问《通往 AGI 之路》知识库,其提供了全面系统的 AI 学习路径,涵盖从常见名词到应用等各方面知识。您可以通过访问。 2. 关注相关的社交媒体账号,如公众号“通往 AGI 之路”、等,获取 AI 消息和知识普及视频。 3. 学习 AE 软件,了解其功能及与 AI 结合运用的方式,比如在 B 站找丰富的入门课程自学,或从包图网下载工程文件学习。 4. 阅读相关的研究报告,如艾瑞的《2024 年移动端 AI 应用场景研究报告》。 另外,《通往 AGI 之路》知识库目前没有手机端。
2025-01-14
我是一个ai小白,我是个一个0基础的人,我想在这个网站进一步系统的了解ai的应用,请给我推荐一下
以下是为您推荐的系统了解 AI 应用的内容: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能、机器学习、深度学习等主要分支及其之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,您可以根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库分享实践后的作品和文章。 5. 体验 AI 产品: 与现有的 AI 产品互动,如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人,了解其工作原理和交互方式。 同时,您还可以学习以下 AI 相关知识作为基础: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 此外,您还可以参考以下文章和推荐: 1. 《》:推荐了适合新手使用的 AI 产品,如聊天对话类、图像类、视频类、PPT 类、音频类和私人定制类,包括国内外的产品如 Kimi、智谱清言、ChatGPT 和 Midjourney 等。 2. 《》:通过生动的故事探讨自然语言处理(NLP)、自然语言理解(NLU)和自然语言生成(NLG)的核心概念。 3. 《》:设想了未来 150 年内 AI 原住民与智能机器的共生关系。
2025-01-13
如何能更加了解AI
以下是帮助您更加了解 AI 的一些建议: 1. 认识 AI 的基本概念: 把 AI 当成一个黑箱,只需知道它是能模仿人类思维、理解和输出自然语言的东西。 了解 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 学习途径: 阅读「」部分,熟悉相关内容。 在「」中找到为初学者设计的课程,如李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入。 掌握提示词技巧,因其上手容易且有用。 4. 实践和尝试: 理论学习后进行实践巩固知识,尝试使用各种产品并制作作品。 分享实践后的成果。 5. 体验 AI 产品: 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 6. 应对 AI 幻觉问题: 对 AI 模型的训练数据进行“大扫除”,去除错误、补充缺失、平衡偏差。 让 AI 的“思考过程”更透明,便于理解和监督,例如使用可解释性 AI 技术。 让多个 AI 模型协同工作,避免单个模型的局限性导致的错误。 总之,了解 AI 需要不断学习和实践,借鉴人类应对认知偏差的方法,推动 AI 技术的进步。
2025-01-11
作为一个AI小白,想了解AI或者说想了解AI如何使用
以下是为您提供的关于AI的全面介绍和使用方法: 一、如何认识AI 对于没有理工科背景的人来说,理解AI可能有一定难度。可以将AI视为一个黑箱,它是能理解自然语言并输出自然语言、模仿人类思维的东西。其生态位类似于传统道教中的驱神役鬼拘灵遣将,或者某种可以理解人类文字但不是人的魔法精灵/器灵。无论AI技术如何发展,其生态位仍是似人而非人的存在。在与AI相处时,当想让其实现愿望,要基于其“非人”的一面,尽可能通过语言文字压缩其自由度,清晰告知任务、边界、目标、实现路径方法以及所需的正确知识。 二、新手如何学习AI 1. 了解AI基本概念 阅读「」部分,熟悉AI的术语和基础概念,了解其主要分支及联系。 浏览入门文章,了解AI的历史、应用和发展趋势。 2. 开始AI学习之旅 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如Coursera、edX、Udacity)按自己节奏学习,有机会获得证书。 3. 选择感兴趣的模块深入学习 AI领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习,建议掌握提示词技巧。 4. 实践和尝试 理论学习后进行实践,巩固知识。 在知识库分享实践后的作品和文章。 5. 体验AI产品 与ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人互动,了解其工作原理和交互方式。 三、How I Use AI 作者Nicholas Carlini是技术大佬,他的博文「How I Use "AI"」是使用LLM进行编程和研究的实例分享,并给出了完整的提示词。他通过以下方式使用AI: 1. 构建完整的Web应用,获得超千万次页面浏览量。 2. 学习新技术,如Docker、Flexbox和React等。 3. 开启新项目,获取样板代码。 4. 简化代码,使复杂大型代码库更易理解。 5. 自动化单调任务,如数据格式化。 6. 提升用户专业度和效率,让普通用户像专家一样工作。 7. 获取API Reference,不必翻看查找文档。 8. 进行搜索,效果比传统搜索引擎好。 9. 解决一次性任务,省时省力。 10. 找到常见任务的解决方案。 11. 修复常见错误,比传统搜索更高效。
2025-01-11
如何系统地学习AI
以下是系统学习 AI 的方法: 1. 编程语言基础:从 Python、JavaScript 等编程语言开始学习,掌握编程语法、数据结构、算法等基础知识,为后续的 AI 学习奠定基础。 2. 尝试使用工具和平台:可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习基础知识: 了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 阅读入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 4. 参与实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 6. 选择感兴趣的模块深入学习:AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习,掌握提示词技巧。 7. 开始学习之旅: 阅读「」部分,熟悉 AI 的术语和基础概念。 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。通过在线教育平台(如 Coursera、edX、Udacity)上的课程按照自己的节奏学习,并有机会获得证书。 8. 实践和尝试:理论学习后进行实践,巩固知识,尝试使用各种产品做出作品。在知识库分享实践后的成果。 9. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式,获得对 AI 实际应用的第一手体验。 10. 加入学习社区:如,按照新手指引入门,避免走弯路。
2025-01-22
什么AI产品适合ERP系统的产品经理提升工作效率使用?
以下是一些适合 ERP 系统产品经理提升工作效率的 AI 产品: 1. 产品:产品经理如何用 ChatGPT 能够使用 GPT 解决性能差和历史数据存档的问题,最终的 SQL 执行时间从 4200 秒缩短到 8 秒,效率提升了 520 倍,复杂度降低了 6 倍,同时还能保存所有的历史数据,报表可以秒开。 链接:https://waytoagi.feishu.cn/wiki/KzFpwfMPviMJPJkFyTVcEEWFneg?table=tblwdvsWICkId67f&view=vewm6DMY99 2. 产品:产品经理的流程优化 探讨了 AI 对产品经理工作流程的改变,普遍认为 AI 能帮助做一些琐碎的事情,有效率提升,但比较有限。 链接:https://waytoagi.feishu.cn/wiki/F6F1wbGN7iTp9akVWqHcubOhnqe?table=tblwdvsWICkId67f&view=vewm6DMY99 3. 运营:腾讯运营如何用 ChatGPT 认为 AI 技术的发展会对职业形态产生影响,ChatGPT 应被视为日常工作的辅助工具。 链接:https://waytoagi.feishu.cn/wiki/AlTlwOU0oi08sSkCU7gciINxng8?table=tblwdvsWICkId67f&view=vewm6DMY99 4. 三等奖作品:帮助企业快速建立产品智能客服体系 通过用户意图识别、知识库检索答案、AI 大模型总结输出答案、多轮对话沟通、对话分析打标、自动更新知识库 FAQ 以及客服效果分析,提供全面的 AI 客服解决方案,提高 AI 客服回答的准确率,降低企业商用 AI 客服的门槛。 链接:https://www.coze.cn/store/agent/7435703161304252450?bid=6ehlp53p81g14&bot_id=true 、https://www.coze.cn/store/agent/7437176474702463016?bid=6ehlohji09g0q&bot_id=true 5. ERP 高智版:扣子销售订单管理大师 为中小型消费品企业提供销售订单管理,智能识别和提取销售订单信息,存储至飞书多维表格,有助于降低企业销售订单管理的时间和人力成本,同时省去了昂贵的 ERP 系统购买费用。 链接:https://www.coze.cn/s/iAEuTYLc/ 6. Designbuddy:AI 帮你分析你的设计 作为 Figma 插件,提供对 UI 设计的深入反馈,涵盖布局、颜色、排版、可访问性的结构化评论,并为每个类别分配客观评分,有助于识别 UI 设计中经常被忽视的缺陷。 链接:https://designbuddy.net/ 7. AI Employe:GPT4V 驱动的浏览器自动化工具 开源、由 GPT4 视觉驱动,旨在自动化浏览器环境中的复杂任务,可以自动执行需要类人智能的任务,如理解电子邮件、收据和发票,并将数据从电子邮件传输到 CRM/ERP 系统。 链接:https://aiemploye.c
2025-01-22
如何系统的学习AI
以下是系统学习 AI 的方法: 对于中学生: 1. 从编程语言入手学习:可以选择 Python、JavaScript 等编程语言,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台:使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 对于新手: 1. 了解 AI 基本概念:阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅:在「」中,找到一系列为初学者设计的课程。通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。特别推荐李宏毅老师的课程。 3. 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。在知识库提供了很多大家实践后的作品、文章分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 在医疗保健领域,鉴于人工智能依赖的神经网络基础,专家 AI 可能通过元学习(或学会学习)比我们预期的更快地获得知识,并带着我们人类一同进步。AI 的性质让我们可以做一些我们无法对人做的事情,即将他们一部分一部分地拆解,并研究每一个小部分。通过构建系统以深入探索专家 AI 的内部工作机制,我们将创造一个学习的飞轮。最终,专家 AI 可能超越领域专家的角色,成为下一代专家——无论是人类还是 AI——的教师。
2025-01-21
企业标书模拟评分系统
很抱歉,目前知识库中没有关于企业标书模拟评分系统的相关内容。但一般来说,企业标书模拟评分系统通常会涉及对标书的各项指标进行量化评估,包括但不限于技术方案的可行性、项目经验、价格合理性、服务保障等方面。您可以进一步明确您关于这个系统的具体问题,以便我为您提供更有针对性的帮助。
2025-01-20