Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

人工智能的场景应用及其对社会治理的新挑战,注意场景应用和社会治理的对应,同时突出新挑战

Answer

以下是关于人工智能的场景应用及其对社会治理新挑战的相关内容:

场景应用

  • 医疗领域:如利用 AI 技术预测蛋白质结构,加速科学研究和救命药物的开发,在对抗疟疾、抗生素耐药性和塑料垃圾等方面取得巨大进展。
  • 气候领域:通过 AI 技术应对气候变化。

对社会治理的新挑战

  • 可能产生新的风险,如使用 AI 可能带来的未知问题。
  • 复杂的 AI 技术可能引发公众的不安。
  • 涉及数据获取、计算能力、可持续性以及内容生产者和 AI 开发者权利平衡等重要问题,需要综合考虑。
  • 需确保在保护权利持有者和支持 AI 开发者获取所需数据之间保持恰当平衡。
Content generated by AI large model, please carefully verify (powered by aily)

References

【法律法规】《促进创新的人工智能监管方法》.pdf

1.1.Artificial intelligence(AI)is already delivering wide societal benefits,from medical advances1 to mitigating climate change.2 For example,an AI technology developed by DeepMind,a UKbased business,can now predict the structure of almost every protein known to science.3 This breakthrough will accelerate scientific research and the development of life-saving medicines–it has already helped scientists to make huge progress in combating malaria,antibiotic resistance,and plastic waste.2.2.The UK Science and Technology Framework4 sets out government’s strategic vision and identifies AI as one of five critical technologies.The framework notes the role of regulation in creating the environment for AI to flourish.We know that we have yet to see AI technologies reach their full potential.Under the right conditions,AI will transform all areas of life5 and stimulate the UK economy by unleashing innovation and driving productivity,6 creating new jobs and improving the workplace.3.3.Across the world,countries and regions are beginning to draft the rules for AI.The UK needs to act quickly to continue to lead the international conversation on AI governance and demonstrate the value of our pragmatic,proportionate regulatory approach.The need to act was highlighted by Sir Patrick Vallance in his recent Regulation for Innovation review.The report identifies the short time frame for government intervention to provide a clear,pro-innovation regulatory environment in order to make the UK one of the top places in the world to build foundational AI companies.74.4.While we should capitalise on the benefits of these technologies,we should also not overlook the new risks that may arise from their use,nor the unease that the complexity of AI technologies can produce in the wider public.We already know that some uses of AI could1The use of AI in healthcare and medicine is booming,Insider Intelligence,2023.2 How to fight climate change using AI,Forbes,2022;Tackling Climate Change with Machine Learning,Rolnick et al.,2019.

【法律法规】《2020年国家人工智能倡议法案》.pdf

(1)IN GENERAL.—The Director shall award 15 grants for research on artificial(F)fields and research areas that will con18 tribute to the development and deployment of 19 trustworthy artificial intelligence systems,in20 cluding—21(i)algorithmic explainability;22(ii)methods to assess,characterize,23 and reduce bias in datasets and artificial 24 intelligence systems;and 25VerDate Sep 11 2014 23:31 Mar 25,2020 Jkt 099200 PO 00000 Frm 00039 Fmt 6652 Sfmt 6201 E:\BILLS\H6216.IH H6216pamtmann on DSKBC07HB2PROD with BILLS40•HR 6216 IH(iii)safety and robustness of artificial 1 intelligence systems,including assurance,2 verification,validation,security,and con3 trol;4(G)privacy and security,including for 5 datasets used for the training and inference of 6 artificial intelligence systems,and software and 7 hardware used in artificial intelligence systems;8(H)fields and research areas that address 9 the application of artificial intelligence systems 10 to scientific discovery and societal challenges;11(I)societal,ethical,safety,education,12 workforce,and security implications of artificial 13 intelligence systems,including social impact of 14 artificial intelligence systems on different 15 groups within society,especially historically 16 marginalized groups;and 17(J)qualitative and quantitative forecasting 18 of future capabilities,applications,and impacts.19

【法律法规】《促进创新的人工智能监管方法》.pdf

1.34.The proposed regulatory framework does not seek to address all of the wider societal and global challenges that may relate to the development or use of AI.This includes issues relating to access to data,compute capability,and sustainability,as well as the balancing of the rights of content producers and AI developers.These are important issues to consider–especially in the context of the UK’s ability to maintain its place as a global leader in AI–but they are outside of the scope of our proposals for a new overarching framework for AI regulation.2.35.Government is taking wider action to ensure the UK retains its status as a global leader in AI,for example by taking forward Sir Patrick Vallance’s recommendation relating to intellectual property law and generative AI.77 This will ensure we keep the right balance between protecting rights holders and our thriving creative industries,while supporting AI developers to access the data they need.75 Trust in Artificial Intelligence:a five country study,KPMG and the University of Queensland,2021;Evidence to support the analysis of impacts for AI governance,Frontier Economics,2023.76“Building on the UK’s strengths in the professional services and technology sectors,AI assurance will also become a significant economic activity in its own right,with the potential for the UK to be a global leader in a new multi-billion pound industry.”See The roadmap to an effective AI assurance ecosystem,Centre for Data Ethics and Innovation,2021.77 Pro-innovation Regulation of Technologies Review:Digital Technologies,HM Treasury,2023.20A pro-innovation approach to AI regulation

Others are asking
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
金融业相关AI应用场景或AI技术介绍
在金融业中,AI 有以下应用场景和技术: 1. 风控和反欺诈:用于识别和阻止欺诈行为,降低金融机构的风险。 2. 信用评估:评估借款人的信用风险,帮助金融机构做出更好的贷款决策。 3. 投资分析:分析市场数据,辅助投资者做出更明智的投资决策。 4. 客户服务:提供 24/7 的客户服务,回答客户常见问题。 例如,Hebbia 获得近 1 亿美元 B 轮融资,其 AI 技术能够一次处理多达数百万份文档,在短时间内浏览数十亿份包括 PDF、PowerPoint、电子表格和转录内容等,并返回具体答案,主要面向金融服务公司,如对冲基金和投资银行,同时也适用于律师事务所等其他专业领域。
2025-04-15
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出10个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您生成的 10 个业务价值高、具备可行性的 AI 应用场景介绍: 1. 人才招聘与筛选 What:利用 AI 技术对求职者的简历进行自动筛选和分析,评估其与岗位的匹配度。 Why:节省 HR 大量的时间和精力,提高招聘效率和准确性。 How:通过自然语言处理和机器学习算法,训练模型识别关键信息和技能。 2. 员工培训与发展 What:根据员工的技能水平和职业发展目标,定制个性化的培训计划。 Why:提升员工的能力和绩效,增强员工对企业的忠诚度。 How:利用大数据分析员工的工作表现和学习需求,推荐相关课程和学习资源。 3. 薪酬福利管理 What:运用 AI 预测市场薪酬趋势,为企业制定合理的薪酬策略。 Why:保持企业薪酬的竞争力,吸引和留住优秀人才。 How:收集和分析行业薪酬数据,结合企业的财务状况和战略目标进行优化。 4. 员工绩效评估 What:借助 AI 实时监测员工的工作表现,提供客观的绩效评估。 Why:减少人为偏差,确保评估的公正性和准确性。 How:利用工作流程数据和行为分析模型进行评估。 5. 员工关系管理 What:通过 AI 分析员工的情绪和满意度,及时发现问题并解决。 Why:营造良好的工作氛围,提高员工的工作积极性和创造力。 How:使用情感分析技术处理员工的反馈和交流信息。 6. 组织架构优化 What:利用 AI 分析企业的业务流程和人员配置,提供组织架构调整建议。 Why:提高企业的运营效率和灵活性,适应市场变化。 How:基于数据分析和模拟优化算法进行评估和推荐。 7. 人力资源规划 What:根据企业的战略目标和业务发展预测人力资源需求。 Why:提前做好人才储备和招聘计划,保障企业的正常运营。 How:运用数据分析和预测模型进行规划。 8. 企业文化传播 What:使用 AI 生成个性化的企业文化宣传内容,提高传播效果。 Why:增强员工对企业文化的认同感和归属感。 How:利用自然语言生成技术和个性化推荐算法。 9. 智能客服 What:在 HR 服务中引入 AI 客服,解答员工常见问题。 Why:快速响应员工需求,提高服务质量。 How:训练智能客服模型,涵盖常见的 HR 问题和解决方案。 10. 人才库管理 What:利用 AI 对人才库进行分类和更新,提高人才库的利用效率。 Why:方便快速找到合适的人才,降低招聘成本。 How:运用数据挖掘和分类算法进行管理。
2025-04-14
公共议题:AI如何助力HR业务? 研讨目标: 深入理解:深入探讨 AI在人力资源管理领域的应用、薪酬管理、员工关系、公司文化、包括人才获取与配置、学习与发展、组织与人才培、HR共享与HRIS等各模块的可应用场景 机会识别与场景落地:基于组织现状,识别出业务价值高、可落地的 A 应用场景; 研讨成果(输出物): 请输出3-5个业务价值高、具备可行性的AI应用场景介绍,并说明what(场景是什么)、why(为什么值得做)、How(如何落地);
以下是为您提供的 3 个业务价值高、具备可行性的 AI 应用场景介绍: 场景一:AI 在企业招聘中的应用 What:利用 AI 技术进行简历筛选、人才匹配和面试评估。 Why:能够快速处理大量简历,提高招聘效率和准确性,节省人力和时间成本,同时更精准地找到符合岗位需求的人才。 How:通过引入相关的 AI 招聘软件,与企业现有的招聘系统集成,对简历进行关键词提取和分析,利用机器学习算法进行人才匹配,并通过视频面试中的语音和表情分析辅助评估候选人。 场景二:AI 助力个性化人力资源管理 What:根据员工的个人特点和工作表现,提供个性化的培训计划、职业发展建议和绩效评估。 Why:能够充分发挥员工的潜力,提高员工满意度和忠诚度,促进企业的长期发展。 How:收集员工的工作数据、学习记录和绩效表现等信息,运用 AI 算法进行分析和预测,为员工制定专属的发展方案,并通过移动应用或内部系统向员工推送相关建议和培训课程。 场景三:AI 打造无人值守的 HR 平台 What:实现 HR 业务的自动化处理,如员工请假审批、薪酬计算和福利发放等。 Why:减少人工操作的错误和繁琐流程,提高 HR 工作的效率和准确性,使 HR 人员能够专注于更有价值的战略工作。 How:整合企业内部的各种 HR 系统和数据,利用 RPA 和 AI 技术实现流程的自动化,同时建立监控和预警机制,确保平台的稳定运行。
2025-04-14
准确的讲述垂直大模型的概念,国内外的应用现状、场景,发展趋势,最好能附带图片。内容尽量详细、逻辑通顺。
垂直大模型是专注于特定领域的大模型,例如小语种交流、临床医学、AI 蛋白质结构预测等。 在国内,大模型分为通用模型如文心一言、讯飞星火等,处理自然语言;也有垂直模型专注特定领域。 大模型因其强大的语言理解和生成能力,在多个领域和应用场景中表现出色。比较火的应用场景包括: 1. 文本生成和内容创作:撰写文章、生成新闻报道、创作诗歌和故事等。 2. 聊天机器人和虚拟助手:提供客户服务、日常任务提醒和信息咨询等服务。 3. 编程和代码辅助:代码自动补全、bug 修复和代码解释。 4. 翻译和跨语言通信:促进不同语言背景的用户之间的沟通和信息共享。 5. 情感分析和意见挖掘:为市场研究和产品改进提供数据支持。 6. 教育和学习辅助:创建个性化的学习材料、自动回答学生问题和提供语言学习支持。 7. 图像和视频生成:如 DALLE 等模型可以根据文本描述生成相应的图像,甚至在未来可能扩展到视频内容的生成。 8. 游戏开发和互动体验:创建游戏中的角色对话、故事情节生成和增强玩家的沉浸式体验。 9. 医疗和健康咨询:理解和回答医疗相关的问题,提供初步的健康建议和医疗信息查询服务。 10. 法律和合规咨询:帮助解读法律文件,提供合规建议,降低法律服务的门槛。 关于发展趋势,尽管当前市场以基础大模型为主,但将大模型与行业专业知识结合,以满足不同行业的需求,成为未来发展的关键。例如腾讯研究院的《行业大模型调研报告》指出,如何将大模型与行业专业知识结合是重点。同时,在发展过程中也需要注意其在隐私、安全和伦理方面的挑战。 很抱歉,暂时无法为您提供相关图片。
2025-04-11
随着 ChatGPT、Deepseek 等 AI 技术的爆发式发展,人工智能正在加速渗透各行业应用场景,包括茶饮行业。请你对 AI 技术在茶饮行业的影响进行研究分析,并提出 AI 技术可以在连锁奶茶店如何应用的设想。
以下是关于 AI 技术在茶饮行业的影响分析及在连锁奶茶店应用的设想: 影响分析: 1. 提升运营效率:通过自动化流程和智能预测,优化库存管理、员工排班等环节。 2. 改善客户体验:利用智能客服快速响应顾客咨询,提供个性化推荐。 3. 精准营销:基于大数据分析顾客偏好,制定更有针对性的营销策略。 应用设想: 1. 智能点单系统:根据顾客的历史订单和偏好,为其推荐饮品和搭配。 2. 库存管理优化:借助 AI 预测销售趋势,精准控制原材料库存。 3. 员工培训辅助:利用虚拟培训工具,提升员工的服务技能和产品知识。 4. 营销决策支持:通过数据分析,确定最佳的促销活动和推广渠道。 目前的知识库中,相关的具体研究报告主要有: 1. 浙江大学:《DeepSeek 技术溯源及前沿探索朱强》(2025/03/19),介绍了语言模型从基于统计的 Ngram 到 Transformer 的技术演化,以及大模型的发展,如 GPT 系列。 2. 浙江大学:《DeepSeek:回望 AI 三大主义与加强通识教育报告》(2025/03/05),围绕人工智能展开,介绍其发展历程、三大主义、技术进展、应用成果以及教育举措。 3. 清华大学:《气象人工智能技术与应用报告》(2024/12/25),围绕气象人工智能展开,介绍了其发展和应用情况。 如需下载这些研究报告,可。
2025-04-09
AI生成PPT,介绍员工持股平台2024年的治理情况
很抱歉,目前知识库中没有关于使用 AI 生成介绍员工持股平台 2024 年治理情况 PPT 的相关内容。但我可以为您提供一些思路和建议来帮助您完成这个任务。 首先,您需要明确 PPT 的结构和主要内容板块。比如,可以包括员工持股平台的概述、2024 年的治理目标和策略、治理成果和关键数据、面临的挑战和解决方案、未来展望等。 在使用 AI 工具生成 PPT 时,您可以向工具清晰地描述每个板块的具体要求和重点内容。例如,对于治理成果板块,您可以要求 AI 突出显示关键的数据和图表,并进行简洁明了的解读。 同时,您还可以参考一些现有的优秀 PPT 模板和案例,以获取更多的灵感和设计思路。 希望这些建议对您有所帮助,如果您还有其他问题,请随时向我提问。
2025-03-22
AI安全治理这个方向的国内外的团队和人
以下是 AI 安全治理方向的国内外团队和人员相关信息: 美国:拜登签署了 AI 行政命令,美国政府已就 AI 治理框架与多国进行了广泛协商,包括澳大利亚、巴西、加拿大、智利、欧盟、法国、德国、印度、以色列、意大利、日本、肯尼亚、墨西哥、荷兰、新西兰、尼日利亚、菲律宾、新加坡、韩国、阿联酋和英国等。此外,美国迅速跟进世界首个人工智能安全研究所 AISA,美国能源部也一直在利用其内部测试床评估人工智能可能对关键基础设施和能源安全带来的风险。 英国:创建了世界上第一个人工智能安全研究所 AISA,AISA 有在部署前对高级模型进行评估、建立国家能力并开展研究、协调国际合作伙伴等三个核心功能,还发布了用于 LLM 安全评估的框架 Inspect。英国通过其高级研究与发明机构(ARIA)花费 5900 万英镑开发“守门员”系统,负责了解和减少关键领域中其他人工智能代理的风险,还计划设立“AI 安全研究实验室”。 OpenAI:OpenAI LP 约有 100 名员工,分为技术能力(推动 AI 系统功能发展)、安全保障(确保系统符合人类价值观)和政策治理(确保适当治理系统)三个主要方向。
2025-02-20
调研一下AI安全治理这个方向的国内外的团队和人。包括AI安全治理的子方向,每一个子方向国内外有哪些科研院所的哪些团队在做相关方向的工作,以及这些团队有哪些骨干成员,他们有哪些观点。以及这个团队有哪些治理成果,尽量详细
以下是关于 AI 安全治理方向的国内外团队和人的相关调研: 国外团队和人员: OpenAI:首席科学家 Ilya 对模型安全较为关注,提出了通过“指令层次结构”来修复“忽略所有先前指令“攻击的方法,并已在 GPT40 Mini 中得到部署。 Anthropic:在多重越狱方面的工作表明了“警告防御”的潜力,在前面和后面添加警告文本,以警示模型不要被越狱。 Gray Swan AI 的安全专家:试用“断路器”,专注于重新映射有害表示,效果比标准拒绝训练更好。 图灵奖得主 Hinton:支持对 AI 监管,认为大模型及其驱动的 AI 必须引入安全性监管,防止其失控或对人类造成伤害,并在网上签署了联名公开信。 英国:创建了世界上第一个人工智能安全研究所 AISA,具有在部署前对高级模型进行评估、建立国家能力并开展研究、协调国际合作伙伴等核心功能,还发布了 Inspect 框架用于 LLM 安全评估,并宣布与美国等效机构签署谅解备忘录,计划在美国旧金山设立办事处。 国内团队和人员:目前调研内容中未提及国内相关团队和人员的具体信息。 在观点方面,Bengio、Hinton、姚期智等著名研究者认为大模型及其驱动的 AI 必须引入安全性监管,确保大模型是 Safety 的,防止其失控或对人类造成伤害,并签署了联名公开信表达对于 AI 失控的担忧,呼吁学术界和工业界对大模型进行监管。吴恩达和 Lecun 则认为模型的能力不足以使其脱离人类的限制。 治理成果方面,英国通过其高级研究与发明机构(ARIA)花费 5900 万英镑开发“守门员”,负责了解和减少在能源、医疗保健和电信等关键领域中其他人工智能代理的风险。英国政府还计划设立一个“AI 安全研究实验室”。美国能源部一直在利用其内部测试床评估人工智能可能对关键基础设施和能源安全带来的风险。LLM 测试初创公司 Haize Labs 与 Hugging Face 合作创建了首个红队抵抗组织基准,汇编了常用的红队数据集并根据模型评估它们的成功率。Scale 根据私人评估推出了自己的稳健性排行榜。
2025-02-20
国际做AI安全 治理的团队
以下是一些国际上从事 AI 安全治理的团队和相关情况: 英国创建了世界上第一个人工智能安全研究所(AISA),其具有在部署前对高级模型进行评估、建立国家能力并开展研究、协调国际合作伙伴等三个核心功能,还发布了用于 LLM 安全评估的框架 Inspect。英国宣布与美国等效机构签署谅解备忘录,并计划在美国旧金山设立办事处。此外,英国通过其高级研究与发明机构(ARIA)花费 5900 万英镑开发“守门员”系统,负责了解和减少关键领域中其他人工智能代理的风险,还报道称计划设立一个“AI 安全研究实验室”,旨在汇集政府关于敌对国家使用进攻性 AI 的知识。 美国能源部一直在利用其内部测试床评估人工智能可能对关键基础设施和能源安全带来的风险。 需要注意的是,全球在 AI 治理上的合作存在尴尬局面,承诺多而实际行动少。同时,国家和地区法规存在角力,美国和欧盟等国家或地区正在通过有争议的国家层面立法。
2025-02-20
非结构化数据治理
以下是关于非结构化数据治理的相关信息: 在 AI 新产品方面: JamGPT AI Debug 小助手:https://jam.dev/jamgpt ChatGPT2D 用于生成二维知识图谱:https://www.superusapp.com/chatgpt2d/ Motörhead by metal 是用于 LLM 的开源内存和信息检索服务器:https://github.com/getmetal/motorhead 在网页抓取工具方面: Hexomatic:https://hexomatic.com/ WebscrapeAI:https://webscrapeai.com/ Kadoa:https://www.kadoa.com/ 在个人数据处理方面: Bloks 可自动处理个人笔记、任务列表和会议记录:https://www.bloks.app/ Lettria 用于处理个人文本材料:https://www.lettria.com/ Quadratic 可使用 AI、Python、SQL 和公式分析个人数据:https://www.quadratichq.com/?ref=producthunt 在向量数据库方面,以电影网站为例,传统搜索在处理语义搜索和对非结构化数据(如图像、音频等)的相似性搜索时存在问题,比如用户输入“电影像《星球大战》一样令人兴奋”或上传一张电影《银翼杀手》的海报,传统关系数据库或 Excel 难以理解和返回相关搜索结果。 在金融行业,非结构化数据主要涉及报告(如年度报告、季度报告等公司财务报告)、公告(如董事会公告、监事会公告、股东大会公告等)、上市资料(如招股说明书等公司上市相关文件)。
2025-01-24
全球人工智能治理研究报告
以下是为您整合的关于全球人工智能治理研究报告的相关内容: 2024 AI 年度报告: 正确预测: 好莱坞级别的制作公司开始使用生成式人工智能来制作视觉特效。 美国联邦贸易委员会(FTC)或英国竞争与市场管理局(CMA)基于竞争理由调查微软/OpenAI 的交易。 在全球人工智能治理方面,进展非常有限,会超出高层次的主动承诺。 一首由人工智能创作的歌曲进入公告牌 Hot 100 前 10 名或 Spotify 2024 年热门榜单。 随着推理工作负载和成本的显著增长,一家大型人工智能公司(例如 OpenAI)收购或建立了一个专注于推理的人工智能芯片公司。 错误预测: 有生成式人工智能媒体公司因其在 2024 年美国选举期间的滥用行为受到调查。 自我改进的人工智能智能体在复杂环境中(例如 AAA 级游戏、工具使用、科学探索)超越了现有技术的最高水平。 科技 IPO 市场解冻,至少看到一家以人工智能为重点的公司上市(例如 DBRX)。 2024 人工智能报告: 英国创建了世界上第一个人工智能安全研究所,美国迅速跟进。世界首个人工智能安全研究所 AISA 有三个核心功能:在部署前对高级模型进行评估;建立国家能力并开展研究;协调国际合作伙伴。AISA 还发布了 Inspect,一个用于 LLM 安全评估的框架,涵盖核心知识、推理能力和自主能力等方面。英国宣布与美国等效机构签署谅解备忘录,双方同意共同开发测试,并计划在美国旧金山设立办事处。 政府急于填补关键国家基础设施中的漏洞。英国通过其高级研究与发明机构(ARIA),花费了 5900 万英镑来开发一个“守门员”——一种先进的系统,负责了解和减少在能源、医疗保健和电信等关键领域中其他人工智能代理的风险。英国政府还报道称计划设立一个“AI 安全研究实验室”,旨在汇集政府关于敌对国家使用进攻性 AI 的知识。美国能源部一直在利用其内部测试床评估人工智能可能对关键基础设施和能源安全带来的风险。随着攻击面扩大,开发人员加大了对“越狱”的研究。 2024 年人工智能现状: 全球治理的尴尬局面:全球在 AI 治理上的合作就像一场尴尬的华丽晚宴,大家都不知道该说些什么——承诺满天飞,实际行动却寥寥无几。 国家和地区法规的角力:疫情之后,越发魔幻的世界让我产生了世界在玩一种很新的“闭关锁国”,美国和欧盟等国家或地区正在通过有争议的国家层面立法,科技公司在这场与监管巨头的博弈中,还需面对自身可持续性目标的挑战——发展 AI 的排放量简直就像是一场全国范围的 SUV 自驾游,环保得让人哭笑不得。
2025-01-02
挑战一百天和AI 做朋友
以下是关于挑战一百天和 AI 做朋友的相关内容: 《雪梅 May 的 AI 学习日记》: 1. 作者介绍: 适合纯 AI 小白,可参考日记,学习模式为输入→模仿→自发创造。 学习内容因 AI 节奏快可能不适用,可去 waytoAGI 社区找感兴趣的最新内容。 学习时间不是每天依次进行,有空就学。 2024 年保持较好学习状态,能学多少算多少。 学习资源免费开源。 2. 第一阶段:迈出第一步,看书听课进社区 学习指南:系统性学习,打好基础,不要碎片化输入。 DAY1 2024.5.22 初步探索:初期会走弯路,B站 上部分内容不适合系统性学习。 DAY2 2024.5.23 加入 AI 社区:waytoAGI,是宝藏社区,可看新手指引入门。 2024 年历史更新(归档): 1. 12 月 31 日: 《雪梅 May 的 AI 学习日记》,分为三个阶段,学习路线图适合新人参考。 《Meta 首席 AI 科学家 LeCun 访谈:为什么他一直认为 AI 还不如一只猫?》,Yann LeCun 直指当前 AI 根本局限,阐述不同技术路径。 《少卿:AI 帮你赢,谈双重主体性》,强调将 AI 视为方法,提供实用应用框架。
2025-03-31
大模型时代组织和个人面临的挑战和应对策略是什么?
在大模型时代,组织和个人面临着以下挑战和应对策略: 挑战: 1. 算力投资风险:大规模算力投资使公司转变为重资产模式,可能影响公司估值和投资人收益。获取高性能算力成本高昂,包括 GPU 价格及后续部署、运营、调试和使用成本。 2. 估值泡沫风险:创业公司为抬高估值规避算力风险,可能成为突破的绊脚石,类似荷兰郁金香泡沫,当风口过去,真实收入将成为关键指标。 应对策略: 1. 对于创业公司: 挖掘新的价值点,如探索大模型在不同领域的应用,或开发中间层服务,如训练、数据处理、算力服务等。 避免盲目追逐原创大模型,根据自身情况选择合适的发展路径,如套壳开源大模型或拼装大模型时注重创新和突破。 2. 对于投资人: 保持独立判断,不人云亦云,吸取以往经验教训,专注于更有创意和机会的公司或项目。
2025-03-28
7天AI入门挑战
以下是为您提供的 7 天 AI 入门挑战的相关内容: 第一天(2024.5.22):初步探索。May 在开始想要了解 AI 的初期会走必经弯路,在 B 站看了一些介绍 ChatGPT 原理的分享,消费性观看可以,但系统性学习需要更高质量的内容,而非知识碎片。 第二天(2024.5.23):加入 AI 社区 waytoAGI。May 发现这个开源知识库,不再到处在 B 站找零碎东西。评价其为宝藏社区,感慨 AI 时代知识免费开源,考验的是如何在信息海洋中有体系地获取。第一步是看新手指引和入门的学习路径与课程。 第五天(2024.5.26):使用 kimi。May 开始研究 kimi 并使用,抱着每天向 kimi 问 100 个问题的心态,调整思考模式,养成有问题问 AI 的习惯。可参考。 第六天(2024.5.31):学习吴恩达生成式人工智能课程。应朋友强烈推荐,May 插队先看吴恩达的课程。可在 B 站搜索对应关键词获取课程资源,学习笔记可参考,抽空陆续 3 天学完。 第七天(2024.6.1):探索用 AI 解决一个真实问题。May 有一个明确的议题,比如团队要写一份行业研究报告,尝试看 AI 如何帮忙。 此外,元子从菜鸟到达人的进阶之路: Day 1:懵懵懂懂“你好,帮我写个报告” Day 7:学会表达“帮我写一份周报,重点说明项目进度” Day 14:熟练掌握“我需要一份项目总结,包含数据分析和改进建议” Day 30:把常规 AI 工具都试过一遍,并且选定自己要持续玩的方向 AI Agent Day 60:组队参加 AI Agent 比赛并有幸得奖 元子的心得: 1. 不要怕问“笨”问题,但要多直接问 AI。 2. 解决一个小问题也是进步,不积跬步,无以至千里。 3. 多试多练才是王道,来社区共学,一群人走得更远。 4. 融入生活和工作才能持久,学完就用才是王道,不要纯靠意志力。 工作中的 AI 小帮手: 1. 需要快速生成报告?AI 来帮忙。 2. 需要快速整理数据?AI 来处理。 3. 需要快速翻译文件?AI 来翻译。 4. 需要快速优化文案?AI 来优化。
2025-03-03
我是一个普通本科的大二学生,学的是软件工程专业,但是我本身编程能力不是很好,我对ai拥有浓厚的兴趣,喜欢去学习并运用ai,我想未来all in ai并成为一个产品经理,我想给你分享一下我的计划,我想今年下半年考过英语四级,并且参加苹果26年的swift 学生挑战赛,我是零基础但是我愿意学习,希望你帮我制定一个包含实施策略、里程碑和最佳实践的详细框架,以帮助我有效地实现这些目标!
以下是为您制定的包含实施策略、里程碑和最佳实践的详细框架,以帮助您有效地实现目标: 一、英语四级考试 实施策略: 1. 制定学习计划,每天安排一定时间学习英语,包括词汇、语法、听力、阅读和写作。 2. 多做历年真题,熟悉考试题型和难度。 3. 参加英语学习社群或找学习伙伴,互相监督和鼓励。 里程碑: 1. 每月进行一次模拟考试,评估学习进度。 2. 两个月内完成词汇和语法的系统学习。 最佳实践: 1. 利用碎片时间背单词,如在公交车上、课间等。 2. 听力练习时,反复听同一篇材料,直到完全听懂。 3. 写作练习后请老师或同学帮忙批改,总结错误和不足。 二、参加苹果 26 年的 Swift 学生挑战赛 实施策略: 1. 从零基础开始学习 Swift 编程语言,通过在线课程、书籍等资源进行系统学习。 2. 参与相关的编程实践项目,提升实际操作能力。 3. 关注苹果官方网站和社区,了解挑战赛的最新动态和要求。 里程碑: 1. 三个月内掌握 Swift 编程语言的基础知识。 2. 半年内完成一个小型的 Swift 项目开发。 最佳实践: 1. 遇到问题及时在技术论坛或社区寻求帮助。 2. 定期回顾和总结所学知识,加深理解和记忆。 3. 参考优秀的 Swift 项目案例,学习他人的编程思路和技巧。 三、成为 AI 产品经理 实施策略: 1. 学习 AI 相关的基础知识,包括机器学习、深度学习等。 2. 了解产品经理的职责和工作流程,通过实践项目积累经验。 3. 关注行业动态,参加相关的研讨会和培训课程。 里程碑: 1. 一年内掌握 AI 基础知识和产品经理的基本技能。 2. 参与实际的 AI 项目开发,担任产品经理助理角色。 最佳实践: 1. 多与行业内的专业人士交流,获取经验和建议。 2. 不断提升自己的沟通和协调能力,以更好地推动项目进展。 3. 学会从用户需求出发,设计具有创新性和实用性的 AI 产品。 希望以上框架对您有所帮助,祝您顺利实现目标!
2025-03-01
雪梅挑战 100 天和 AI 做朋友
雪梅 May 挑战 100 天和 AI 做朋友的相关情况如下: 作者介绍:适合纯 AI 小白参考,学习模式为输入→模仿→自发创造。学习内容不建议直接复用,可去 waytoAGI 社区发现感兴趣的领域学习最新内容。学习时间并非每天依次进行,有空时学习即可。学习状态良好,2024 年保持较好状态,还看了 33 本书。学习资源免费开源。 第一阶段: DAY5 2024.5.26:开始研究使用 kimi,抱着每天向 kimi 问 100 个问题的心态调整思考模式。 DAY6 2024.5.31:应朋友推荐学习吴恩达生成式人工智能课程,在 B 站搜索对应关键词有课程资源,抽空陆续 3 天学完。 DAY7 2024.6.1:探索用 AI 解决一个真实问题,如团队写行业研究报告。 2024 年 12 月 31 日历史更新(归档):记录了雪梅的挑战过程,分为系统性学习、模仿实践使用 AI 工具、研究 Prompt 提示词三个阶段,其学习路线图适合新人参考。同时还包括 Meta 首席 AI 科学家 LeCun 访谈以及《少卿:AI 帮你赢,谈双重主体性》相关内容。
2025-02-23
对于中小企业而言,ai转型的落地过程中有什么风险和挑战?请分别回答风险和挑战是什么
对于中小企业而言,AI 转型的落地过程中存在以下风险和挑战: 风险: 1. 管理风险:使用 AI 工具评估和管理企业面临的各种风险时,可能存在对风险评估不准确、应对策略不恰当等问题,导致企业无法有效应对潜在挑战,造成不必要的损失。 2. 网络安全风险:引入 AI 驱动的网络安全解决方案时,若安全系统配置不当、软件和 AI 模型未及时更新、员工网络安全意识不足等,可能导致企业网络系统遭受网络威胁和攻击,造成数据泄露、业务中断等严重后果。 挑战: 1. 任务自动化挑战:在评估和识别日常重复性高的任务时,可能存在对任务分析不准确、目标设定不清晰的情况,影响后续自动化工具的引入和效果。同时,选择合适的自动化工具并进行有效配置和测试也具有一定难度。 2. 网络安全挑战:选择适合企业网络环境和安全需求的 AI 驱动的网络安全解决方案并非易事,需要充分了解各种方案的特点和适用性。此外,定期更新和维护安全系统、进行网络安全演练以及对员工进行培训等工作也需要投入大量的时间和精力。
2025-02-19
多模态应用
以下是一些多模态应用的案例: 1. 电商领域: 拍立淘:由淘宝推出,用户拍照即可识别商品并直接进入购物页面,简化购物搜索步骤。 探一下:支付宝推出的图像搜索引擎,拍照后 AI 能识别并搜索相关商品或信息。 2. 创意领域: 诗歌相机:拍照能生成一首诗,还能打印,将诗意与现代技术结合,并做成硬件形式。 3. 技术平台: 阿里云百炼大模型平台为企业侧提供各种原子级别能力,包括多模态能力。 4. 其他应用场景: 融图:如把图二中的机器人合成到图一的环境中,保持比例、细节、光影和氛围感统一。 小红书风格卡片:使用特定风格生成关于特定内容的卡片。 Logo 转 3D 效果:将图标改成 3D 立体、毛玻璃、毛绒等效果。 示意图转卡通漫画:把示意图转成幼儿园小朋友能看懂的漫画并配中文说明。 遥感理解(图像数据):识别图中的建筑物并用色块标注。 包装图直出效果:生成图片对应的包装侧面效果图。 参考生成海报图:参考小红书封面生成 PPT 设计相关封面图。 三维建模模拟:将图片转化为 3D max 建模渲染界面并加入 UI 界面。 手办三视图:保留人物样貌、神态,制作成特定要求的 3D 手办三视图。
2025-04-18
结构化思维在AI办公里的应用
结构化思维在 AI 办公中有以下应用: 在 Model Context Protocol 托管平台中: 特色功能方面,Sequential Thinking 提供动态和反思性问题解决的结构化思维过程,适用于复杂问题分析和决策。 核心功能分类包括笔记管理工具(如 Simple Notes MCP Server、Bear MCP Server、Notion 集成)、AI 对话工具(如 Autonomous Coder Agent、OpenAI 兼容 API 集成)、Google Workspace 集成(如 Gmail 和 Google Calendar 集成、多账户管理、邮件搜索和撰写、日历事件管理)、学术研究工具(如 Semantic Scholar 集成、PubMed 搜索、arXiv 论文访问、IACR 密码学文献库访问)、AI 数据库管理(如 MySQL Server 集成、知识图谱记忆服务、DuckDB 集成、Airtable 集成)。 面对 AI 幻觉问题时,可使用结构化思考工具辅助判断,如决策矩阵用于面对多个选择时做出更理性的决策,检查清单用于执行复杂任务时确保每个步骤按计划完成,风险评估模型用于做重要决策时分析不同方案的风险并制定应对措施。 在让 AI 像人类一样思考方面,构建逻辑体感轮子,包括逻辑推理功能和内容抽象功能。内容抽象功能能够高效地组织内容,体现结构化思维,通过心智单元的抽象思维高效地组织复杂任务。
2025-04-14
飞书+AI的应用案例
以下是飞书+AI的应用案例: 在企业运营方面,包括日常办公文档材料撰写整理、营销对话机器人、市场分析、销售策略咨询,以及法律文书起草、案例分析、法律条文梳理和人力资源简历筛选、预招聘、员工培训等。 在教育领域,协助评估学生学习情况,为职业规划提供建议,针对学生情况以及兴趣定制化学习内容,论文初稿搭建及论文审核,帮助低收入国家/家庭通过 GPT 获得平等的教育资源。 在游戏/媒体行业,有定制化游戏、动态生成 NPC 互动、自定义剧情、开放式结局,出海文案内容生成、语言翻译及辅助广告投放和运营,数字虚拟人直播,游戏平台代码重构,AI 自动生成副本。 在零售/电商领域,包括舆情、投诉、突发事件监测及分析,品牌营销内容撰写及投放,自动化库存管理,自动生成或完成 SKU 类别选择、数量和价格分配,以及客户购物趋势分析及洞察。 在金融/保险行业,有个人金融理财顾问、贷款信息摘要及初始批复、识别并检测欺诈活动风险、客服中心分析及内容洞。 线下活动方面: 活动宣传:用飞书文档制作活动宣传页面,用 AI 快速制作海报,用 GPTs 写人员分配和主持人台词,活动从策划到开始仅用 2 天时间。 活动报名:使用飞书的多维表格完成报名表及数据统计。 活动过程:大家在线协同,一起编辑文档,演示时共同展示一个文档。 活动记录:有相关的记录页面。 办活动的初衷是宣扬 AI 不只是降本增效的工具,还有很多乐趣等待挖掘,例如大理户外圆桌讨论、清迈的 AI 逛古城、杭州的 AI 玄学小组。
2025-04-13