Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我想看关于使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节的实操

Answer

以下是关于使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节的实操:

  1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。
  2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。
  3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。
  4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。
  5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。
  6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。
  7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。
  8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。
  9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。

需要注意的是,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。

根据视频脚本生成短视频的 AI 工具有多种,例如:

  1. ChatGPT+剪映:ChatGPT 可以生成视频小说脚本,而剪映则可以根据这些脚本自动分析出视频中需要的场景、角色、镜头等要素,并生成对应的素材和文本框架。这种方法可以快速实现从文字到画面的转化,节省大量时间和精力。
  2. PixVerse AI:在线 AI 视频生成工具,支持将多模态输入(如图像、文本、音频)转化为视频。
  3. Pictory:这是一个 AI 视频生成器,允许用户轻松创建和编辑高质量视频,无需视频编辑或设计经验。用户可以提供文本描述,Pictory 将帮助生成相应的视频内容。
  4. VEED.IO:提供了 AI 图像生成器和 AI 脚本生成器,帮助用户从图像制作视频,并规划从开场到结尾的内容。
  5. Runway:这是一个 AI 视频创作工具,它能够将文本转化为风格化的视频内容,适用于多种应用场景。
  6. 艺映 AI:专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务,用户可以根据文本脚本生成视频。

这些工具各有特点,适用于不同的应用场景和需求,能够帮助内容创作者、教育工作者、企业和个人快速生成吸引人的视频内容。

在游戏《神谕》中,ChatGPT 生成对话内容和剧情的能力表现如下: 对于故事线,ChatGPT 可以通过 System Prompt 介绍游戏的故事背景和小机器人的人设。结合游戏中发生的关键事件,通过文字传递给 ChatGPT,生成游戏中关键的故事情节介绍,最后以小机器人自述的形式呈现出来。具体实现过程中有几种选择:

  1. 离线生成:将 ChatGPT 作为离线工具使用,生成一次性剧情文案,并保存到游戏中。缺点是文案一旦确定就固定下来了,略显单调。
  2. 实时生成:每次都让 ChatGPT 自由发挥,在关键的节点,将历史上下文信息发送给 ChatGPT 来生成实时文案,优势是每次发挥都在既定主题基础上有所差异,有一定随机性。但是实际的缺点是,每次生成的延迟较大,会让游戏为了等待剧情文案,而产生明显的停顿感。 因此选择:每局对局开始前,会为游戏的关键节点一次性生成所有文案。这样,每次游戏都可以产生不同的文案,且游戏过程中就不会因为剧情体验到明显的停顿感。剧情的故事格式,由预定义的 json 来表达,每次 ChatGPT 只需要替换填充内容即可。

对于实时对话,与剧情类似,不过最大的难点是如何让小机器人区分出来,您是希望跟它聊天,还是在让它执行某些指令,甚至能否边聊天边执行指令。背后最大的挑战是 ChatGPT 要支持生成类似“多模态”的返回信息。这里的“多模态”是指在您对话的内容中,可以同时返回“对话”和“代码”,而且以某种限定的格式返回,从而方便程序解析出来。类似的 prompt 描述为:按照上述的 prompt,大概率 ChatGPT 能输出符合要求的内容格式。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:我想用 AI 把小说做成视频,应该怎么做?

1.小说内容分析:使用AI工具(如ChatGPT)分析小说内容,提取关键场景、角色和情节。2.生成角色与场景描述:根据小说内容,使用工具(如Stable Diffusion或Midjourney)生成角色和场景的视觉描述。3.图像生成:使用AI图像生成工具根据描述创建角色和场景的图像。4.视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。5.音频制作:利用AI配音工具(如Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。6.视频编辑与合成:使用视频编辑软件(如Clipfly或VEED.IO)将图像、音频和文字合成为视频。7.后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。8.审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。9.输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。内容由AI大模型生成,请仔细甄别

问:根据视频脚本生成短视频的工具

根据视频脚本生成短视频的AI工具有多种,它们能够帮助用户将文字脚本转化为具有视觉吸引力的视频内容。以下是一些工具:1.[ChatGPT](https://chat.openai.com/)+[剪映](https://www.capcut.cn/):ChatGPT可以生成视频小说脚本,而剪映则可以根据这些脚本自动分析出视频中需要的场景、角色、镜头等要素,并生成对应的素材和文本框架。这种方法可以快速实现从文字到画面的转化,节省大量时间和精力。2.[PixVerse AI](https://pixverse.ai/):在线AI视频生成工具,支持将多模态输入(如图像、文本、音频)转化为视频。3.[Pictory](https://pictory.ai/):这是一个AI视频生成器,允许用户轻松创建和编辑高质量视频,无需视频编辑或设计经验。用户可以提供文本描述,Pictory将帮助生成相应的视频内容。4.[VEED.IO](https://www.veed.io/):提供了AI图像生成器和AI脚本生成器,帮助用户从图像制作视频,并规划从开场到结尾的内容。5.[Runway](https://runwayml.com/)[](https://runwayml.com/):这是一个AI视频创作工具,它能够将文本转化为风格化的视频内容,适用于多种应用场景。6.[艺映AI](https://www.artink.art/):专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务,用户可以根据文本脚本生成视频。这些工具各有特点,适用于不同的应用场景和需求,能够帮助内容创作者、教育工作者、企业和个人快速生成吸引人的视频内容。内容由AI大模型生成,请仔细甄别。

声控游戏?用对话开启你和机器人的神奇旅程——《神谕》

故事线ChatGPT可以通过SystemPrompt,来介绍游戏的故事背景,小机器人的人设。结合游戏中发生的关键事件,通过文字传递给chatgpt,生成游戏中关键的故事情节介绍,最后以小机器人自述的形式呈现出来。具体实现的过程中有几种选择:1.离线生成:将chatgpt作为离线工具使用,生成一次性剧情文案,并保存到游戏中。缺点是文案一旦确定就固定下来了,略显单调。2.实时生成:每次都让chatpgt自由发挥,在关键的节点,将历史上下文信息发送给chatgpt来生成实时文案,优势是每次发挥都在既定主题基础上有所差异,有一定随机性。但是实际的缺点是,每次生成的延迟较大,会让游戏为了等待剧情文案,而产生明显的停顿感。因此我们的选择:每局对局开始前,会为游戏的关键节点一次性生成所有文案。这样,每次游戏都可以产生不同的文案,且游戏过程中就不会因为剧情体验到明显的停顿感。剧情的故事格式,由预定义的json来表达,每次chatgpt只需要替换填充内容即可:实时对话实时对话与剧情类似,不过这里最大的难点是:如何让小机器人区分出来,你是希望跟他聊天,还是在让他执行某些指令?甚至能否边聊天边执行指令?背后最大的挑战:ChatGPT要支持生成类似“多模态”的返回信息。这里的“多模态”是指:在你对话的内容中,可以同时返回“对话”和“代码”,而且以某种我们限定的格式返回,从而方便程序解析出来。类似的prompt描述为:按照上述的prompt,大概率chatgpt能输出符合要求的内容格式。

Others are asking
rga实操
RAG(Retrieval Augmented Generation,检索增强生成)是一种利用大模型能力搭建知识库的技术。其应用过程可抽象为以下 5 个步骤: 1. 文档加载:从多种不同来源加载文档,如 PDF 等非结构化数据、SQL 等结构化数据以及 Python、Java 等代码,LangChain 提供了 100 多种不同的文档加载器。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或“文档片”。 3. 存储:包括将切分好的文档块进行嵌入转换成向量的形式,以及将 Embedding 后的向量数据存储到向量数据库。 4. 检索:通过某种检索算法从向量数据库中找到与输入问题相似的嵌入片。 5. 输出:把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示生成更合理的答案。 在本地部署 RAG 时,需要加载所需的库和模块,如 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型。从订阅源获取内容,通过专门的文本拆分器将长文本拆分成较小的块,并附带相关元数据。为文档内容生成向量,可使用文本向量模型 bgem3。基于用户的问题,从向量数据库中检索相关段落,并根据设定的阈值进行过滤,最后让模型参考上下文信息回答用户的问题,从而实现 RAG。还可以创建网页 UI,并进行评测。 在问答测试中,对于同样的问题和上下文,基于不同模型如 Qwen7b、Gemma、Mistral、Mixtral 和 GPT4 分别进行了多次测试,得出了不同模型的表现结论。总结来说,本文展示了如何使用 Langchain 和 Ollama 技术栈在本地部署一个资讯问答机器人,同时结合 RSSHub 来处理和提供资讯。上下文数据质量和大模型的性能决定了 RAG 系统性能的上限,RAG 能提升答案质量和相关性,但不能完全消除大模型幻觉、信息滞后等问题。
2025-01-10
分享一些详细学习coze工作流的实操课程?
以下是一些学习 Coze 工作流的实操课程资源: 扣子案例合集社区内容分享: 【Agent 共学第二期】艾木分享|这也许是你一生中第一个 Bot:https://www.bilibili.com/video/BV1XT421i7jH/ 一步一步带你手搓一个 Coze Bot——Dr.Know(极简版 Perplexity):https://www.bilibili.com/video/av1005221752 扣子工作流实战案例教程,手把手教你搭建一个图书管理工作流:https://mp.weixin.qq.com/s/Fh3Vm3EDSzoYVxf91GcMMA 使用扣子 Coze 创建 AI 绘画工作流:https://mp.weixin.qq.com/s/d_6yST8JXKf1Tr6JgBPFg 奶奶也学得会的 AI 工作流,省时省力下班早!:https://mp.weixin.qq.com/s/bXC8DHzs5_OgPh3FtKhJZA 中文 GPTS 使用秘籍,字节扣子 Coze 工作流使用全教程:https://zhuanlan.zhihu.com/p/682108709 Workflow 实践|使用 coze 复现一个 AIGC 信息检索 Bot:https://mp.weixin.qq.com/s/PFgjRq7XcTcqog1gLyFqA AI 自动获取 B 站视频摘要信息:https://mp.weixin.qq.com/s/x8lwvlomhFNLZl__qYuDww 如何用 Coze 制作一个信息检索 Bot(含 Workflow 的基础用法):https://mp.weixin.qq.com/s/Ory8iVXXjjN3zSTcupPm6Q 蓝衣剑客:四万字长文带你通学扣子,其中在三、Coze 简介的 3.4 工作流部分提到,在典型应用场景中,入门级场景可能仅添加一个节点来构建简单工作流,例如使用获取新闻插件构建获取新闻列表的工作流、使用大模型节点接收并处理用户问题等。更进阶的场景则通过多个节点组合构建逻辑较复杂的工作流,例如在搜索并获取指定信息详情的场景中,先通过插件能力进行关键词搜索、然后通过代码节点过滤指定信息、最后通过插件能力获取信息详情;或者在通过条件判断识别用户意图的场景中,通过大模型节点处理用户消息,并将消息分类后通过条件节点分别处理不同类型的消息。这些详细配置教程提供了实际操作指南以帮助理解和应用各种功能。 「AI 学习三步法:实践」用 Coze 免费打造自己的微信 AI 机器人,其中搭建步骤详解的设计你的 AI 机器人部分,对工作流设计有详细说明: 开始节点和结束节点,coze 会自动生成。 开始节点配置:输入变量名写“Question”,描述写“用户输入的问题”,变量类型选“String”。 知识库配置:将【开始节点】和【知识库左侧节点】连接起来,这样知识库就可以调用开始节点的内容了;知识库输入:引用,开始节点的变量“Question”;将【知识库右侧节点】与【结束节点】的左侧连起来。 结束节点配置:结束节点用于输出 AI 机器人的最终结果,回答格式设置为:您的问题:{{question}} 问题的答案:{{answer}} 所以在输出变量那里,定义 2 个参数:question 引用“开始节点的 Question”,answer 引用“知识库节点的输出 output”,回答模式选择:使用设定的内容直接回答。 试运行测试:点击右上角“试运行”后,输入想问 AI 机器人的问题,比如:AIGC 课件,点击右下角“运行”,然后就可以看到工作流每一步的详细输入和输出。
2024-12-03
扣子实操教程
以下是一些关于扣子实操的教程资源: 全网最全的 Coze 入门教程:https://www.bilibili.com/video/BV1YM4m167zP/ 扣子实战教程,全网最细节讲解:https://www.bzfree.com/doc/coze%E5%BC%95%E8%A8%80 Bot 创作者如何在 Coze 上赚钱:https://mp.weixin.qq.com/s/WOZPuVgNHF129b4qsSjlQ 新手总结 Coze bot 创建步骤:先锁定“最简”任务,提前准备测试问题:https://zhuanlan.zhihu.com/p/687931917 视频:【共学快闪】AI AgentCoze 搭建 5 月 8 日大圣分享 Coze 全流程搭建:https://www.bilibili.com/video/BV1bs421N7tR 视频:【共学快闪】AI AgentCoze 搭建 5 月 7 日赛博禅心大聪明分享:https://www.bilibili.com/video/BV1V1421z7At/ 面向业务开发的 Coze 使用指南:https://mp.weixin.qq.com/s/ZY8zwaGdR6dq1OL_XQ2iTQ 扣子(https://mp.weixin.qq.com/s/glT5Qc4a3vpRLxVAPdDDbA)(https://mp.weixin.qq.com/s/glT5Qc4a3vpRLxVAPdDDbA)初体验|拥有一个属于自己的聊天机器人:https://mp.weixin.qq.com/s/glT5Qc4a3vpRLxVAPdDDbA 在扣子中手搓插件和调用已有的 API 制作插件方面: Body:用于传递请求的主体部分,可以是 JSON、XML 或其他类型的数据。在 GET 方法中,通常不使用 Body 来传递参数,因为 GET 方法的 URL 中已经包含了所有必要的参数。 Path:用于定义请求的路径部分,通常以“/”开头,后面跟着一系列的段落。在 GET 方法中,Path 可以用来传递参数,但通常会将其编码为 URL 的一部分,而不是单独传递。 Query:用于定义请求的查询部分,通常以“?”开头,后面跟着一系列的键值对。在 GET 方法中,Query 是最常用的参数传递方式,它允许用户通过 URL 中的键值对来传递参数。 Header:用于定义 HTTP 请求的头信息部分,包括各种头部字段。在 GET 方法中,Header 通常不会用来传递参数,而是用于定义请求的头部信息。 配置输出参数:如果一切都填对了没有问题,可以直接点击自动解析,会自动调用一次 API 给出对应的输出参数。例如填入汉字“张”,点击自动解析。解析成功后会显示解析成功,输出参数填好后点击保存并继续。参数描述可根据需求填写。 调试与校验:测试工具是否能正常运行,运行后查看输出结果。Request 为输入的传参,Response 为返回值,点击 Response 就可以看到解析后的参数。
2024-11-10
请给我推荐一个适合非技术人员学习的提示词工程手册,但是我不希望提示词工程手册太实操导向,需要包括背后的原理和逻辑,而不是只像一个公式一样的教给我
以下为您推荐适合非技术人员学习的提示词工程手册: 1. 小七姐:Prompt 喂饭级系列教程 小白学习指南(二) 强调对框架的理解和运用,介绍了多种提示词框架,如情境,并提供了学习的三步走:懂原理、找需求、用框架。 2. 19. RAG 提示工程系列(一) 虽然网络上提示工程资料众多,但 RAG 任务中提示工程的资料相对较少。此系列将带领大家了解 RAG 架构的概念、组成、痛点及提示词工程在其中的应用,并指导实操案例,帮助编写调试符合企业生产级标准的提示词。 3. VIRTUAL Claude 官方文档提示词工程最佳实践@未来力场编译版(中英对照) 指出提示词工程是一门实证科学,需要不断测试和迭代,包括开发测试用例、构建初版提示词、进行用例测试、优化提示词和分享完善后的提示词,同时不要忘记测试边缘情况。
2024-08-15
能否给我一些rag实操案例
好的,以下是根据你的需求为你生成的文章: RAG 实操案例 RAG(Retrieval Augmented Generation)是一种结合了检索和生成的技术,它可以让大模型在生成文本时利用额外的数据源,从而提高生成的质量和准确性。以下是一些 RAG 实操案例: 1. 餐饮生活助手 餐饮生活助手是一个基于结构化数据 RAG 的方法的应用,它的目的是根据用户的需求,从一个大规模的餐饮数据集中检索出最合适的餐厅,并提供相关的信息和服务。 为了实现餐饮生活助手 RAG 的 Langchain 代码实战,需要完成以下几个步骤: 定义餐饮数据源:将餐饮数据集转化为 Langchain 可以识别和操作的数据源,例如数据库、文件、API 等,并注册到 Langchain 中,并提供统一的接口和方法,让 LLM 的代理可以方便地访问和查询数据源。 定义 LLM 的代理:根据用户的问题,提取出核心的信息和条件,并形成标准的查询语句,然后用这个查询语句去检索餐饮数据源,得到相关的数据记录,再根据这些数据记录,生成最合适的答案,输出给用户。 运行 LLM 的代理:将 LLM 的代理部署到不同的平台和渠道,例如 Web、微信、Telegram 等,并提供统一的接口和方法,让用户可以方便地与 LLM 的代理进行交互。 2. 大模型 RAG 问答行业最佳案例及微调、推理双阶段实现模式 基于模块化(Modular)RAG 自定义 RAG Flow,该案例展示了如何使用 RAG 技术来实现问答系统。具体而言,该系统使用了一个预训练的语言模型(如 GPT3)和一个知识图谱来进行问答。 在微调阶段,系统会根据用户的问题和知识图谱中的信息,对语言模型进行微调,以使其更好地适应特定的领域和任务。在推理阶段,系统会使用微调后的语言模型和知识图谱来生成回答。在这个过程中,系统会根据用户的问题和知识图谱中的信息,生成一个查询,然后使用语言模型来生成回答。 总的来说,该案例展示了如何使用 RAG 技术来实现问答系统,以及如何通过微调和推理来提高问答的准确性和效率。 3. 通过增强 PDF 结构识别,革新检索增强生成技术(RAG) 该案例主要讨论文档解析和文本切分质量是否会影响 RAG 系统的效果。具体而言,该案例探讨了两种类型的方法,即基于规则(Rulebased)的方法和基于深度学习(Deep learningbased)的方法,并通过实际案例对它们的效果进行实证评估。 基于规则的方法主要依赖于人工编写的规则和模式来提取文本块和生成嵌入向量。这种方法的优点是简单、快速,但是对于复杂的文档结构和多变的文本内容可能会表现不佳。 基于深度学习的方法则利用了深度学习模型(如卷积神经网络(CNN)和循环神经网络(RNN))来自动学习文本块的特征和嵌入向量。这种方法的优点是可以更好地处理复杂的文档结构和多变的文本内容,但是需要大量的训练数据和计算资源。 通过对实际案例的评估,该案例发现基于深度学习的方法在文档解析和文本切分质量方面表现更好,但是需要更多的计算资源和训练数据。因此,在选择方法时,需要根据具体的应用场景和需求来进行权衡。 以上是一些 RAG 实操案例,希望对你有所帮助。
2024-05-06
DeepSeek R1和ChatGPT相比有什么优势?
DeepSeek R1 与 ChatGPT 的优势比较如下: 在数字乘法任务中,ChatGPT 和精简版的隐式 CoT 模型无法达到 100%的准确率,而从头开始训练的 DeepSeek R1 在将扩散采样步骤设置为 1 的情况下,能够保持显著的吞吐量同时达到 100%的准确率。 在数学问题求解常用基准测试中,GPT4 相对于 ChatGPT 表现出显著的改进,GPT4 在许多复杂问题中展示了更深入的理解,并能够应用适当的推理。而 ChatGPT 通常会采用低级启发式方法,提到与问题仅是表面相关的公式和概念,表明缺乏实际理解。
2025-01-22
chatgpt如何使用
以下是关于 ChatGPT 的使用方法: 1. 英文学习使用: 推特博主分享的 GPT 工作流,先将特定 prompt 喂给 ChatGPT(建议开新对话专门用于学习英文)。 ChatGPT 会扮演美国好朋友,对输入的英文和中文表达返回更地道的表达,对俚语部分加粗,还会举一反三给出更多例子。 输入特定语句,ChatGPT 会输出对话回顾并建议 3 个任务强化记忆。 建议使用方式:开一个窗口复制 prompt,手机端打开历史记录,点右上角耳机图标打电话,既能练口语又能练听力,结束后看回顾帮助阅读。 群友在讯飞上做了类似尝试,效果不错。 2. 苹果系统安装、订阅使用: 在 AppleStore 下载 ChatGPT,中国区需切换到美区,美区 AppleID 注册教程参考知乎链接: 。 支付宝购买苹果礼品卡:打开支付,地区切换到美区任意区,找到品牌精选 折扣礼品卡,点击大牌礼品卡,下滑找到 App Store&iTunes US 礼品卡,按需购买,建议先买 20 刀。 支付宝购买礼品卡后,在 apple store 中兑换礼品卡,然后在 chatgpt 中购买订阅 gpt plus,中途不想订阅可在订阅列表中取消。 3. 使用 ChatGPT 4o: 开启对话:打开 ChatGPT 应用或网页,点击开始对话,会员在苹果或安卓手机购买的,电脑上能登录。 体验最新语音对话功能:版本切到 ChatGPT 4o,点击右下角“耳机🎧”图标,选择一个声音即可体验流畅的语音对话。
2025-01-22
chatgpt现在进化到什么地步了
ChatGPT 目前的发展情况如下: 早期 OpenAI 推出 ChatGPT 时称其为一种模型,后来在帮助页面中又称其为一种服务。目前我们所熟知的 ChatGPT 逐渐演变成了一种可以兼容多种 GPT 模型的聊天应用(服务)。 GPT4 于 2022 年 8 月完成训练,是 OpenAI 的旗舰项目,特别强调指令遵循能力,但存在可靠性问题,还不是最终的进化完成体,不过综合能力优秀。 开发过程中,研究人员将指令型数据和聊天数据混合,希望创造出既可以处理具体任务又能流畅聊天的模型,结果表明 chat 模型使用更简单,能更好地了解并处理自身潜在局限性,展现出更连贯的特征和更稳定的行为。 ChatGPT 的出现标志着聊天机器人技术的巨大进步,为人机交互带来了更加自然、智能的体验。它的“Generative”是通过结合上文计算下一个字的概率生成内容,“Pretrained”是基于海量的预训练数据集学习知识。
2025-01-20
我有一段chatgpt提示词,我要如何应用它
以下是关于如何应用 ChatGPT 提示词的一些方法: 1. 对于“Prompt 逆向工程:让 ChatGPT 模仿任何作家,完美续写红楼梦”的提示词,您可以按照以下步骤应用: 对给定的文本进行分析,提炼其语气、写作风格、用词、句式等写作要素。 生成逆向提示词,并将其发送给 ChatGPT,让其以任意主题写出与给定文本风格类似的文章。 可将生成的提示词应用于如编写大学新生代表的演讲稿等文本创作场景。 2. 对于“📘英文学习老师口语听力阅读一体化练习”的提示词,应用方式如下: 先将整段提示词喂给 ChatGPT(建议开一个新的对话专门用来学习英文)。 然后,当您输入英文和中文表达时,ChatGPT 会返回更地道的表达,并对俚语部分加粗,同时针对您发送的话题举一反三,结合欧美流行内容给出更多例子。 输入“Hey GPT,run the end of day task.”,ChatGPT 会输出今天的对话回顾,并建议 3 个推荐的任务,以强化记忆。 建议开一个窗口复制提示词,在手机端打开历史记录,点右上角的耳机图标打电话,既能练口语又能练听力,结束后看回顾帮助阅读。 3. 对于“ChatGPT 给 DALL·E 3 优化提示词的元提示”的提示词,应用时需注意: ChatGPT 会基于给定的图像描述使用 DALL·E 3 创建图像,并以纯文本形式总结用于生成图像的提示。 遵循相关政策,如翻译非英文描述、不创建超过 4 个图像、不创作特定人物形象等。 在生成字幕时,用三个形容词代替艺术家名字,包括相关艺术运动或时代,并提及主要媒体。 总是在标题开头提到图像类型,使人物形象描述多样化。
2025-01-18
我想让chatgpt和豆包辩论,辩论的主题是勒布朗詹姆斯和迈克尔乔丹,谁是历史第一人?请帮我设计给豆包和gpt的指令,以及辩论的规则,规则让有可看性,激烈性
以下是为您设计的给豆包和 ChatGPT 的指令以及辩论规则: 指令: 豆包和 ChatGPT 需充分运用各自掌握的篮球知识和数据,对勒布朗·詹姆斯和迈克尔·乔丹谁是历史第一人的问题进行深入辩论。 要求从球员的个人能力、团队成就、影响力、比赛数据等多个方面进行分析和论证。 辩论规则: 每位参与者有固定的发言时间,例如每次发言不超过 3 分钟。 发言顺序交替进行,先由豆包开始第一轮发言。 辩论过程中,不得使用侮辱性或攻击性语言,保持理性和客观。 每轮发言结束后,另一方有 1 分钟的提问和反驳时间。 辩论共进行 5 轮,最后一轮为总结陈词,时间为 5 分钟。 观众可以在辩论结束后进行投票,选出他们认为表现更出色的一方。 希望这样的设计能让辩论具有可看性和激烈性!
2025-01-17
不同厂家的AI产品是底层算法不一样吗?比如ChatGPT和豆包
不同厂家的 AI 产品底层算法通常是不一样的。 以常见的 ChatGPT 和豆包为例,ChatGPT 是由 OpenAI 开发的,其底层算法具有独特的特点和优势。而豆包是由字节跳动开发的,也有其自身的算法设计和优化。 在当前的 AI 领域,大多数 AI 应用程序都由大型语言模型(LLMs)驱动,其中只有几个基础模型,由少数几个组织创建。例如 OpenAI 制作了 GPT3.5 和 GPT4,Google 有 Bard 等。 从相关的访问量数据来看,不同的 AI 产品在市场上的表现也有所不同。比如在某些月份,ChatGPT 的访问量较高,而豆包的访问量也在不断变化。但这并不能直接反映其底层算法的差异,只是从侧面反映了它们在用户中的受欢迎程度和使用情况。
2025-01-17
AI从业者相关资质证书
以下是一些与 AI 从业者相关的资质证书和学习资源: 学习资源: 云端问道:https://developer.aliyun.com/topic/techworkshop?spm=a2c6h.29649919.J_3425856640.1.45d87102rfvft7 云起实践平台:https://developer.aliyun.com/adc/?spm=a2c6h.28938832.0.0.5ca5448a0xO1Q9 人工智能认证证书: (免费) 视觉开放平台:https://vision.aliyun.com/ 此外,以下是一些关于 AI 从业者的相关信息: 【已结束】AI 创客松中参与同学的自我介绍和分类,包括擅长领域、想法方向和优势等。 AI 切磋大会第七期·线下狂欢 Show 中提到适合做 AI 摊主的人群特点,如技术背景丰富、产品开发与管理经验、多元化应用场景等,以及 AI 爱好者与学习者、AI 内容创作与营销能力方面的相关情况。
2025-01-23
哪个AI对PDF文件的提炼总结能力最强
目前在对 PDF 文件的提炼总结能力方面,Claude 2 表现出色。将整本书粘贴到 Claude 的前一版本中能取得令人印象深刻的结果,新模型更强大。可以通过查看相关经验和提示。此外,myaidrive.com 网站上的 AI PDF 也能处理较大的 PDF 文件,并为冗长的文档提供上级摘要。同时,近期出现的各类 AI 搜索引擎,如 perplexity.ai、metaso、360 搜索、ThinkAny 等,其智能摘要功能能够辅助快速筛选信息。但需要注意的是,这些系统仍可能产生幻觉,若要确保准确性,需检查其结果。
2025-01-23
目前最强大的AI工具
目前较为强大的 AI 工具包括以下几类: 绘制逻辑视图、功能视图、部署视图的工具: 1. Lucidchart:流行的在线绘图工具,支持多种视图创建,操作便捷。 2. Visual Paradigm:全面的 UML 工具,功能丰富。 3. ArchiMate:开源建模语言,与 Archi 工具配合使用。 4. Enterprise Architect:强大的建模、设计和代码生成工具。 5. Microsoft Visio:广泛使用,提供丰富模板。 6. draw.io(diagrams.net):免费在线图表软件。 7. PlantUML:文本到 UML 转换工具。 8. Gliffy:基于云的绘图工具。 9. Archi:免费开源,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具。 辅助编程的工具: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE。 2. 通义灵码:阿里巴巴团队推出,提供多种编程辅助能力。 3. CodeWhisperer:亚马逊 AWS 团队推出,提供实时代码建议。 4. CodeGeeX:智谱 AI 推出的开源免费工具,可快速生成代码。 5. Cody:Sourcegraph 推出,借助强大的代码分析能力。 6. CodeFuse:蚂蚁集团支付宝团队推出的免费 AI 代码助手。 7. Codeium:提供代码建议等帮助,提高编程效率和准确性。 辅助写邮件的工具: 1. Grammarly:提供语法检查、拼写纠正等功能,多平台适用。 2. Hemingway Editor:简化句子结构,提高可读性。 3. ProWritingAid:全面的语法和风格检查,提供详细报告。 4. Writesonic:基于 AI 生成多种文本,速度快。 5. Lavender:专注邮件写作优化,提供个性化建议和模板。
2025-01-23
那些AI可以免费进行视频创作
以下是一些可以免费进行视频创作的 AI 工具: 1. Pika:是一个 AI 视频平台,能让任何人将创意愿景变为现实,通过先进的视频基础模型和易用的创作产品重新定义视频制作和编辑方式。 2. Chat.DID:是首个允许人们以人类方式与 AI 进行视频聊天的 APP,处于测试阶段。 3. Bard(免费):由谷歌推出,是谷歌的对话应用语言模型(LaMDA)提供支持。 此外,还有一些在视频创作方面表现出色的工具: 1. Dora AI:可以通过一个 prompt,借助 AI 3D 动画生成强大网站,支持文字转网站、生成式 3D 互动、高级 AI 动画。 2. Runway v2:用于从文本创建视频,创建了 4 秒的短剪辑,是对未来发展的展示。 在营销领域,以下 AI 工具常用于视频创作或相关方面: 1. Synthesia:允许用户创建由 AI 生成的高质量视频,包括数字人视频,提供多种定价计划,有免费选项。 2. HeyGen:基于云的 AI 视频制作平台,用户可从 100 多个 AI 头像库中选择,并通过输入文本生成数字人视频。 更多的营销产品可以查看 WaytoAGI 网站:https://www.waytoagi.com/sites?tag=8 。需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-23
AI视频制作广告
以下是关于 AI 视频制作广告的相关内容: 1. 校园 AI 创投活动中包含了 AI 视频创作的课程和回放,如 10 月 16 日 20:00 的“AI 视频创作指南 商业片制作”课程回放,相关资料有老师课件、视频制作项目表等。 2. 关于如何做出商业级的 AI 视频广告,有 8000 字保姆级教程。其中提到脚本和分镜创作的重要性,比如一个 30 秒时长的奔驰 GLE300L 广告脚本,要突出其豪华感和特点,包括动力、配置等,脚本内容需包含时长、内容、音乐、台词、道具、景别、运镜等结构。 3. 对于脚本创作,可以借助大模型,如 Kimi、Claude、Chatgpt 等,不同模型有各自特点,可按需选择。脚本提示词的结构包括要做什么样的视频、视频要包含的关键元素、对脚本输出的要求等。
2025-01-23
AI视频如何创作
将小说制作成 AI 视频通常包括以下步骤,并涉及多种工具: 工具与网址: 1. Stable Diffusion(SD):一种 AI 图像生成模型,可基于文本描述生成图像。网址:https://github.com/StabilityAI 2. Midjourney(MJ):适用于创建小说中的场景和角色图像。网址:https://www.midjourney.com 3. Adobe Firefly:Adobe 的 AI 创意工具,可生成图像和设计模板。网址:https://www.adobe.com/products/firefly.html 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。网址:https://pika.art/waitlist 5. Clipfly:一站式 AI 视频生成和剪辑平台。网址:https://www.aihub.cn/tools/video/clipfly/ 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。网址:https://www.veed.io/zhCN/tools/aivideo 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。网址:https://tiger.easyartx.com/landing 8. 故事 AI 绘图:小说转视频的 AI 工具。网址:https://www.aihub.cn/tools/video/gushiai/ 制作流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 在 Adobe Firefly 的 Advanced 部分,您可以使用 Seed 选项添加种子编号(https://helpx.adobe.com/firefly/generatevideo/generatevideoclips/generatevideofaq.htmlwhatisaseed),以帮助启动流程并控制 AI 创建的内容的随机性。如果使用相同的种子、提示和控制设置,则可以重新生成类似的视频剪辑。选择 Generate(生成)。
2025-01-23
人工智能的场景应用及其对社会治理的新挑战,注意场景应用和社会治理的对应,同时突出新挑战
以下是关于人工智能的场景应用及其对社会治理新挑战的相关内容: 场景应用: 医疗领域:如利用 AI 技术预测蛋白质结构,加速科学研究和救命药物的开发,在对抗疟疾、抗生素耐药性和塑料垃圾等方面取得巨大进展。 气候领域:通过 AI 技术应对气候变化。 对社会治理的新挑战: 可能产生新的风险,如使用 AI 可能带来的未知问题。 复杂的 AI 技术可能引发公众的不安。 涉及数据获取、计算能力、可持续性以及内容生产者和 AI 开发者权利平衡等重要问题,需要综合考虑。 需确保在保护权利持有者和支持 AI 开发者获取所需数据之间保持恰当平衡。
2025-01-23
人工智能的场景应用
人工智能(AI)的应用场景广泛,涵盖以下多个领域: 1. 医疗保健: 医学影像分析,辅助诊断疾病。 加速药物研发,识别潜在药物候选物和设计新疗法。 提供个性化医疗方案。 控制手术机器人,提高手术精度和安全性。 2. 金融服务: 识别和阻止欺诈行为,降低风险。 评估借款人信用风险,辅助贷款决策。 分析市场数据,辅助投资决策。 提供 24/7 客户服务,回答常见问题。 3. 零售和电子商务: 分析客户数据进行产品推荐。 改善搜索结果和提供个性化购物体验。 实现动态定价。 提供聊天机器人服务,解决客户问题。 4. 制造业: 预测机器故障,避免停机。 检测产品缺陷,提高质量。 优化供应链,提高效率和降低成本。 控制工业机器人,提高生产效率。 5. 交通运输: 开发自动驾驶汽车,提高交通安全性和效率。 优化交通信号灯和交通流量,缓解拥堵。 优化物流路线和配送计划,降低运输成本。 实现无人机送货,送达偏远地区。 6. 其他领域: 教育:提供个性化学习体验。 农业:分析农田数据,提高农作物产量和质量。 娱乐:开发虚拟现实和增强现实体验。 能源:优化能源使用,提高能源效率。 此外,AI 绘画在以下场景也有应用: 广告设计:快速生成创意概念图,为广告策划提供灵感和初稿。 游戏开发:创建游戏场景、角色形象,提高开发效率。 影视制作:辅助生成特效场景、概念设计。 建筑设计:帮助构想建筑外观和内部布局。
2025-01-23
你觉得首尾帧的使用场景有哪些
以下是首尾帧的一些使用场景: 1. 在即梦 AI 视频生成的【图生视频】面板内,勾选【使用尾帧】可开启「首尾帧」功能。此功能基于用户输入的「首帧图片」、「尾帧图片」以及 prompt(强烈建议填写),生成完整的过渡效果。 2. 「首尾帧」能通过用户输入的「首帧」和「尾帧」图片,更好地保持主体的一致性。「首帧」是视频的第一帧,即开头的图片;「尾帧」是视频的最后一帧,即结尾的图片。 3. 输入 prompt 会极大程度增加过渡效果自然成功率,不输入 prompt 有一定概率会给到叠化过渡效果。 4. 运动速度可以根据图片差异进行调整,如景别或内容差异较大,可选择【适中】速度进行生成。 5. 选择的生成时长可以根据图片差异进行调整,如景别或内容差异较大,可选择更高时长进行生成。例如,可根据首尾帧的过渡时长预期,选择 3s 12s 的时长。 6. 线稿上色的动态视频可以使用即梦视频 1.2 模型的首尾帧功能,能让图片不乱动。 7. 把两段素材(如一个动作到另一个动作的素材)拼接起来时,也可能用到首尾帧。
2025-01-22
在医疗场景,现在有哪些应用
在医疗场景中,AI 有以下应用: 1. 医学影像分析:可用于分析 X 射线、CT 扫描和 MRI 等医学图像,辅助诊断疾病。 2. 药物研发:能够加速药物研发过程,比如识别潜在的药物候选物和设计新的治疗方法。 3. 个性化医疗:通过分析患者数据,为每个患者提供个性化的治疗方案。 4. 机器人辅助手术:用于控制手术机器人,提高手术的精度和安全性。 5. 疾病的诊断与预测:例如利用大模型进行疾病的早期诊断和病情发展预测。 6. 新药物发现:如麻省理工学院利用 AI 发现新型广谱抗生素 Halicin。 7. 中医应用:将人工智能与中医结合,辅助看诊,提高诊疗效率,未来有望实现 24 小时独立问诊开药。 8. 医学问答:像 DoctorGPT 这样的模型,能够准确回答各种医学问题。
2025-01-20
AI在电商行业的应用场景
AI 在电商行业有以下应用场景: 1. 产品推荐:通过分析客户数据,为每个客户推荐可能感兴趣的产品。 2. 搜索和个性化:改善搜索结果,为客户提供个性化的购物体验。 3. 动态定价:根据市场需求动态调整产品价格。 4. 聊天机器人:提供服务,回答客户问题并解决他们的问题。 在生成式 AI 方面,电子商务成为富有成效的垂直行业之一。相关工具如编写经过 SEO 优化的产品描述。未来,用户有望仅通过描述期望的审美并点击按钮,创建完整的电商商店及市场营销材料。 此外,还有以下具体案例: 1. 品牌:提升品牌价值,涉及品牌洋葱图思维模型、产品信息、人群等 19 个关键词。 2. 品牌:分析品牌舆论传播,涵盖舆论传播、数据分析、主题等 25 个关键词。 3. 推广:制定上市推广方案,包含品牌、产品信息、新品等 28 个关键词。
2025-01-16
AI在食品制造型企业有哪些场景可以做?
在食品制造型企业中,AI 可以应用于以下场景: 1. 质量控制:利用 AI 检测产品缺陷,确保食品质量。 2. 预测性维护:预测生产设备故障,避免生产中断。 3. 供应链管理:根据历史数据和市场变化,自动生成采购计划、库存预测和物流优化方案,提高供应链效率。 4. 产品设计和开发:借助 AI 生成工具,根据文字描述快速生成食品的包装设计、配方等元素,提高设计效率。 5. 工艺规划和优化:结合自然语言处理能力,自动生成生产工艺流程、设备选型等方案,优化生产过程。 6. 客户服务:基于对话模型的 AI 客服机器人,自动生成个性化的客户回复,提升客户体验。
2025-01-16