Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

现在ai发展到什么程度了

Answer

目前 AI 的发展呈现出多方面的特点和进展:

  1. 在通用人工智能(AGI)方面,尚未取得巨大进展,但 OpenAI 等机构提出了 AGI 的五个发展等级,包括聊天机器人、推理者、智能体、创新者和组织。其中,聊天机器人具备基本对话能力,推理者能解决复杂问题,智能体可执行全自动化业务但仍需人类参与,创新者能协助人类完成新发明,组织则能自动执行全部业务流程。
  2. 在应用方面,ANI(弱人工智能)得到了巨大发展,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等。
  3. 大模型方面,开源大模型爆发,未来 AGI 竞争的关键在于云端超级大模型,但通用大模型也面临瓶颈,如算力和知识不足的问题。
  4. 机器学习方面,监督学习因数据增长、神经网络规模发展和算力提升而快速发展。
  5. 数据方面,数据集是由数据组成的集合,分为结构化和非结构化数据,获取数据的方式包括手动标注、观察行为和网络下载,同时需要有效处理数据中可能存在的不正确和缺失等问题。
Content generated by AI large model, please carefully verify (powered by aily)

References

问:AGI 的 5 个等级是什么?

OpenAI在其内部会议上分享了关于通用人工智能(AGI)的五个发展等级。OpenAI自2015年成立以来,一直将AGI作为其战略目标之一,随着ChatGPT、多模态大模型和AI Agent等技术的发展,我们似乎越来越接近实现这一目标。AGI的五个等级分别为:1.聊天机器人(Chatbots):具备基本对话能力的AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。2.推理者(Reasoners):具备人类推理水平的AI,能够解决复杂问题,如ChatGPT,能够根据上下文和文件提供详细分析和意见。3.智能体(Agents):不仅具备推理能力,还能执行全自动化业务的AI。目前许多AI Agent产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。4.创新者(Innovators):能够协助人类完成新发明的AI,如谷歌DeepMind的AlphaFold模型,可以预测蛋白质结构,加速科学研究和新药发现。5.组织(Organizations):最高级别的AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。

周鸿祎免费课AI系列第二讲-企业如何拥抱AI

当开源大模型爆发,大模型无处不在。未来AGI竞争的关键是云端超级大模型,最近美国的巨头都在进军这个领域。大模型现在越做越小,一加推出手机,这两天斯坦福推了一个叫章鱼的大模型,可以跑在手机上。杨元庆这两天是不是在推AIPC。我们今天的重点是讲企业大模型市场崛起。因为现在通用大模型也遇到瓶颈。算力可能遇到点瓶颈,英伟达挣的盆满钵满,算力的背后是能源。但我今天还发了一个短视频,他们碰到知识不够的问题了。因为人工智能也在超越人类,之前还在跟人类学习,人类原来也没有意识把很多知识沉淀下来。所以他们现在发展到什么程度呢?像他们最近发现,百度贴吧里的“弱智吧”原来是特别好的学习知识的地方。这个“弱智吧”名字没起好,其实里边一点都不弱智,里边的问题都挺难回答的。我去看了看,好多问题我都回答不出来。比如说明明是睡觉,为什么要去酒店?明明是喝酒,为什么要去夜店?睡觉应该去夜店睡觉,喝酒才去酒店喝酒对吧?所以不要看互联网上满是数据,数据不等于信息,信息不等于知识,知识不等于智慧。所以训大模型就需要把饱含人类智慧的高含量的知识训进去。

学习笔记:AI for everyone吴恩达

AI分为ANI和AGI,ANI得到巨大发展但是AGI还没有取得巨大进展。ANI,artificial narrow intelligence弱人工智能。这种人工智能只可做一件事,如智能音箱,网站搜索,自动驾驶,工厂与农场的应用等。AGI,artificial general intelligence,做任何人类可以做的事[heading5]机器学习[content]监督学习,从A到B,从输入到输出。为什么近期监督学习会快速发展,因为现有的数据快速增长,神经网络规模发展以及算力快速发展。[heading5]什么是数据?[content]数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。如何获取数据,一,手动标注,二,观察行为,三,网络下载。使用数据的方法,如果开始搜集数据,可以马上将数据展示或者喂给某个AI团队,因为大多数AI团队可以反馈给IT团队,说明那种类型数据需要收集,以及应该继续构建那种类型的IT基础框架。数据不一定多就有用,可以尝试聘用AI团队要协助梳理数据。有时数据中会出现,不正确,缺少的数据,这就需要有效处理数据。数据同时分为结构化数据与非结构化数据。结构化数据可以放在巨大的表格中,人们理解图片,视频,文本很简单,但是这种非结构化数据机器处理起来更难一些。

Others are asking
怎样从头开始学习AI
以下是从头开始学习 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习 AI 知识和技能,为未来的 AI 发展做好准备。
2025-01-08
ai提示词生成网站
以下是一些 AI 提示词生成网站: :AI 艺术提示词生成器。 :玩游戏也能练习 Prompt 书写。 NovelAI tag 生成器:设计类 Prompt 提词生成器,地址。 魔咒百科词典:魔法导论必备工具,简单易用的 AI 绘画 tag 生成器,地址。 KREA:设计 AI 的 Prompt 集合站,create better prompts,地址。 Public Prompts:免费的 prompt 合集,收集高质量的提示词,地址。 AcceleratorI Prompt:AI 词汇加速器,加速 Prompt 书写,通过按钮帮助优化和填充提示词,地址。 MidLibrary:Midjourney 最全面的流派、艺术技巧和艺术家风格库,地址。 MidJourney Prompt Tool:类型多样的 promot 书写工具,点击按钮就能生成提示词修饰部分,地址。 OPS 可视化提示词:这个网站有 Mid Journey 的图片风格、镜头等写好的词典库,方便你快速可视化生成自己的绘画提示词,地址。 AIart 魔法生成器:中文版的艺术作品 Prompt 生成器,地址。 IMI Prompt:支持多种风格和形式的详细的 MJ 关键词生成器,地址。 Prompt Hero:好用的 Prompt 搜索,Search prompts for Stable Diffusion,ChatGPT&Midjourney,地址。 OpenArt:AI 人工智能图像生成器,地址。 img2prompt:根据图片提取 Prompt,地址。 MidJourney 提示词工具:专门为 MidJourney 做的提示词工具,界面直观易用,地址。 PromptBase:Prompt 交易市场,可以购买、使用、销售各种对话、设计 Prompt 模板,地址。 AiTuts Prompt:精心策划的高质量 Midjourney 提示数据库,提供了广泛的不同风格供你选择,地址。
2025-01-08
ai提示词生成
以下是关于 AI 提示词生成的相关内容: 有 108 个舞蹈音乐提示词,涵盖各种舞曲子流派,如“Punchy 4/4 beats,electro bass,catchy synths,pop vocals,bright pads,clubready mixes,energetic drops”,并对其中的元素进行了详细解释,如“Punchy 4/4 beats”指节奏感强的四四拍鼓点等。 一泽 Eze 提出样例驱动的渐进式引导法,其核心要点是发挥 AI 的逻辑分析和抽象总结能力,从用户提供的样例中总结方法论,用户进行判断和提出意见,为提示词爱好者提供低门槛途径。在某些特定场景下,能让 AI 主动理解需求,不依赖 Prompt 工程师。 由于 LLM 有上下文长度限制,在长对话中使用渐进式引导法可能会触碰限制,影响输出质量,所以引入“提示词递归”的概念与方法,具体步骤包括初始提示、定期总结、重新引入、细化和拓展、验证和优化,并给出了例如说明。
2025-01-08
推荐一些适合零基础的小学生、初中生学习的实用的Ai课程
以下是为零基础的小学生、初中生推荐的实用 AI 课程: 1. 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念,了解人工智能及其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 在「」中,有一系列为初学者设计的课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 野菩萨的 AIGC 资深课也是不错的选择,这门课程由工信部下属单位【人民邮电出版社】开设,是市面上为数不多的值得推荐的 AI 课程之一,也是全网技术更新最快的课程。课程内容涵盖 AI 绘画、视听语言和 ChatGPT 等多个体系的知识。预习周课程包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。基础操作课涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。核心范式课程涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。SD WebUi 体系课程包括 SD 基础部署、SD 文生图、图生图、局部重绘等。ChatGPT 体系课程有 ChatGPT 基础、核心 文风、格式、思维模型等内容。ComfyUI 与 AI 动画课程包含部署和基本概念、基础工作流搭建、动画工作流搭建等。应对 SORA 的视听语言课程涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 4. 如果想要免费获得这门课程,可以来参与 video battle,这是唯一一个获胜者就可以拥有课程的机会。每期的 video battle 的评委野菩萨老师都非常严格,需要寓意深度审美并存。冠军奖励:4980 课程一份;亚军奖励:3980 课程一份;季军奖励:1980 课程一份;入围奖励:598 野神殿门票一张。 在学习过程中,您可以根据自己的兴趣选择特定的模块深入学习,一定要掌握提示词的技巧,它上手容易且很有用。理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。同时,与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。
2025-01-08
AI学习路径
以下是为新手提供的 AI 学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人进行互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 另外,如果您偏向技术研究方向,学习路径包括: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您偏向应用方向,学习路径包括: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-08
我想用AI生成一份海报
以下是一些可以帮助您用 AI 生成海报的信息: 设计海报的 AI 产品: Canva(可画):https://www.canva.cn/ 是一个受欢迎的在线设计工具,提供大量模板和设计元素,AI 功能可协助选择颜色搭配和字体样式。 稿定设计:https://www.gaoding.com/ 稿定智能设计工具采用先进人工智能技术,自动分析和生成设计方案。 VistaCreate:https://create.vista.com/ 简单易用的设计平台,提供大量设计模板和元素,用户可使用 AI 工具创建个性化海报,智能建议功能可帮助快速找到合适设计元素。 Microsoft Designer:https://designer.microsoft.com/ 具有简单拖放界面,能快速创建演示文稿、社交媒体帖子等视觉内容,集成丰富模板库和自动图像编辑功能。 用 AI 快速做一张满意海报的方法: 需求场景:如想发条有吸引力的朋友圈等,网上找图可能存在质量和独特性问题。 大致流程: 确定主题与文案,可借助 ChatGPT 等文本类 AI 工具协助完成。 选择风格与布局,背景可灵活调整。 使用无界 AI 输入关键词生成并筛选海报底图。 进行配文与排版,合理组合素材得到成品,排版可参考 AIGC 海报成果。 1 分钟搞定海报设计的思路案例: 确定如将老北京糖葫芦做成北京建筑等思路。 借助 AI 生成海报,挑选喜欢的。 确定风格后,替换同材质的北京建筑物延续风格设计一系列海报,调整关键词生成单个建筑物,用 PS 稍作处理。 请注意,内容由 AI 大模型生成,请仔细甄别。
2025-01-08
端到端语音技术现在进展到什么程度了
端到端语音技术目前取得了显著进展。 在语音合成方面: 语音合成将文本转换为可听的声音信息,是人机交互的重要接口,一般包括 TTS、歌唱合成等领域。 当代工业界主流语音合成系统包括文本前端和声学后端两个部分。文本前端将输入文本转换为层次化的语音学表征,声学后端基于此生成语音,主要技术路线包括单元挑选波形拼接、统计参数和端到端语音合成方法,当代主要采用端到端声学后端。 端到端声学后端一般包括声学模型和声码器两部分,也出现了直接从音素映射为波形的完全端到端语音合成系统。 在全模态智能体方面: OpenAI 发布的 GPT4o 是新模型通过端到端的神经网络,把视觉、语音和文本数据混合训练,对音频输入的平均反应时间为 300 毫秒,与人类对话的反应时间相似。 直接拿音频数据来训练的好处是模型能从数据中感悟到人类表达的情绪、语调、风格等,能听到几乎真实的人类的声音。 OpenAI 未公开 GPT4o 的技术细节,唯一线索来自内部模型炼丹师的一篇博客,项目名是 AudioLM,目标是用端到端的方式扩大语音模型的能力。
2025-01-03
AI现在发展到什么程度了
目前 AI 的发展呈现出以下特点和程度: 1. 在弱人工智能(ANI)方面取得了巨大进展,如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等,这些应用只专注于特定任务。 2. 通用人工智能(AGI)尚未取得巨大突破,但一直在努力发展。AGI 被分为五个等级: 聊天机器人:具备基本对话能力,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 推理者:具备人类推理水平,能够解决复杂问题,如 ChatGPT,能根据上下文和文件提供详细分析和意见。 智能体:不仅具备推理能力,还能执行全自动化业务,但目前许多产品在执行任务后仍需人类参与。 创新者:能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可加速科学研究和新药发现。 组织:最高级别的 AI,能够自动执行组织的全部业务流程,包括规划、执行、反馈、迭代、资源分配和管理等。 3. 机器学习方面,监督学习因数据增长、神经网络规模发展以及算力提升而快速发展。 4. 数据方面,数据集是数据的集合,通常以表格形式出现,包括结构化数据和非结构化数据。获取数据的方式有手动标注、观察行为和网络下载等。同时,数据处理中会面临不正确、缺少数据等问题,需要有效处理。 5. 大模型方面,开源大模型爆发,未来 AGI 竞争的关键是云端超级大模型,但通用大模型也遇到瓶颈,如算力和知识不足的问题。训大模型需要将饱含人类智慧的高含量知识融入。
2024-12-16
作为新手,如何掌握AI?要掌握到什么程度?
对于新手掌握 AI,您可以参考以下步骤和内容: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。建议一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 2. 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 六、如果希望继续精进 1. 了解 AI 背景知识 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 掌握数学基础 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 熟悉算法和模型 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 评估和调优:了解如何评估模型性能,包括交叉验证、精确度、召回率等;学习如何使用网格搜索等技术优化模型参数。 神经网络基础:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN);了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 4. 掌握 Python 基础 基本语法:了解 Python 的基本语法规则,比如变量命名、缩进等。 数据类型:熟悉 Python 中的基本数据类型,如字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等。 控制流:学习如何使用条件语句(if)、循环语句(for 和 while)来控制程序的执行流程。 函数:定义和调用函数,理解函数如何接收参数和返回结果;了解作用域和命名空间,包括局部变量和全局变量的概念,以及它们是如何在 Python 中工作的。 模块和包:学习如何导入 Python 标准库中的模块或者第三方库,理解如何安装和使用 Python 包来扩展程序的功能。 面向对象编程(OOP):了解面向对象编程的基本概念,包括类的定义和实例化;学习如何为类定义属性和方法,以及如何通过对象来调用它们,了解类之间的继承关系以及如何实现多态。 异常处理:理解什么是异常,以及它们在 Python 中是如何工作的;学习如何使用 try 和 except 语句来处理程序中可能发生的错误。 文件操作:学习如何打开文件、读取文件内容以及写入文件,理解如何使用 Python 来处理文件路径,以及如何列举目录下的文件。 至于要掌握到什么程度,这取决于您的具体需求和目标。如果您只是想初步了解和应用一些简单的 AI 技术,掌握基本概念和一些常用工具的使用就可以。如果您希望在 AI 领域深入发展,可能需要系统地学习数学、算法、编程等知识,并不断实践和研究。
2024-12-11
作为新手,如何才能掌握好AI?做到什么程度算是学会了AI?
对于新手来说,要掌握好 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 如果希望在掌握基础后继续精进,最好体系化地了解编程以及 AI,至少熟悉以下 Python 相关内容: 1. Python 基础: 基本语法:了解 Python 的基本语法规则,比如变量命名、缩进等。 数据类型:熟悉 Python 中的基本数据类型,如字符串(String)、整数(Integer)、浮点数(Float)、列表(List)、元组(Tuple)、字典(Dictionary)等。 控制流:学习如何使用条件语句(if)、循环语句(for 和 while)来控制程序的执行流程。 2. 函数: 定义和调用函数:学习如何定义自己的函数,以及如何调用现有的函数。 参数和返回值:理解函数如何接收参数和返回结果。 作用域和命名空间:了解局部变量和全局变量的概念,以及它们在 Python 中是如何工作的。 3. 模块和包: 导入模块:学习如何导入 Python 标准库中的模块或者第三方库。 使用包:理解如何安装和使用 Python 包来扩展程序的功能。 4. 面向对象编程(OOP): 类和对象:了解面向对象编程的基本概念,包括类的定义和实例化。 属性和方法:学习如何为类定义属性和方法,以及如何通过对象来调用它们。 继承和多态:了解类之间的继承关系以及如何实现多态。 5. 异常处理: 理解异常:了解什么是异常,以及它们在 Python 中是如何工作的。 异常处理:学习如何使用 try 和 except 语句来处理程序中可能发生的错误。 6. 文件操作: 文件读写:学习如何打开文件、读取文件内容以及写入文件。 文件与路径操作:理解如何使用 Python 来处理文件路径,以及如何列举目录下的文件。 至于做到什么程度算是学会了 AI,这没有一个绝对的标准。但一般来说,当您能够熟练运用所学的 AI 知识和技能解决实际问题,能够理解和解释常见的 AI 应用和模型的工作原理,并且能够在特定领域进行创新和改进,就可以认为在一定程度上掌握了 AI。
2024-12-11
现在全球chatgpt发展到什么程度
ChatGPT 是由 OpenAI 开发的一款具有重要影响力的 AI 产品。 其成功具有多方面原因: 1. 开创性:作为首批向公众开放的大规模商用 AI 对话系统之一,在全球掀起了 AI 革命,为技术发展指明方向。 2. 用户体验:界面简洁直观,交互流畅自然,降低了普通人使用 AI 的门槛。 3. 技术实力:背后的 GPT 系列模型性能和能力领先,在语言理解和内容生成方面表现出色。 然而,ChatGPT 也存在一些局限性: 1. 市场竞争:随着 AI 技术发展,已不再是市场上唯一的顶级选择,其他产品在特定领域可能超越它。 2. 国内使用:国内用户可能因网络连接问题面临连接不稳定、响应延迟等困扰。 对于 ChatGPT 的定义,在 OpenAI 的官网中,2022 年宣发时称其为一种模型,而在帮助页面中称其为一种服务。目前我们所熟知的 ChatGPT 逐渐演变成了一种可以兼容多种 GPT 模型的聊天应用(服务)。 从反馈学习方面,例如 ChatGPT 通过人类反馈的强化学习(RLHF)来调整模型,使其成为通用的聊天机器人。 总的来说,在海外或拥有稳定国际网络连接的情况下,ChatGPT 是一个极佳选择,其强大功能和优秀用户体验使其成为 AI 对话领域的标杆产品。但国内用户可能需考虑本地化替代方案以获得更好体验。
2024-11-20
如何用ai提升电脑刺绣的自动化程度
以下是一些可以辅助提升电脑刺绣自动化程度的 AI 相关方法和工具: 1. 图像识别技术:利用 AI 的图像识别能力,对刺绣图案进行精准识别和分析,为自动化刺绣提供准确的图案信息。 2. 智能设计软件:一些具备 AI 功能的设计软件,能够根据用户需求和设定的参数,自动生成刺绣图案的设计方案。 3. 自动化控制算法:通过 AI 算法优化刺绣设备的控制流程,提高刺绣的速度和精度。 4. 质量检测系统:借助 AI 的视觉检测技术,对刺绣成品进行自动质量检测,及时发现并纠正问题。 需要注意的是,在应用这些 AI 技术时,可能需要一定的专业知识和技能,同时要根据实际情况进行调整和优化,以达到最佳的自动化效果。
2024-11-05
现在最好的 Ai 跳舞工具是哪一个,或者教程?
目前,在 AI 跳舞领域,以下是一些相关的工具和教程资源: B 站:Ever AI 酱,这里会有教程及 AI 工具界面操作。 DisPose:这是由清华大学与北京大学等组织联合发布的一种可控的人体图像动画方法。输入动作视频参考和人物图像,可以形成新的角色舞蹈视频。其地址为:https://lihxxx.github.io/DisPose/ 。 小红书/抖音:EverAI 。 您可以根据自己的需求选择适合的工具和教程进行学习和使用。
2025-01-07
我作为一名OA软件的行业的售前,我的工作中会涉及到AI与OA结合落地的智能化场景,所以我对AI知识有简单的了解,我现在想转型AI行业的售前,我该如何系统的学习AI的相关知识,请帮我制定一个计划
以下是为您制定的从 OA 软件售前转型到 AI 行业售前的系统学习计划: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等。您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 六、掌握相关技能和知识 1. 从编程语言入手学习:可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台:可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,作为转型者,您可以从以上多个方面入手,全面系统地学习 AI 知识和技能,为未来在 AI 行业的售前工作做好准备。
2025-01-07
现在有哪些AI做PPT比较好的工具
以下是一些好用的 AI 做 PPT 的工具: 1. Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式,如 GIF 和视频,网址:https://gamma.app/ 2. 美图 AI PPT:由美图秀秀开发团队推出,通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素,网址:https://www.xdesign.com/ppt/ 3. Mindshow:AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,网址:https://www.mindshow.fun/ 4. 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术,提供智能文本生成、语音输入、文档格式化等功能,网址:https://zhiwen.xfyun.cn/ 此外,还有以下工具: 1. 爱设计 2. 闪击 3. Process ON 4. WPS AI 不同工具各有特色和适用场景,您可以根据实际需求选择。
2025-01-07
现在国内可用的医学大模型有哪些
目前国内可用的医学大模型有以下这些: 1. 8 月正式上线的部分大模型: 北京企业机构: 百度(文心一言):https://wenxin.baidu.com 抖音(云雀大模型):https://www.doubao.com 智谱 AI(GLM 大模型):https://chatglm.cn 中科院(紫东太初大模型):https://xihe.mindspore.cn 百川智能(百川大模型):https://www.baichuanai.com/ 上海企业机构: 商汤(日日新大模型):https://www.sensetime.com/ MiniMax(ABAB 大模型):https://api.minimax.chat 上海人工智能实验室(书生通用大模型):https://internai.org.cn 能生成 Markdown 格式的:智谱清言、商量 Sensechat、MiniMax 目前不能进行自然语言交流的:昇思(可以对文本进行是否由 AI 生成的检测,类似论文查重,准确度不错)、书生 受限制使用:MiniMax(无法对生成的文本进行复制输出,且只有 15 元的预充值额度进行体验,完成企业认证后可以进行充值) 特色功能:昇思——生图,MiniMax——语音合成 阿里通义千问、360 智脑、讯飞星火等均不在首批获批名单中。据悉,广东地区获批公司分别为华为、腾讯,科大讯飞系其他地区获批产品。 2. LLM 开源中文大语言模型及数据集集合中的医学大模型: XrayGLM,首个会看胸部 X 光片的中文多模态医学大模型: 地址:https://github.com/WangRongsheng/XrayGLM MeChat,中文心理健康支持对话大模型: 地址:https://github.com/qiuhuachuan/smile MedicalGPT 地址:https://github.com/shibing624/MedicalGPT 此外,大模型在医疗行业的应用主要涵盖疾病的诊断与预测、药物研发以及个性化医疗等方向,例如麻省理工学院利用 AI 发现新型广谱抗生素 Halicin 等案例充分展示了其在医疗领域的巨大潜力,目前很多医疗研究机构都在进行医疗大模型的开发研究。
2025-01-06
现在智算非常火热,大家都在建立智算中心,提供大量的算力,请问一下,这些算力,都是哪些行业,哪些企业在消耗这些算力?
目前消耗大量算力的行业和企业主要包括以下方面: 1. 科技巨头:如 Google 拥有大量的 GPU 和 TPU 算力,用于复杂的推理任务和模型训练。 2. 云计算公司:例如 Amazon 和 Microsoft,其 AI 云计算收入主要来自模型托管。 3. 从事 AI 研发的公司:像 xAI 计划用十万块 H100 连成巨大集群,OpenAI 拉上微软打造算力中心 StarGate。 4. 特定领域的企业:如 Apple 利用自身优势发展边缘和远端混合的组合模型。 对于小公司而言,直接参与基础设施建设机会较小,但为当地企业提供 AI 训练的算力支持,并配备服务团队帮助整理知识、寻找业务场景、做垂直训练和微调等,可能存在一定机会。
2025-01-02
普通人如何学习AI,并找到合适自己发展的路径
普通人学习 AI 并找到适合自己发展的路径,可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 如果您想偏向技术研究方向,以下是一些学习路径: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您想偏向应用方向,以下是一些学习路径: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 另外,如果您想将 AI 与宠物结合,可以参考以下例子和学习路径: 1. AI 宠物助手: 基于自然语言处理和计算机视觉的 AI 宠物助手,可以帮助主人更好地照顾宠物。 例如自动识别宠物情绪、提供饮食建议、监测宠物健康状况等。 2. AI 宠物互动玩具: 利用 AI 技术开发的智能互动玩具,可以增强宠物的娱乐体验。 例如会自主移动并引起宠物注意的智能玩具、会发出声音和互动的智能宠物玩具等。 3. AI 宠物图像生成: 使用生成式 AI 模型,可以根据文字描述生成各种宠物形象的图像。 这可以帮助宠物主人定制个性化的宠物形象。 4. AI 宠物医疗诊断: 利用计算机视觉和机器学习技术,可以开发 AI 辅助的宠物医疗诊断系统。 通过分析宠物的症状图像和病历数据,提供初步诊断建议。 5. AI 宠物行为分析: 基于传感器数据和计算机视觉,可以利用 AI 技术分析宠物的行为模式。 帮助主人更好地了解宠物的需求和习性。 学习路径建议: 1. 掌握基础的机器学习、计算机视觉、自然语言处理等 AI 技术。 2. 了解宠物行为学、宠物医疗等相关领域知识。 3. 关注业内先进的 AI+宠物应用案例,学习其技术实现。 4. 尝试开发简单的 AI 宠物应用原型,并不断迭代优化。 总的来说,AI+宠物是一个充满想象空间的新兴赛道,结合 AI 技术和宠物行业需求,可以开发出各种有趣有用的应用。但请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-07
在现阶段的GPT发展下,与AI交流提示词还重要吗
在现阶段的 GPT 发展下,与 AI 交流的提示词仍然非常重要。以下是一些原因: 1. 目标明确:对于 GPT 及其他 AI 来说,明确每一步的目标至关重要。只有给予清晰的指导,AI 才能产生相关且有价值的输出。 2. 逻辑性:在各种提示策略中,逻辑性都是关键。清晰、结构化的提示有助于 AI 更有效地生成输出。 3. 分步骤:无论是进行深度分析还是遵循特定结构,确保提示按照清晰的步骤进行极为重要。 4. 考虑变量:这在某些提示策略中尤其重要,需要考虑可能影响结果的所有因素。 例如,在运用 CoD 将文章做摘要的实验中,个人观点认为以英文提示词最后加上中文输出的方式效果较好,并且密度等级 4 的结果较让人满意。同时,LangGPT 框架的出现也表明随着新一代模型的发布,提示词的重要性日益凸显,其编写过程逐渐成为一种编程语言。但也有人认为框架在协助的同时也有限制,提示词带来的收益并非如宣传所说,其重要性会朝两极分化。
2025-01-07
AI的发展历史
AI 的发展历史可以追溯到二十世纪中叶,大致经历了以下几个阶段: 1. 早期阶段(1950s 1960s):专家系统、博弈论、机器学习初步理论出现。心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。计算机先驱图灵最早提出图灵测试,作为判别机器是否具备智能的标准。1956 年,在达特茅斯会议上,人工智能一词被正式提出,并作为一门学科确立下来。 2. 知识驱动时期(1970s 1980s):专家系统、知识表示、自动推理得到发展。但由于从专家那里提取知识并以计算机可读形式表现出来的任务复杂且成本高,20 世纪 70 年代出现“人工智能寒冬”。 3. 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等兴起。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等技术发展迅速。当前的前沿技术点包括大模型(如 GPT、PaLM 等)、多模态 AI(视觉 语言模型、多模态融合)、自监督学习(自监督预训练、对比学习、掩码语言模型等)、小样本学习(元学习、一次学习、提示学习等)、可解释 AI(模型可解释性、因果推理、符号推理等)、机器人学(强化学习、运动规划、人机交互等)、量子 AI(量子机器学习、量子神经网络等)、AI 芯片和硬件加速。
2025-01-05
Ai最新发展成果
以下是 AI 的一些最新发展成果: 医疗领域: ChatGPT 和 Google Bard 等技术极大加速了医疗健康生物制药的研究,AI 在抗癌、抗衰老、早期疾病防治等方面发挥着重要作用。 AI 提前三年诊断胰腺癌。 两名高中生与医疗技术公司合作,发现了与胶质母细胞瘤相关的新靶基因。 AI 帮助抗衰老,筛查出高效的药物候选物。 使用 AI 寻找阿尔兹海默症的治疗方法。 AI 帮助早期诊断帕金森。 应用形态重构: AI Agent 取得突破,为机器人获得自主行动能力指明新方向。 AI 编程工具的进展预示着人机协作模式的变革。 2024 年关键进展时间线: 2 月,OpenAI 发布视频生成模型 Sora,开创 AI 视频生成新纪元。 3 月,Suno 发布 V3 版本,AI 音乐生成进入生产力可用状态。 4 月,Meta 发布高性能开源大模型 Llama3,降低了 AI 技术的准入门槛。 5 月,GPT4 发布,RayBan 与 Meta 合作的智能眼镜销量突破百万,字节上线即梦 AI。 6 月,快手发布可灵。 9 月,OpenAI 发布 o1 预览版。 10 月,Rosetta 和 AlphaFold 算法的研发者因在蛋白质结构设计和预测中的突破性贡献获得诺贝尔化学奖,约翰·霍普菲尔德和杰弗里·辛顿因人工神经网络和深度学习的开创性贡献获诺贝尔物理学奖,Anthropic 大模型 Claude 3.5 Sonnet 获得“computer use”功能。 12 月,OpenAI 发布 o3 系列模型。 基础通识课: 讨论了 AI 模型的基础、最新进展,包括视频生成模型、相关论文,以及 AI 在诺奖和蛋白质研究领域的应用等。 回顾了人工智能的发展历程,从图灵测试到如今大模型和多模态模型百花齐放。 指出大模型由数据、算法、算力构成,算法有技术架构的迭代,数据质量对生成理想的大模型至关重要。 针对弱智 8 的问题对大模型进行测试,开展让大模型回复问题并找出真人回复的活动,且国内大模型的回答能力有很大改进。 早期大语言模型回复缺乏情感,如今有所改进,后续将体验几个大模型的回复场景。
2025-01-03
关于AI大模型的发展介绍
AI 大模型的发展具有重要意义和深远影响: 1. 与传统语音技能的差异:语音技能的 NLU 是通过规则、分词策略等训练而成,运作逻辑可观测,具有 ifelse 式逻辑性;而大模型凭借海量数据在向量空间中学习知识关联性,运作逻辑难以观测,脱离了 ifelse 层面。 2. 带来的变革量级:汪华老师认为此次 AI 变革 100%能达到与移动互联网同级,50%可能发展至与蒸汽机出现同量级,能否到达 AGI 阶段尚不明确。 3. 背景和趋势:随着大模型技术成熟和规模增大,为 AI Agent 提供强大能力,有望构建具备自主思考、决策和执行能力的智能体,广泛应用于多个行业和领域。 4. 整体架构: 基础层:为大模型提供硬件支撑和数据支持,如 A100、数据服务器等。 数据层:包括企业根据自身特性维护的静态知识库和动态三方数据集。 模型层:有 LLm(大语言模型,如 GPT,一般使用 transformer 算法实现)和多模态模型(如文生图、图生图等模型,训练数据为图文或声音等多模态数据集)。 平台层:如大模型的评测体系或 langchain 平台等,提供模型与应用间的组成部分。 表现层:即应用层,是用户实际看到的地方。
2024-12-31
2024年《全球人工智能治理研究报告》议题“国家主权原则和人工智能发展”的内容及理解
以下是 2024 年《全球人工智能治理研究报告》中关于“国家主权原则和人工智能发展”的相关内容: 在 2024 年人工智能发展状况的安全与全球治理方面: 英国创建了世界上第一个人工智能安全研究所(AISA),其有三个核心功能:在部署前对高级模型进行评估;建立国家能力并开展研究;协调国际合作伙伴。AISA 还发布了 Inspect 框架用于 LLM 安全评估。英国宣布与美国等效机构签署谅解备忘录,并计划在美国旧金山设立办事处。 英国通过其高级研究与发明机构(ARIA),花费 5900 万英镑开发“守门员”系统,负责了解和减少关键领域中其他人工智能代理的风险。英国政府还计划设立“AI 安全研究实验室”,旨在汇集政府关于敌对国家使用进攻性 AI 的知识。美国能源部利用内部测试床评估人工智能对关键基础设施和能源安全的风险。 在技术和方法方面: 离线直接比对方法不会很快大规模取代 RLHF。谷歌 DeepMind 团队发现 RLHF 在涵盖总结、有用性、对话性等数据集上的测试中胜出,能更有效地改善生成任务。Cohere for AI 探索放弃近端策略优化 RLHF 中的算法,有利于其 RLOO 训练器,可降低 GPU 使用率和提高训练速度。 但 RLHF 存在可能滋生谄媚行为的问题,如 Anthropic 认为 SOTA AI 助手表现出奉承行为是因为人类偏好数据等。开发透明度虽在提高,但仍有很大改进空间。 在安全研究方面: 随着 AI 发展,新功能带来新漏洞,开发人员加大了对“越狱”的研究。OpenAI 提出通过“指令层次结构”修复攻击,Anthropic 表明“警告防御”的潜力,Gray Swan AI 的安全专家试用“断路器”。LLM 测试初创公司 Haize Labs 与 Hugging Face 合作创建首个红队抵抗组织基准。除越狱外,还存在更隐蔽的攻击,潜在攻击面广泛,涵盖从训练到偏好数据和微调等内容。 对于“国家主权原则和人工智能发展”的理解,可能需要综合考虑各国在人工智能安全研究和治理方面的举措,以及技术发展对国家主权可能产生的影响。各国积极建立相关机构和采取措施,表明在人工智能快速发展的背景下,维护国家主权和安全的重要性。同时,技术发展中的问题和挑战也需要各国共同协作应对,以实现人工智能的健康、安全和可持续发展。
2024-12-31