Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

作为新手,如何掌握AI?要掌握到什么程度?

Answer

对于新手掌握 AI,您可以参考以下步骤和内容:

一、了解 AI 基本概念

  1. 阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
  2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。

二、开始 AI 学习之旅

  1. 在「入门:AI 学习路径」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。
  2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。

三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。建议一定要掌握提示词的技巧,它上手容易且很有用。

四、实践和尝试

  1. 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。
  2. 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。

五、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。

六、如果希望继续精进

  1. 了解 AI 背景知识
    • 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。
    • 历史发展:简要回顾 AI 的发展历程和重要里程碑。
  2. 掌握数学基础
    • 统计学基础:熟悉均值、中位数、方差等统计概念。
    • 线性代数:了解向量、矩阵等线性代数基本概念。
    • 概率论:基础的概率论知识,如条件概率、贝叶斯定理。
  3. 熟悉算法和模型
    • 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。
    • 无监督学习:熟悉聚类、降维等算法。
    • 强化学习:简介强化学习的基本概念。
    • 评估和调优:了解如何评估模型性能,包括交叉验证、精确度、召回率等;学习如何使用网格搜索等技术优化模型参数。
    • 神经网络基础:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN);了解常用的激活函数,如 ReLU、Sigmoid、Tanh。
  4. 掌握 Python 基础
    • 基本语法:了解 Python 的基本语法规则,比如变量命名、缩进等。
    • 数据类型:熟悉 Python 中的基本数据类型,如字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等。
    • 控制流:学习如何使用条件语句(if)、循环语句(for 和 while)来控制程序的执行流程。
    • 函数:定义和调用函数,理解函数如何接收参数和返回结果;了解作用域和命名空间,包括局部变量和全局变量的概念,以及它们是如何在 Python 中工作的。
    • 模块和包:学习如何导入 Python 标准库中的模块或者第三方库,理解如何安装和使用 Python 包来扩展程序的功能。
    • 面向对象编程(OOP):了解面向对象编程的基本概念,包括类的定义和实例化;学习如何为类定义属性和方法,以及如何通过对象来调用它们,了解类之间的继承关系以及如何实现多态。
    • 异常处理:理解什么是异常,以及它们在 Python 中是如何工作的;学习如何使用 try 和 except 语句来处理程序中可能发生的错误。
    • 文件操作:学习如何打开文件、读取文件内容以及写入文件,理解如何使用 Python 来处理文件路径,以及如何列举目录下的文件。

至于要掌握到什么程度,这取决于您的具体需求和目标。如果您只是想初步了解和应用一些简单的 AI 技术,掌握基本概念和一些常用工具的使用就可以。如果您希望在 AI 领域深入发展,可能需要系统地学习数学、算法、编程等知识,并不断实践和研究。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

写给不会代码的你:20分钟上手 Python + AI

[heading3]如果希望继续精进...对于AI,可以尝试了解以下内容,作为基础AI背景知识基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。历史发展:简要回顾AI的发展历程和重要里程碑。数学基础统计学基础:熟悉均值、中位数、方差等统计概念。线性代数:了解向量、矩阵等线性代数基本概念。概率论:基础的概率论知识,如条件概率、贝叶斯定理。算法和模型监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。无监督学习:熟悉聚类、降维等算法。强化学习:简介强化学习的基本概念。评估和调优性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。模型调优:学习如何使用网格搜索等技术优化模型参数。神经网络基础网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。激活函数:了解常用的激活函数,如ReLU、Sigmoid、Tanh。

写给不会代码的你:20分钟上手 Python + AI

[heading3]如果希望继续精进...在本份教程中,你会发现,在AI的帮助下,你本就可以完成很多基础的编程工作。但希望再深入一点,最好还是可以体系化的了解一下编程以及AI。至少熟悉以下内容:Python基础基本语法:了解Python的基本语法规则,比如变量命名、缩进等。数据类型:熟悉Python中的基本数据类型,如字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等。控制流:学习如何使用条件语句(if)、循环语句(for和while)来控制程序的执行流程。函数定义和调用函数:学习如何定义自己的函数,以及如何调用现有的函数。参数和返回值:理解函数如何接收参数和返回结果。作用域和命名空间:了解局部变量和全局变量的概念,以及它们是如何在Python中工作的。模块和包导入模块:学习如何导入Python标准库中的模块或者第三方库。使用包:理解如何安装和使用Python包来扩展程序的功能。面向对象编程(OOP)类和对象:了解面向对象编程的基本概念,包括类的定义和实例化。属性和方法:学习如何为类定义属性和方法,以及如何通过对象来调用它们。继承和多态:了解类之间的继承关系以及如何实现多态。异常处理理解异常:了解什么是异常,以及它们在Python中是如何工作的。异常处理:学习如何使用try和except语句来处理程序中可能发生的错误。文件操作文件读写:学习如何打开文件、读取文件内容以及写入文件。文件与路径操作:理解如何使用Python来处理文件路径,以及如何列举目录下的文件。

Others are asking
如何掌握生成式AI
以下是关于掌握生成式 AI 的一些建议: 课程学习: 可以学习台湾大学李宏毅教授的生成式 AI 课程,该课程主要介绍了生成式 AI 的基本概念、发展历程、技术架构和应用场景等内容,共分为 12 讲,每讲约 2 小时。 通过学习本课程,能够掌握生成式 AI 的基本概念和常见技术,能够使用相关框架搭建简单的生成式模型,了解生成式 AI 的发展现状和未来趋势。 学习内容: 了解什么是生成式 AI,包括其定义、分类,以及与判别式 AI 的区别和应用领域。 学习生成式模型的基本结构、训练方法、评估指标,以及常见模型的优缺点。 掌握生成式对话的基本概念、应用场景、系统架构和关键技术,以及基于生成式模型的对话生成方法。 熟悉预训练语言模型的发展历程、关键技术、优缺点及其在生成式 AI 中的应用。 知晓生成式 AI 面临的挑战和解决方法,以及未来发展趋势和研究方向。 学习资源: 教材:《生成式 AI 导论 2024》,李宏毅。 参考书籍:《深度学习》,伊恩·古德费洛等。 在线课程:李宏毅的生成式 AI 课程。 开源项目:OpenAI GPT3、字节跳动的云雀等。 学习方法: 了解 AI 基本概念:首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 开始 AI 学习之旅:在「」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如 Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),可以根据自己的兴趣选择特定的模块进行深入学习。建议一定要掌握提示词的技巧,它上手容易且很有用。 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。在知识库提供了很多大家实践后的作品、文章分享。 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,可以获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。
2024-12-18
小白怎么学习Ai掌握ai的使用
对于小白学习 AI 并掌握其使用,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 开发实践: 从一个最最基础的小任务开始,让 AI 先帮你按照 best practice 写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,学会必备的调试技能。 通过和 AI 的对话,逐步明确项目需求,让 AI 帮助梳理出产品需求文档。 注意在开发过程中可能会遇到的问题,如问题描述不清楚导致得到错误指引、AI 给的方案太复杂、配置错误等,最好有人类导师把任务拆解到足够小,针对性地设计学习路径,并密切关注随时从坑里捞人。
2024-12-13
小白怎么最快掌握Ai,了解学习Ai的使用方法
以下是小白最快掌握 AI 并了解学习其使用方法的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库查看大家实践后的作品、文章分享,并分享自己实践后的成果。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 6. 对于想要了解 AI 生成图像和生成视频的朋友: 多看教程,多实践,通过学习教程和反复实践,快速掌握 AI 工具的使用方法。 积极参与社群交流,加入相关社群,向有经验的朋友请教,获取宝贵经验和建议。 保持好奇心和探索精神,不断学习和探索新技术,在这个领域中保持竞争力。 7. 体验具体的 AI 工具: 例如使用“豆包”,其优点包括不需要翻墙,可以捏好给别人用,可以扩展聊天 AI 的基础能力(搜索、作图、文档等)。可通过网址 https://www.coze.cn/home 或直接在 APP 中搜索“豆包”进行使用,注册可用手机号、抖音号或飞书号,大约需要 5 分钟。在使用过程中不断优化和深入学习。
2024-12-13
作为新手,如何才能掌握好AI?做到什么程度算是学会了AI?
对于新手来说,要掌握好 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 如果希望在掌握基础后继续精进,最好体系化地了解编程以及 AI,至少熟悉以下 Python 相关内容: 1. Python 基础: 基本语法:了解 Python 的基本语法规则,比如变量命名、缩进等。 数据类型:熟悉 Python 中的基本数据类型,如字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等。 控制流:学习如何使用条件语句(if)、循环语句(for 和 while)来控制程序的执行流程。 2. 函数: 定义和调用函数:学习如何定义自己的函数,以及如何调用现有的函数。 参数和返回值:理解函数如何接收参数和返回结果。 作用域和命名空间:了解局部变量和全局变量的概念,以及它们在 Python 中是如何工作的。 3. 模块和包: 导入模块:学习如何导入 Python 标准库中的模块或者第三方库。 使用包:理解如何安装和使用 Python 包来扩展程序的功能。 4. 面向对象编程(OOP): 类和对象:了解面向对象编程的基本概念,包括类的定义和实例化。 属性和方法:学习如何为类定义属性和方法,以及如何通过对象来调用它们。 继承和多态:了解类之间的继承关系以及如何实现多态。 5. 异常处理: 理解异常:了解什么是异常,以及它们在 Python 中是如何工作的。 异常处理:学习如何使用 try 和 except 语句来处理程序中可能发生的错误。 6. 文件操作: 文件读写:学习如何打开文件、读取文件内容以及写入文件。 文件与路径操作:理解如何使用 Python 来处理文件路径,以及如何列举目录下的文件。 至于做到什么程度算是学会了 AI,这没有一个绝对的标准。但一般来说,当您能够熟练运用所学的 AI 知识和技能解决实际问题,能够理解和解释常见的 AI 应用和模型的工作原理,并且能够在特定领域进行创新和改进,就可以认为在一定程度上掌握了 AI。
2024-12-11
你好我想从产品经理转型为AI产品经理,都需要掌握和了解哪些知识
从产品经理转型为 AI 产品经理,您需要掌握和了解以下知识: 1. 算法知识: 理解产品核心技术,了解基本的机器学习算法原理,以便做出更合理的产品决策。 与技术团队有效沟通,减少信息不对称带来的误解。 评估技术可行性,在产品规划阶段做出更准确的判断。 把握产品发展方向,了解算法前沿更好地规划未来。 提升产品竞争力,发现独特优势并提出创新特性。 提升数据分析能力,处理和分析相关数据。 2. 市场与层级: 入门级:通过开源网站或课程了解 AI 概念,使用并实践应用搭建。 研究级:包括技术研究和商业化研究路径,能根据需求选择解决方案或手搓出 AI 应用验证想法。 落地应用级:有成功落地应用案例并产生商业化价值。 3. 岗位技能要求: 本科及以上学历,计算机科学、人工智能、机器学习相关专业背景。 熟悉 ChatGPT、Llama、Claude 等 AI 工具的使用及原理,具有实际应用经验。 熟练掌握 ChatGPT、Midjourney 等工具的使用及原理。 负责制定和执行 AI 项目,如 Prompt 设计平台化和模板化方法。 了解并熟悉 Prompt Engineering,包括常见的 Prompt 优化策略。 对数据驱动的决策有深入理解,能基于数据分析做决策。 具有创新思维,能基于业务需求提出并实践 AI first 的解决方案。 对 AI 技术与算法领域有强烈好奇心并付诸实践。 对 AIGC 领域有深入理解与实际工作经验,关注前沿技术。 具备一定的编程和算法研究能力,能应用新的 AI 技术和算法于对话模型生成。 具有一定的编程基础,熟练使用 Python、Git 等工具。 总之,对 AI 产品经理的要求是懂得技术框架,对技术边界有认知,关注场景、痛点和价值。
2024-12-03
给到你一些资料,创建一个对于资料内容掌握 的AI智能体具体操作
以下是创建对于资料内容掌握的 AI 智能体的具体操作: 一、了解智能体的概念 智能体大多建立在大模型之上,从基于符号推理的专家系统逐步演进而来。基于大模型的智能体具有强大的学习能力、灵活性和泛化能力。其核心在于有效控制和利用大型模型,提示词的设计对智能体的表现和输出结果有直接影响。 二、实践制作智能体 1. 基于公开的大模型应用产品(如 Chat GLM、Chat GPT、Kimi 等)尝试开发。 点击“浏览 GPTs”按钮。 点击“Create”按钮创建自己的智能体。 使用自然语言对话或手工设置进行具体设置。 开始调试智能体并发布。 2. 以字节的扣子为例,其作为字节跳动旗下的新一代一站式 AI Bot 开发平台,无论是否具备编程基础,都能迅速构建各类问答 Bot,开发完成后可发布到社交平台和通讯软件上。创建智能体可通过简单 3 步:起一个名称,写一段简单介绍,使用 AI 创建一个头像。 3. 对于 GPTs,可预先写好提示词,像编程一样详细设定操作步骤,方便重复使用。还可将日常工作中部分固定输入输出的场景写成“智能体”并不断迭代优化。很多 AI 网站都能创建“智能体”,如 Kimi.ai ,可设置配置信息、知识库、能力配置等,手搓各种机器人为您工作。
2024-11-19
用AI总结长文的prompt怎么写比较好
以下是关于用 AI 总结长文的一些提示词编写建议: 1. 单人发言版:基于李继刚老师的“通知消息整理助手”修改“文字排版大师”的 Prompt,重点 Prompt 语句需标出。 2. 多人发言版: 明确跟 GPT 说明需要其帮忙总结文字内容。 将提示词和文字原文发送给 GPT,等待其输出完毕后复制粘贴到文本编辑器中,整理并删掉无关内容,替换掉不美观的符号。 3. 法律相关: 格式:【设定角色+任务目标+上下文和背景信息+(正面要求)详细需求和细节性信息+(负面要求)限制和不需要的内容+回答的语言风格和形式】 讲清楚背景和目的,例如律师处理交通事故案件时应清晰描述案件事实、法规等。 学会提问,使用清晰、具体的语言,避免模糊表述,了解 AI 工作原理和限制。 拆解工作流程,将复杂任务分解成更小、更具体的环节。 4. 通用写作方面: 第一部分:说清楚要解决的问题及背景,可能导致的损失。 第二部分:以案例引入,写明案号、案件事实经过、裁判结果、关键依据等要点。 第三部分:对案例进一步分析,写明注意关键点,不给建议。 第四部分:给出具体操作建议,包括事前、事中、事后的注意事项和补救措施。 第五部分:结语及作者宣传。 文章结构需有结构化理解,所有结论应有案例基础,不能违反法律规定,文字简练精准,信息密度足够,建议具体细致且易于操作。
2025-01-24
什么ai好用,目前主流ai有什么特点
目前主流的 AI 工具各有特点和用途: 邮件写作方面: Grammarly:提供语法检查、拼写纠正、风格建议和语气调整等功能,易于使用,支持多种平台和语言,网站是 https://www.grammarly.com/ 。 Hemingway Editor:简化句子结构,提高可读性,标记复杂句和冗长句,界面简洁,重点突出,网站是 http://www.hemingwayapp.com/ 。 ProWritingAid:全面的语法和风格检查,提供详细的写作报告和建议,功能强大,支持多种平台和集成,网站是 https://prowritingaid.com/ 。 Writesonic:基于 AI 生成各种类型的文本,包括电子邮件、博客文章、广告文案等,生成速度快,网站是 https://writesonic.com/ 。 Lavender:专注于邮件写作优化,提供个性化建议和模板,帮助提高邮件打开率和回复率。 大语言模型方面: OpenAI 系统:包括 3.5 和 4.0 版本,3.5 模型在 11 月启动了当前的 AI 热潮,4.0 模型功能更强大。新的变种使用插件连接到互联网和其他应用程序,Code Interpreter 是一个强大的 ChatGPT 版本,可以运行 Python 程序。未为 OpenAI 付费只能使用 3.5 版本。微软的 Bing 使用 4 和 3.5 的混合,通常是 GPT4 家族中首个推出新功能的模型,连接到互联网。 谷歌:一直在测试自己的人工智能 Bard,由各种基础模型驱动,最近是 PaLM 2 模型。 Anthropic:发布了 Claude 2,其有一个非常大的上下文窗口,不太可能恶意行事。 对于刚入坑 AI 的学习路径: 第一步是带着好奇心去尝试,记住“生成”两个字。现在大部分人说的 AI 本质上是“生成式人工智能”Generative AI。可以随便找一个国产 AI 聊聊,比如小学奥数题、写演讲稿、对 996 的看法等,看看其擅长和不擅长的地方,有没有能帮助到自己的地方,哪些地方做得不够好。如果条件允许,也可以直接使用 ChatGPT 或者 Claude 处理复杂任务。
2025-01-24
怎么应用ai工具爬取网上热门话题,并生成类似的相关文案,免费的
目前免费使用 AI 工具来爬取网上热门话题并生成类似相关文案的做法存在法律和道德风险,并且大多数正规的 AI 工具也不支持此类功能。网络爬取需要遵守相关法律法规和网站的使用规则,未经授权的爬取可能会导致法律责任。建议您通过合法合规的途径,如利用搜索引擎的热门话题推荐、社交媒体的热门话题板块等方式获取热门话题,并借助 AI 工具的辅助来生成相关文案。
2025-01-24
AI能否给老照片上色?
AI 能够给老照片上色。在最近新上线的 controlnet 模型中,新增的 Recolor 模型可对黑白图片重新上色,适用于修复年代久远的老照片。比如,在给人物照片上色时,可选择 realisian 的写实大模型,通过提示词描述颜色和对应的内容。但上色过程可能存在一些问题,如颜色不精准出现在想要的位置、提示词之间相互污染、照片斑驳痕迹导致背景不统一等。为解决这些问题,可启用 cutoff 插件进行控制。另外,对于像素较低的照片,还可进一步处理使其变得更高清。具体操作可参考相关文章和教程。
2025-01-24
如何学习AI
以下是新手学习 AI 的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-24
飞书知识库ai机器人
以下是关于飞书知识库 AI 机器人的相关信息: 简介:在飞书 5000 人大群里,内置了一个智能机器人「waytoAGI 知识库智能问答」,它是基于飞书 aily 搭建的。() 如何使用:在飞书群里发起话题时即可,它会根据 waytoAGI 知识库的内容进行总结和回答。 功能: 自动问答:自动回答用户关于 AGI 知识库内涉及的问题,可以对多文档进行总结、提炼。 知识搜索:在内置的「waytoAGI」知识库中搜索特定的信息和数据,快速返回相关内容。 文档引用:提供与用户查询相关的文档部分或引用,帮助用户获取更深入的理解。 互动教学:通过互动式的问答,帮助群成员学习和理解 AI 相关的复杂概念。 最新动态更新:分享有关 AGI 领域的最新研究成果、新闻和趋势。 社区互动:促进群内讨论,提问和回答,增强社区的互动性和参与度。 资源共享:提供访问和下载 AI 相关研究论文、书籍、课程和其他资源的链接。 多语言支持:支持多语言问答,满足不同背景用户的需求。 搭建问答机器人的分享:2024 年 2 月 22 日的会议首先介绍了 WaytoAGI 社区的成立愿景和目标,以及其在飞书平台上的知识库和社区的情况。接着,讨论了如何利用 AI 技术帮助用户更好地检索知识库中的内容,引入了 RAG 技术,通过机器人来帮助用户快速检索内容。然后,介绍了基于飞书的知识库智能问答技术的应用场景和实现方法,可以快速地给大模型补充新鲜的知识,提供大量新的内容。之后,讨论了如何使用飞书的智能伙伴功能来搭建 FAQ 机器人,以及智能助理的原理和使用方法。最后,介绍了企业级 agent 方面的实践。 背后的技术:「飞书智能伙伴创建平台」(英文名:Aily)是飞书团队旗下的企业级 AI 应用开发平台,提供了一个简单、安全且高效的环境,帮助企业轻松构建和发布 AI 应用,推动业务创新和效率提升。云雀是一款由字节跳动研发的语言模型,通过便捷的自然语言交互,能够高效的完成互动对话、信息获取、协助创作等任务。 关于“我是谁”:是 WaytoAGI 专属问答机器人,基于 Aily 和云雀大模型。 使用方法: 方法 1:在 WaytoAGI 飞书知识库首页找到加入飞书群的链接(下图二维码仅作示意,请在找到最新二维码),然后点击加入,直接@机器人即可。 方法 2:在 WaytoAGI.com 的网站首页,直接输入问题,即可得到回答。 做问答机器人的原因: 整个知识库的内容已经非常庞大,内容越来越丰富的同时,作为一个刚进入知识库的用户,并没有办法可以很快的找到知识库的内容。 传统的搜索是基于关键词及关键词的相关性。例如搜索“吃了吗?”和“昨天晚上鸡腿好吃”,在字面意义上的差异和语义上的价值。 作为一个 AI 知识库,需要用更先进的办法来解决:RAG 技术。 在群中提供一个可以快速供大家检索信息的方式,使用更加便捷。
2025-01-24
新手使用,如何编写提示词
对于新手编写提示词,以下是一些要点和方法: 1. 基本语法:根据自己想画的内容写出提示词,多个提示词之间使用英文半角符号。 2. 词语顺序:一般而言,概念性的、大范围的、风格化的关键词写在前面,叙述画面内容的关键词其次,最后是描述细节的关键词。大致顺序为。 3. 权重调整:可以使用括号人工修改提示词的权重,如:字符。 4. 关键词选择:关键词最好具有特异性,措辞越不抽象越好,尽可能避免留下解释空间的措辞。 5. 描述逻辑:通常的描述逻辑包括人物及主体特征(服饰、发型发色、五官、表情、动作),场景特征(室内室外、大场景、小细节),环境光照(白天黑夜、特定时段、光、天空),画幅视角(距离、人物比例、观察视角、镜头类型),画质(高画质、高分辨率),画风(插画、二次元、写实)。 6. 辅助工具和方法: 利用功能型辅助网站,如 http://www.atoolbox.net/ ,它可以通过选项卡的方式快速地填写关键词信息;https://ai.dawnmark.cn/ ,其每种参数都有缩略图可以参考,方便更加直观地选择提示词。 去 C 站(https://civitai.com/)里面抄作业,每一张图都有详细的参数,可点击下面的复制数据按钮,然后直接粘贴到正向提示词栏里。 对于星流一站式 AI 设计工具: 输入语言方面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(一个长头发的金发女孩),基础模型 1.5 使用单个词组(女孩、金发、长头发),支持中英文输入。 写好提示词的方法包括使用预设词组、保证提示词内容准确(包含人物主体、风格、场景特点、环境光照、画面构图、画质)、调整负面提示词、利用“加权重”功能让 AI 明白重点内容,还可使用辅助功能,如翻译功能、删除所有提示词、会员加速等。
2025-01-23
新手教程
以下是为新手提供的 AI 学习教程: 1. 动效画板新手教程:https://bytedance.larkoffice.com/wiki/XRyXwTeGniGKcqkFsPVcJKZ0nTd 2. Prompt 新手学习指南: 第一步:拥有一个大模型帐号,至少熟悉与之对话的方式。推荐: 第二步:阅读 OpenAI 的官方文档,包括 3. 新手学习 AI 的总体步骤: 了解 AI 基本概念:阅读「」部分,熟悉术语和基础概念,了解其主要分支及联系,浏览入门文章。 开始学习之旅:在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。可通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获取证书。 选择感兴趣的模块深入学习:AI 领域广泛,可根据兴趣选择特定模块,如掌握提示词技巧。 实践和尝试:理论学习后进行实践,尝试使用各种产品创作作品,在知识库分享实践成果。 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。
2025-01-23
面向新手个人的AI应用培训课程
以下是为新手个人推荐的一些 AI 应用培训课程: 1. 微软的 AI 初学者课程: 作者/来源:微软 推荐阅读《Introduction and History of AI》从这里起步 链接: 发布日期:2023/02/10 必看星标:👍🏻 2. AI for every one(吴恩达教程): 作者/来源:吴恩达 前 ChatGPT 时代的 AI 综述 链接: 发布日期:2023/03/15 必看星标:👍🏻 3. 大语言模型原理介绍视频(李宏毅): 作者/来源:李宏毅 可以说在众多中文深度学习教程中,李宏毅老师讲的应该是最好的,最通俗易懂 链接: 发布日期:2023/05/01 4. 谷歌生成式 AI 课程: 作者/来源:谷歌 注:前 4 节课为入门课 目录: 5. ChatGPT 入门: 作者/来源:OpenAI 注册、登录、简单使用方法等 目录: 新手学习 AI 的建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。 建议一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 通过与这些 AI 产品的对话,你可以获得对 AI 在实际应用中表现的第一手体验,并激发你对 AI 潜力的认识。 此外,还有“90 分钟从 0 开始打造你的第一个 Coze 应用:证件照 2025 年 1 月 18 日副本”,其中包括: 1. Code AI 应用背景:智能体开发从最初的 chatbot 只有对话框,到有了更多交互方式,因用户需求扣子推出了 AI 应用,其低代码或零代码的工作流等场景做得较好。 2. AI CODING 现状:AI CODING 虽强,但目前适用于小场景和产品的第一个版本,复杂应用可能导致需求理解错误从而使产品出错。 3. 证件照应用案例:以证件照为例,说明以前实现成本高,现在有客户端需求并做了相关智能体和交互。 4. AI 应用学习过程:创建 AI 应用,学习操作界面、业务逻辑和用户界面,包括布局、搭建工作流、用户界面及调试发布,重点熟悉桌面网页版的用户界面。
2025-01-23
新手从哪里开始学,入门
新手学习 AI 可以从以下几个方面入手: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。 根据电脑的硬件情况和自身财力选择合适的开始方式: 1. 本地部署: 如果电脑是 M 芯片的 Mac 电脑(Intel 芯片出图速度非常慢,因此不建议)或者 2060Ti 及以上显卡的 Windows 电脑,可以选择本地部署。强烈建议在配有 N 卡的 Windows 电脑上进行。 2. 在线平台: 对于电脑不符合要求的小伙伴可以直接使用在线工具,在线工具分为在线出图和云电脑两种,前者功能可能会受限、后者需要自己手动部署,大家根据实际情况选择即可。 不建议一上来就配主机,因为大概率会变成游戏机或者吃灰(土豪请随意)。玩几个月后还对 AI 有兴趣的话再考虑配个主机。主机硬盘要大,显卡预算之内买最好,其他的随意。 课程简述: 1. 先验经验: 需要熟练使用文生图、图生图;需要有一定的逻辑思考能力以及推理能力;适合炼丹新人、小白。 2. 课程安排: 课程大约 70 80%是理论和方法论的内容,大部分练习会在课外跟大家沟通、练习。只有少部分必要内容会在课上演示。 必学、必看内容是基础课,主要是为了解决环境问题和软件安装不上的问题;建炉是针对不同炼丹方式提供了不同的炼丹工具的安装教程;正式的内容部分分为了数据集预处理、模型训练以及模型调试及优化三个部分。
2025-01-23
新手小白,如何从0开始搭建AI Agent
对于新手小白从 0 开始搭建 AI Agent,以下是一些建议: 1. 规划阶段: 制定任务的关键方法,总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施阶段: 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善阶段: 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 此外,还需要了解一些关于 AI Agent 的基本概念: AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 AI Agent 包括 Chain(通常一个 AI Agent 可能由多个 Chain 组成,一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量,大部分的 Chain 是大语言模型完成的 LLM Chain)、Router(可以使用一些判定,甚至可以用 LLM 来判定,然后让 Agent 走向不同的 Chain)、Tool(Agent 上可以进行的一次工具调用,例如对互联网的一次搜索,对数据库的一次检索)。 常见的 AI Agent 有 Responser Agent(主 agent,用于回复用户)、Background Agent(背景 agent,用于推进角色当前状态)、Daily Agent(每日 agent,用于生成剧本,配套的图片,以及每日朋友圈)。这些 Agent 每隔一段时间运行一次(默认 3 分钟),会分析期间的历史对话,变更人物关系、反感度等,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间)。
2025-01-23
新手小白没学过编程,想用AI制作小程序,个人网站和APP
对于新手小白想用 AI 制作小程序、个人网站和 APP,目前有以下相关信息: 「Agent 共学」提供了一系列针对 0 基础小白的课程,包括用 AI 打造个人网站等,具体日程安排为:月日 20:00 开始,由大雨授课。 白九龄在 0 基础的情况下用 cursor 做微信小程序的经历,过程中遇到了诸多问题,如添加背景元素、自适应调整、意图分析页面的信息展示和排版、生成海报时的限制等,还面临大模型理解困难、token 费用和变现等问题。 需要注意的是,虽然有相关的探索和尝试,但使用 AI 制作这些项目仍存在一定的难度和限制。
2025-01-15
当前ai发展到什么程度了
当前 AI 的发展程度可以从以下几个方面来看: 1. 在通用人工智能(AGI)的发展等级方面: 聊天机器人:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 推理者:具备人类推理水平,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 智能体:不仅具备推理能力,还能执行全自动化业务,但目前许多产品在执行任务后仍需人类参与。 创新者:能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可加速科学研究和新药发现。 组织:最高级别,能够自动执行组织的全部业务流程。 2. 技术发展历程: 早期阶段(1950s 1960s):有专家系统、博弈论、机器学习初步理论。 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理得到发展。 统计学习时期(1990s 2000s):出现机器学习算法,如决策树、支持向量机、贝叶斯方法等。 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等兴起。 3. 当前前沿技术点: 大模型:如 GPT、PaLM 等。 多模态 AI:包括视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 自监督学习:自监督预训练、对比学习、掩码语言模型等。 小样本学习:元学习、一次学习、提示学习等。 可解释 AI:涉及模型可解释性、因果推理、符号推理等。 机器人学:强化学习、运动规划、人机交互等。 量子 AI:量子机器学习、量子神经网络等。 AI 芯片和硬件加速。 同时,开源大模型爆发,企业大模型市场崛起,但通用大模型也遇到瓶颈,如算力和知识沉淀等问题。
2025-01-11
Al发展到什么程度
目前 AI 的发展呈现出多方面的特点和趋势: 1. 千脑理论:新皮层由数以万计的皮质柱组成,每根柱子都会学习物体的模型,多模型设计发挥作用的关键是投票。智能机器的“大脑”也应由许多几乎相同的元素(模型)组成,并连接到各种可移动的传感器。大脑中的知识储存在参考框架中,机器也需要学会一个世界的模型。 2. 通用化趋势:AI 将从专用方案过渡到更多的通用方案。通用电脑因更好的成效比导致技术更快进步,更多努力用于加强受欢迎的设计和支持其生态系统,导致成本降低和性能提升。同时,一些重要的未来应用如探索火星等需要通用方案的灵活性,而当前专用的深度学习模型无法满足。 3. 游戏领域:随着生成式人工智能革命的进展,它将重塑用户生成内容(UGC),创造任何人都能构建游戏的世界,游戏创作将变得真正民主化,数以百万计的新游戏制作者将被创造出来。 4. 企业发展:OpenAI 公司成立于 2015 年,总部位于美国旧金山,早期是非营利机构,后来改成有限营利形式。其使命是推进人工智能技术发展,为全球创造更安全、智能的未来。关于 OpenAI 公司的时间线,可参考 Wiki(https://timelines.issarice.com/wiki/Timeline_of_OpenAI)和 OpenAI Blog(https://openai.com/blog/)。
2025-01-09
现在ai发展到什么程度了
目前 AI 的发展呈现出多方面的特点和进展: 1. 在通用人工智能(AGI)方面,尚未取得巨大进展,但 OpenAI 等机构提出了 AGI 的五个发展等级,包括聊天机器人、推理者、智能体、创新者和组织。其中,聊天机器人具备基本对话能力,推理者能解决复杂问题,智能体可执行全自动化业务但仍需人类参与,创新者能协助人类完成新发明,组织则能自动执行全部业务流程。 2. 在应用方面,ANI(弱人工智能)得到了巨大发展,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等。 3. 大模型方面,开源大模型爆发,未来 AGI 竞争的关键在于云端超级大模型,但通用大模型也面临瓶颈,如算力和知识不足的问题。 4. 机器学习方面,监督学习因数据增长、神经网络规模发展和算力提升而快速发展。 5. 数据方面,数据集是由数据组成的集合,分为结构化和非结构化数据,获取数据的方式包括手动标注、观察行为和网络下载,同时需要有效处理数据中可能存在的不正确和缺失等问题。
2025-01-07
端到端语音技术现在进展到什么程度了
端到端语音技术目前取得了显著进展。 在语音合成方面: 语音合成将文本转换为可听的声音信息,是人机交互的重要接口,一般包括 TTS、歌唱合成等领域。 当代工业界主流语音合成系统包括文本前端和声学后端两个部分。文本前端将输入文本转换为层次化的语音学表征,声学后端基于此生成语音,主要技术路线包括单元挑选波形拼接、统计参数和端到端语音合成方法,当代主要采用端到端声学后端。 端到端声学后端一般包括声学模型和声码器两部分,也出现了直接从音素映射为波形的完全端到端语音合成系统。 在全模态智能体方面: OpenAI 发布的 GPT4o 是新模型通过端到端的神经网络,把视觉、语音和文本数据混合训练,对音频输入的平均反应时间为 300 毫秒,与人类对话的反应时间相似。 直接拿音频数据来训练的好处是模型能从数据中感悟到人类表达的情绪、语调、风格等,能听到几乎真实的人类的声音。 OpenAI 未公开 GPT4o 的技术细节,唯一线索来自内部模型炼丹师的一篇博客,项目名是 AudioLM,目标是用端到端的方式扩大语音模型的能力。
2025-01-03
AI现在发展到什么程度了
目前 AI 的发展呈现出以下特点和程度: 1. 在弱人工智能(ANI)方面取得了巨大进展,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等,这些应用只专注于特定任务。 2. 通用人工智能(AGI)尚未取得巨大突破,但一直在努力发展。AGI 被分为五个等级: 聊天机器人:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 推理者:具备人类推理水平,能够解决复杂问题,如 ChatGPT,能根据上下文和文件提供详细分析和意见。 智能体:不仅具备推理能力,还能执行全自动化业务,但目前许多产品在执行任务后仍需人类参与。 创新者:能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可加速科学研究和新药发现。 组织:最高级别的 AI,能够自动执行组织的全部业务流程,包括规划、执行、反馈、迭代、资源分配和管理等。 3. 机器学习方面,监督学习因数据增长、神经网络规模发展以及算力提升而快速发展。 4. 数据方面,数据集是数据的集合,通常以表格形式出现,包括结构化数据和非结构化数据。获取数据的方式有手动标注、观察行为和网络下载等。同时,数据处理中会面临不正确、缺少数据等问题,需要有效处理。 5. 大模型方面,开源大模型爆发,未来 AGI 竞争的关键是云端超级大模型,但通用大模型也遇到瓶颈,如算力和知识不足的问题。训大模型需要将饱含人类智慧的高含量知识融入。
2024-12-16