直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

能否给我一些rag实操案例

回答

好的,以下是根据你的需求为你生成的文章:

RAG 实操案例

RAG(Retrieval Augmented Generation)是一种结合了检索和生成的技术,它可以让大模型在生成文本时利用额外的数据源,从而提高生成的质量和准确性。以下是一些 RAG 实操案例:

  1. 餐饮生活助手 餐饮生活助手是一个基于结构化数据 RAG 的方法的应用,它的目的是根据用户的需求,从一个大规模的餐饮数据集中检索出最合适的餐厅,并提供相关的信息和服务。

为了实现餐饮生活助手 RAG 的 Langchain 代码实战,需要完成以下几个步骤:

  • 定义餐饮数据源:将餐饮数据集转化为 Langchain 可以识别和操作的数据源,例如数据库、文件、API 等,并注册到 Langchain 中,并提供统一的接口和方法,让 LLM 的代理可以方便地访问和查询数据源。
  • 定义 LLM 的代理:根据用户的问题,提取出核心的信息和条件,并形成标准的查询语句,然后用这个查询语句去检索餐饮数据源,得到相关的数据记录,再根据这些数据记录,生成最合适的答案,输出给用户。
  • 运行 LLM 的代理:将 LLM 的代理部署到不同的平台和渠道,例如 Web、微信、Telegram 等,并提供统一的接口和方法,让用户可以方便地与 LLM 的代理进行交互。
  1. 大模型 RAG 问答行业最佳案例及微调、推理双阶段实现模式 基于模块化(Modular)RAG 自定义 RAG Flow,该案例展示了如何使用 RAG 技术来实现问答系统。具体而言,该系统使用了一个预训练的语言模型(如 GPT-3)和一个知识图谱来进行问答。

在微调阶段,系统会根据用户的问题和知识图谱中的信息,对语言模型进行微调,以使其更好地适应特定的领域和任务。在推理阶段,系统会使用微调后的语言模型和知识图谱来生成回答。在这个过程中,系统会根据用户的问题和知识图谱中的信息,生成一个查询,然后使用语言模型来生成回答。

总的来说,该案例展示了如何使用 RAG 技术来实现问答系统,以及如何通过微调和推理来提高问答的准确性和效率。

  1. 通过增强 PDF 结构识别,革新检索增强生成技术(RAG) 该案例主要讨论文档解析和文本切分质量是否会影响 RAG 系统的效果。具体而言,该案例探讨了两种类型的方法,即基于规则(Rule-based)的方法和基于深度学习(Deep learning-based)的方法,并通过实际案例对它们的效果进行实证评估。

基于规则的方法主要依赖于人工编写的规则和模式来提取文本块和生成嵌入向量。这种方法的优点是简单、快速,但是对于复杂的文档结构和多变的文本内容可能会表现不佳。

基于深度学习的方法则利用了深度学习模型(如卷积神经网络(CNN)和循环神经网络(RNN))来自动学习文本块的特征和嵌入向量。这种方法的优点是可以更好地处理复杂的文档结构和多变的文本内容,但是需要大量的训练数据和计算资源。

通过对实际案例的评估,该案例发现基于深度学习的方法在文档解析和文本切分质量方面表现更好,但是需要更多的计算资源和训练数据。因此,在选择方法时,需要根据具体的应用场景和需求来进行权衡。

以上是一些 RAG 实操案例,希望对你有所帮助。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

手把手教你本地部署大模型以及搭建个人知识库

因为利用大模型的能力搭建知识库本身就是一个RAG技术的应用。所以在进行本地知识库的搭建实操之前,我们需要先对RAG有一个大概的了解。以下内容会有些干,我会尽量用通俗易懂的描述进行讲解。我们都知道大模型的训练数据是有截止日期的,那当我们需要依靠不包含在大模型训练集中的数据时,我们该怎么做呢?实现这一点的主要方法就是通过检索增强生成RAG(Retrieval Augmented Generation)。在这个过程中,首先检索外部数据,然后在生成步骤中将这些数据传递给LLM。我们可以将一个RAG的应用抽象为下图的5个过程:文档加载(Document Loading):从多种不同来源加载文档。LangChain提供了100多种不同的文档加载器,包括PDF在内的非结构化的数据、SQL在内的结构化的数据,以及Python、Java之类的代码等文本分割(Splitting):文本分割器把Documents切分为指定大小的块,我把它们称为“文档块”或者“文档片”存储(Storage):存储涉及到两个环节,分别是:将切分好的文档块进行嵌入(Embedding)转换成向量的形式将Embedding后的向量数据存储到向量数据库检索(Retrieval):一旦数据进入向量数据库,我们仍然需要将数据检索出来,我们会通过某种检索算法找到与输入问题相似的嵌入片

开发:LangChain应用开发指南-不用向量也可以RAG

为了更好地展示结构化数据来RAG的方法的实际效果,我们以餐饮生活助手为例,给出用户提问和回复的示例,以及餐饮生活助手RAG的代码实战。餐饮生活助手是一个基于结构化数据RAG的方法的应用,它的目的是根据用户的需求,从一个大规模的餐饮数据集中检索出最合适的餐厅,并提供相关的信息和服务。餐饮数据集是一个结构化的数据集,它包含了各种各样的餐厅的信息,例如名称、类型、地址、电话、价格、评分、评论等。餐饮生活助手的核心是一个LLM,它能够根据用户的问题,提取出核心的信息和条件,并形成标准的查询语句,然后用这个查询语句去检索餐饮数据集,得到相关的数据记录,再根据这些数据记录,生成最合适的答案,输出给用户。为了实现餐饮生活助手RAG的Langchain代码实战,我们需要完成以下几个步骤:

19. RAG 提示工程系列(一)

虽然目前网络上关于提示工程的相关资料已经多如牛毛,然而RAG(检索增强生成)任务中提示工程如何进行的资料相对而言却较少。不少朋友之前也热烈的讨论过RAG场景下提示词的运用,因此LangGPT社区特别推出RAG任务下的提示词实践经验系列分享。蓝衣剑客(微信lanyijianke1992)是LangGPT社区核心成员,清华大学数据治理研究中心主任助理,曾经参与生成式人工智能行业应用合规标准起草,作为企业技术负责人主导参与了多个大模型实际应用场景下的落地工作,在RAG相关领域有着大量的实践经验。云中江树(微信1796060717)是LangGPT提示词社区的主理人,结构化提示词提出者。蓝衣剑客负责本文主要内容的撰写,江树负责本文内容框架的整体设计和质量把控。《RAG提示工程》为系列文章,今天为大家带来的是《RAG提示工程》的第一篇。在这篇文章中,我们将带领大家了解RAG架构的概念、基本组成、常见痛点以及提示词工程在RAG架构中的应用。随后,我们将逐步指导大家实操一个RAG提示词案例,让大家逐步了解如何编写、调试符合企业生产级标准的提示词。

开发:LangChain应用开发指南-不用向量也可以RAG

定义餐饮数据源。我们需要将餐饮数据集转化为Langchain可以识别和操作的数据源,例如数据库、文件、API等,注册到Langchain中,并提供统一的接口和方法,让LLM的代理可以方便地访问和查询数据源。例如,我们可以将餐饮数据封装为一个API后,并结构化描述该接口的调用方式,并通过以下的代码,将其注册到Langchain中:定义LLM的代理。我们需要定义一个LLM的代理,它可以根据用户的问题,提取出核心的信息和条件,并形成标准的查询语句,然后用这个查询语句去检索餐饮数据源,得到相关的数据记录,再根据这些数据记录,生成最合适的答案,输出给用户。这可以通过Langchain的代理(Agent)来实现。代理管理器可以让开发者通过简单的编程,定义不同的LLM的代理,以及它们的功能和逻辑,并提供统一的接口和方法,让用户可以方便地与LLM的代理进行交互。运行LLM的代理。我们需要运行LLM的代理,让用户可以与之进行交互,将LLM的代理部署到不同的平台和渠道,例如Web、微信、Telegram等,并提供统一的接口和方法,让用户可以方便地与LLM的代理进行交互。餐饮生活助手

通过增强PDF结构识别,革新检索增强生成技术(RAG)

因此,在RAG之前,我们需要将大型文档转换为可检索内容。转换涉及以下几个步骤,如图2所示:图2将PDF文档转换为可检索内容的过程文档解析和文本切分(Document parsing & chunking)。这一步涉及到提取段落、表格和其他内容块,然后将提取的内容分块以进行后续检索。嵌入向量(Embedding)生成。这一步将文本块转换为实值向量并存储在数据库中。由于这些步骤中的每一步都可能导致信息损失,因此复合损失会显著影响RAG响应的效果。本文主要讨论文档解析和文本切分质量是否会影响RAG系统的效果。我们将探讨与此问题相关的挑战、方法和实际案例。讨论将包括对该领域两种类型方法的考察,即基于规则(Rule-based)的方法和基于深度学习(Deep learning-based)的方法,然后通过实际案例对它们的效果进行实证评估。

开发:LangChain应用开发指南-不用向量也可以RAG

本文直接通过Langchain内置的openapi-function call来实现,代码仅作为演示,实际业务情况可能得结合代码内置业务流程来实现。比如通过function call解析用户问题之前还需要判断用户的问题是否与餐厅咨询相关,当解析到的查询维度太少时,需要引导式提问等等。

大模型RAG问答行业最佳案例及微调、推理双阶段实现模式:基于模块化(Modular)RAG自定义RAG Flow

随着RAG的发展,逐步超越被动的检索的方式,出现了自适应的检索(也被称作主动检索),这一方面也是受益于LLM的强大能力。在核心思想上与LLM Agent相似。RAG系统可以主动判断的检索时机,以及判断时候结束整个流程,输出最终的结果。根据判断的依据,又可以分成和Prompt-base和Tuning-basePrompt-base.通过Prompt Engineering的方式让LLM对流程进行控制。一个典型的实现案例是FLARE。它的核心思想是LM应该仅在缺乏所需知识时进行检索,以避免被动检索增强的LM中出现不必要或不适当的检索。FLARE迭代地生成下一个临时句子,并检查是否包含低概率标记。如果是这样,系统将检索相关文档并重新生成句子。Tuning-base.对LLM进行微调使其生成特殊的token,以此来触发检索或生成。这种思想可以追溯到Toolformer中,通过生成特俗的内容,来辅助调用工具。在RAG系统中则是用于控制检索和生成两个步骤。一个典型的案例是Self-RAG。具体而言,

开发:LangChain应用开发指南-大模型的知识外挂RAG

RAG是一种结合了检索和生成的技术,它可以让大模型在生成文本时利用额外的数据源,从而提高生成的质量和准确性。RAG的基本流程如下:首先,给定一个用户的输入,例如一个问题或一个话题,RAG会从一个数据源中检索出与之相关的文本片段,例如网页、文档或数据库记录。这些文本片段称为上下文(context)。然后,RAG会将用户的输入和检索到的上下文拼接成一个完整的输入,传递给一个大模型,例如GPT。这个输入通常会包含一些提示(prompt),指导模型如何生成期望的输出,例如一个答案或一个摘要。最后,RAG会从大模型的输出中提取或格式化所需的信息,返回给用户。

其他人在问
如何对rag进行评估
对 RAG 进行评估可以从以下几个方面入手: 1. 使用 RAG 三角形的评估方法: 在 LangChain 中创建 RAG 对象,使用 RAGPromptTemplate 作为提示模板,指定检索系统和知识库的参数。 在 TruLens 中创建 TruChain 对象,包装 RAG 对象,指定反馈函数和应用 ID。反馈函数可使用 TruLens 提供的 f_context_relevance、f_groundness、f_answer_relevance,也可自定义。 使用 with 语句运行 RAG 对象,记录反馈数据,包括输入问题、得到的回答以及检索出的文档。 查看和分析反馈数据,根据 RAG 三角形的评估指标评价 RAG 的表现。 2. 建立评估框架将检索性能与整个 LLM 应用程序隔离开来,从以下角度评估: 模型角度(generation): 回答真实性:模型结果的真实性高低(减少模型幻觉)。 回答相关度:结果和问题的相关程度,避免南辕北辙。 检索角度(retrieval): 召回率(recall):相关信息在返回的检索内容中的包含程度,越全越好。 准确率(precision):返回的检索内容中有用信息的占比,越多越好。 3. 考虑以下评估方法和指标: 生成质量评估:常用自动评估指标(如 BLEU、ROUGE 等)、人工评估和事实验证,衡量生成文本的流畅性、准确性和相关性。 检索效果评估:包括检索的准确性、召回率和效率,其好坏直接影响生成文本的质量。 用户满意度评估:通过用户调查、用户反馈和用户交互数据了解用户对 RAG 系统的满意度和体验。 多模态评估:对于生成多模态内容的 RAG 系统,评估不同模态之间的一致性和相关性,可通过多模态评估指标实现。 实时性评估:对于需要实时更新的 RAG 任务,考虑信息更新的及时性和效率。 基准测试集:使用基准测试集进行实验和比较不同的 RAG 系统,涵盖多样化的任务和查询,以适应不同的应用场景。 评估方法和指标的选择取决于具体的任务和应用场景,综合使用多种评估方法可更全面地了解 RAG 系统的性能和效果,评估结果能指导系统的改进和优化,满足用户需求。此外,RAGAS 是一个用于 RAG 评估的知名开源库,可参考使用: 。需要注意的是,RAG 适合打造专才,不适合打造通才,且存在一定局限性,如在提供通用领域知识方面表现不佳,可能影响模型的风格或结构输出、增加 token 消耗等,部分问题需使用微调技术解决。
2024-11-13
RAG加速有什么好办法吗
以下是一些加速 RAG 的好办法: 1. 确保 LLM 以正确的格式回应:函数调用已成为确保 LLM 严格输出特定格式的相对靠谱的新方法,推荐使用此方法提升性能。可参考结构化输出文档,其中高层次的 LangChain API 展示了不同 LLM 如何调用工具和函数。 2. 使用参考样例:在实际操作中,将输入和对应输出的样例纳入其中通常大有裨益,这些样例有时比指示本身更能有效指导 LLM 处理特定情况。在提取用例文档中可找到更多细节,助您从 LLMs 中提取更好的性能。 此外,LangChain 携手 NVIDIA 为 RAG 加速带来了新的篇章: 1. 将 NVIDIA NIM 与 LangChain 结合使用:新增了支持 NIM 的集成包,安装专门的集成包后可导入所需模型,并通过示例展示如何构建应用程序,包括安装额外的包、加载数据源、初始化嵌入模型等一系列操作。 2. NVIDIA NIM 介绍:NVIDIA NIM 是一系列用户友好的微服务,旨在加速企业内部生成式 AI 的部署进程,支持广泛的 AI 模型,基于强大的推理引擎和技术构建,提供无缝的 AI 推理体验,是实现大规模、高性能生成式 AI 推理的最佳选择。其具有自托管特性,能保证数据安全;提供预构建的容器,方便选择和使用最新模型;具有可扩展性。开始使用 NIM 非常简单,在 NVIDIA API 目录中可轻松访问多种 AI 模型,NIM 是 NVIDIA AI Enterprise 的一部分,可通过相关博客获取详细指南。
2024-11-12
搜索DragGAN
DragGAN 于 2023 年 6 月 25 日开源。喜欢 AI 绘画的对它应该不陌生,期待它带来更大的惊艳。此外,相关论文中增加了微软研究院新发布的多模态 AI 助手;学习路径中增加了适合初学者的深度学习课程 fast.ai ;AI 名词增加到 80 多个,补充了很多技术名词。您可以通过以下链接获取更多详细信息:
2024-11-11
AI相关常见缩写及对应含义,包含例如prompt,rag
以下是一些 AI 相关的常见缩写及对应含义: LLM:Large language model 的缩写,即大语言模型。 Prompt:中文译作提示词,是输入给大模型的文本内容,可理解为与大模型说的话或下达的指令,其质量会显著影响大模型回答的质量。 Token:大模型语言体系中的最小单元。不同厂商的大模型对中文的文本切分方法不同,通常 1Token≈12 个汉字。大模型的收费计算及输入输出长度限制常以 token 为单位计量。 上下文(context):指对话聊天内容前、后的内容信息,其长度和窗口会影响大模型回答的质量。 在 AI 绘画中,常见的画面构图提示词有: 视图相关:Bottom view(底视图)、front,side,rear view(前视图、侧视图、后视图)、product view(产品视图)、extreme closeup view(极端特写视图)、look up(仰视)、firstperson view(第一人称视角)、isometric view(等距视图)、closeup view(特写视图)、high angle view(高角度视图)、microscopic view(微观)、super side angle(超博角)、thirdperson perspective(第三人称视角)、Aerial view(鸟瞰图)、twopoint perspective(两点透视)、Threepoint perspective(三点透视)、portrait(肖像)、Elevation perspective(立面透视)、ultra wide shot(超广角镜头)、headshot(爆头)、a crosssection view of)
2024-11-08
如何提高RAG应用中的准确率
以下是一些提高 RAG 应用准确率的方法: 1. 基于结构化数据来 RAG: 避免数据向量化和语义搜索的问题,直接利用原始数据和 LLM 的交互,提高准确率。因为结构化数据的特征和属性明确,能用有限标签集描述,可用标准查询语言检索,不会出现信息损失或语义不匹配的情况。 减少 LLM 的幻觉可能性,LLM 只需根据用户问题提取核心信息和条件,并形成标准查询语句,无需理解整个文档语义。 提高效率,省去数据向量化和语义搜索过程,直接使用标准查询和原始数据进行回复,且结构化数据的存储和更新更易更省空间。 增加灵活性,适应不同数据源和查询需求,只要数据是结构化的,就可用此方法进行 RAG。 2. 参考行业最佳实践,如 OpenAI 的案例: 从较低的准确率开始,尝试多种方法,标记哪些被采用到生产中。 通过尝试不同大小块的信息和嵌入不同内容部分,提升准确率。 采用 Reranking 和对不同类别问题特别处理的方法进一步提升。 结合提示工程、查询扩展等方法,最终达到较高的准确率,同时强调模型精调和 RAG 结合使用的潜力。 3. 深入了解 RAG 的基础概念: RAG 由检索器和生成器组成,检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确连贯的答案,适合处理需要广泛知识的任务,如问答系统,能提供详细准确的回答。
2024-11-08
什么是RAG的分词?
RAG(RetrievalAugmented Generation,检索增强生成)是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。通过检索的模式为大语言模型的生成提供帮助,使大模型生成的答案更符合要求。 LLM 需要 RAG 进行检索优化的原因在于 LLM 存在一些缺点: 1. 无法记住所有知识,尤其是长尾的,受限于训练数据和现有的学习方式,对长尾知识的接受能力不高。 2. 知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。 3. 输出难以解释和验证,存在内容黑盒、不可控以及受幻觉干扰等问题。 4. 容易泄露隐私训练数据。 5. 规模大,训练和运行成本高。 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,增删改查可解释,且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本,新知识存储在数据库即可,无需频繁更新模型。 在 PDF 结构识别方面,基于规则的方法 PyPDF 存在一些问题: 1. 不擅于检测段落的边界,没有解析段落的边界,使用特殊分隔符“.\n”的启发式方法在很多情况下不成立。 2. 无法识别表格内的结构,表格的结构会被完全破坏,大语言模型无法从中辨别有意义的信息。 3. 无法识别内容的阅读顺序,按照字符存储顺序解析文档,面对复杂布局时可能导致解析结果混乱。 4. 无法识别段落和表格的边界,会错误地分割表格,并将部分与后续段落合并。 PyPDF 的解析和分块工作流程是:先将 PDF 文档中的字符序列化为没有文档结构信息的长序列,然后使用分割规则如换行符“\n”进行分割,仅当组合块的长度不超过预定限制 N 个字符时,才会合并相邻块。
2024-11-05
扣子实操教程
以下是一些关于扣子实操的教程资源: 全网最全的 Coze 入门教程:https://www.bilibili.com/video/BV1YM4m167zP/ 扣子实战教程,全网最细节讲解:https://www.bzfree.com/doc/coze%E5%BC%95%E8%A8%80 Bot 创作者如何在 Coze 上赚钱:https://mp.weixin.qq.com/s/WOZPuVgNHF129b4qsSjlQ 新手总结 Coze bot 创建步骤:先锁定“最简”任务,提前准备测试问题:https://zhuanlan.zhihu.com/p/687931917 视频:【共学快闪】AI AgentCoze 搭建 5 月 8 日大圣分享 Coze 全流程搭建:https://www.bilibili.com/video/BV1bs421N7tR 视频:【共学快闪】AI AgentCoze 搭建 5 月 7 日赛博禅心大聪明分享:https://www.bilibili.com/video/BV1V1421z7At/ 面向业务开发的 Coze 使用指南:https://mp.weixin.qq.com/s/ZY8zwaGdR6dq1OL_XQ2iTQ 扣子(https://mp.weixin.qq.com/s/glT5Qc4a3vpRLxVAPdDDbA)(https://mp.weixin.qq.com/s/glT5Qc4a3vpRLxVAPdDDbA)初体验|拥有一个属于自己的聊天机器人:https://mp.weixin.qq.com/s/glT5Qc4a3vpRLxVAPdDDbA 在扣子中手搓插件和调用已有的 API 制作插件方面: Body:用于传递请求的主体部分,可以是 JSON、XML 或其他类型的数据。在 GET 方法中,通常不使用 Body 来传递参数,因为 GET 方法的 URL 中已经包含了所有必要的参数。 Path:用于定义请求的路径部分,通常以“/”开头,后面跟着一系列的段落。在 GET 方法中,Path 可以用来传递参数,但通常会将其编码为 URL 的一部分,而不是单独传递。 Query:用于定义请求的查询部分,通常以“?”开头,后面跟着一系列的键值对。在 GET 方法中,Query 是最常用的参数传递方式,它允许用户通过 URL 中的键值对来传递参数。 Header:用于定义 HTTP 请求的头信息部分,包括各种头部字段。在 GET 方法中,Header 通常不会用来传递参数,而是用于定义请求的头部信息。 配置输出参数:如果一切都填对了没有问题,可以直接点击自动解析,会自动调用一次 API 给出对应的输出参数。例如填入汉字“张”,点击自动解析。解析成功后会显示解析成功,输出参数填好后点击保存并继续。参数描述可根据需求填写。 调试与校验:测试工具是否能正常运行,运行后查看输出结果。Request 为输入的传参,Response 为返回值,点击 Response 就可以看到解析后的参数。
2024-11-10
请给我推荐一个适合非技术人员学习的提示词工程手册,但是我不希望提示词工程手册太实操导向,需要包括背后的原理和逻辑,而不是只像一个公式一样的教给我
以下为您推荐适合非技术人员学习的提示词工程手册: 1. 小七姐:Prompt 喂饭级系列教程 小白学习指南(二) 强调对框架的理解和运用,介绍了多种提示词框架,如情境,并提供了学习的三步走:懂原理、找需求、用框架。 2. 19. RAG 提示工程系列(一) 虽然网络上提示工程资料众多,但 RAG 任务中提示工程的资料相对较少。此系列将带领大家了解 RAG 架构的概念、组成、痛点及提示词工程在其中的应用,并指导实操案例,帮助编写调试符合企业生产级标准的提示词。 3. VIRTUAL Claude 官方文档提示词工程最佳实践@未来力场编译版(中英对照) 指出提示词工程是一门实证科学,需要不断测试和迭代,包括开发测试用例、构建初版提示词、进行用例测试、优化提示词和分享完善后的提示词,同时不要忘记测试边缘情况。
2024-08-15
我想要了解AI在高校基础医学教学中的应用案例
以下是一些 AI 在高校基础医学教学中的应用案例: 教学:帮助学生做好组会准备,使用了 Claude + Gamma.app,Claude 能节省绝大部分时间。 医疗:蛋白质结构预测和蛋白质合成,用于生成漂亮图片的 AI 可帮助科学家研究并设计新的蛋白质。 做调研:用特定 prompt ,2 小时帮同学干完 3 篇调研报告。 做调研:用 ChatGPT 做调研。 医疗:健康生物制药的研究,AI 在抗癌、抗衰老、早期疾病防治等研究应用中起重要作用。 此外,为了在医疗保健中产生真正的改变,AI 应像人类一样学习,例如成为顶尖医疗人才需要多年密集信息输入、正规学校教育和学徒实践,AI 也应通过合理的模型训练方式而非仅依靠大量数据来提升。 对于中学生学习 AI ,有以下建议: 从编程语言如 Python 、JavaScript 入手,学习编程语法、数据结构、算法等基础知识。 尝试使用 ChatGPT 、Midjourney 等 AI 生成工具,探索百度的“文心智能体平台”、Coze 智能体平台等教育平台。 学习 AI 基础知识,包括基本概念、发展历程、主要技术及在各领域的应用案例。 参与学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试解决实际问题。 关注 AI 发展的前沿动态,思考其对未来社会的影响。
2024-11-07
我记得你有发布过google人工智能落地的案例
以下是为您整合的相关内容: Google 最近发布了 185 个全球企业生成式 AI 应用案例,涵盖客户服务、员工管理、代码开发、数据分析、安全管理和创意领域。案例展示了 AI 如何优化客户体验、提升员工效率、加速代码处理、改善数据分析、增强安全性及简化创意生产。详情可参考:《》 Coze 汽车售后服务知识库 Bot 旨在提升服务顾问和维修技师的专业水平和维修效率。该 Bot 通过提供标准化解决方案,辅助车辆故障分析和检查,弥补专业知识不足和技术支持文档标准化问题。主要目标是提升服务质量,减少对技师经验的依赖,为汽车售后服务提供智能化支持。详情可参考:《》
2024-11-06
agent案例
以下是为您提供的关于 Agent 的相关案例和信息: 四种 Agent 设计范式: Reflection(反思):类似于 AI 的自我纠错和迭代。例如让用 Reflection 构建好的 AI 系统写代码,AI 会把代码加上检查正确性和修改的话术再返回给自己,然后反复进行,完成自我迭代。 Tool Use(工具使用):大语言模型调用插件,极大拓展了 LLM 的边界能力。 智能体的类型: 简单反应型智能体(Reactive Agents):根据当前感知输入直接采取行动,不维护内部状态和考虑历史信息。例如温控器。 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入进行建模,能推理未来状态变化并采取行动。例如自动驾驶汽车。 目标导向型智能体(Goalbased Agents):具有明确目标,能根据目标评估行动方案并选择最优行动。例如机器人导航系统。 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动。例如金融交易智能体。 学习型智能体(Learning Agents):能够通过与环境交互不断改进性能,学习模型、行为策略和目标函数。例如强化学习智能体。 从产品角度思考 Agent 设计: Agent 可以是一个历史新闻探索向导,身份为历史新闻探索向导,性格知识渊博、温暖亲切、富有同情心,角色是主导新闻解析和历史背景分析。为使角色更生动,可设计简短背景故事。 写好角色个性包括:编写背景故事明确起源、经历和动机;定义性格特点和说话方式风格;设计对话风格;明确核心功能和附加功能。
2024-11-05
AI制作音乐的工具和案例
以下是一些 AI 制作音乐的工具和相关案例: :无需昂贵的录音设备即可进行多轨录音。 :生成歌词、旋律、鼓点等,并且能够像任何专业 DAW 一样进行编辑和混音。 :AI 驱动的音乐制作平台,使用 AI 创作歌词、节拍和人声,然后直接从 Cassette 进行混音和发布。 :人工智能创作情感背景音乐。 :简化的音乐创作工具,帮助您为视频和播客创作音乐。 :为直播的游戏玩家提供自适应 AI 音乐。 :高质量音乐和音效,所有内容都包含版权。 :世界上第一个动态音乐引擎。 (被 Shutterstock 收购):为内容创作者提供的 AI 音乐创作工具。 :您的虚拟音乐工作室。 :即时制作音乐,与世界分享。 :智能乐谱。 :由一群艺术家、研究人员、设计师和程序员组成的团队。 (被 Apple 收购):音乐帮助品牌与受众建立更深层次的连接。 :下一代音乐制作人。 :数字宇宙的音乐解决方案,Soundtracks、AI Studio、Music Maker JAM 的制作者。 :AI 音乐创作和制作。 :自由定制高质量免版权费音乐。 :一个云平台,让音乐人和粉丝在全球范围内创作音乐、协作和互动。 :使用嵌入式软件、信号处理和 AI 帮助艺术家录制、混音和母带处理他们的现场表演。 :开源音乐生成工具。 :旨在通过 AI 赋能真实艺术家的伦理音频 AI 插件、工具和社区,而非取代他们。 :使用 AI 创作音乐和语音。 :与 DAW 集成的生成音乐工具,100%免版权费。 :为创意媒体提供的伦理音乐 AI。 :AI 音乐创作平台和探索声音宇宙的个人音乐制作人。 :通过音乐赋予你新的创作和表达方式。 :使用 AI 改变你的歌唱声音。 :为你的创造力和生产力提供 AI 音乐。 :使用 AI 生成声音、音效、音乐、样本、氛围等。 案例方面,Manglemoose 最近展示了由他们最新开发的音乐生成器制作的视频案例,该工具的名称尚未公布。bGPT 是一种具有下一个字节预测功能的模型,它几乎完美地复制了符号音乐数据的转换过程,在将 ABC 符号转换为 MIDI 格式时实现了每字节 0.0011 位的低错误率。此外,bGPT 在模拟 CPU 行为方面表现出卓越的能力,执行各种操作的准确度超过 99.99%。
2024-10-31
语音开发,都要学哪个技术,可以举个案例吗
语音开发需要学习以下技术: 1. 深度学习和自然语言处理基础: 机器学习、深度学习、神经网络等基础理论。 自然语言处理基础,如词向量、序列模型、注意力机制等。 相关课程:吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理: Transformer 模型架构及自注意力机制原理。 BERT 的预训练和微调方法。 掌握相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调: 大规模文本语料预处理。 LLM 预训练框架,如 PyTorch、TensorFlow 等。 微调 LLM 模型进行特定任务迁移。 相关资源:HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署: 模型压缩、蒸馏、并行等优化技术。 模型评估和可解释性。 模型服务化、在线推理、多语言支持等。 相关资源:ONNX、TVM、BentoML 等开源工具。 5. LLM 工程实践和案例学习: 结合行业场景,进行个性化的 LLM 训练。 分析和优化具体 LLM 工程案例。 研究 LLM 新模型、新方法的最新进展。 以下是一个语音开发的案例: 要开发一个网页,一个页面可以承载离谱生物档案的网站,每个页面都是一个离谱生物的介绍,图片,头像,文字介绍,可以跟他打字和语音对话。以及展示跟他相关的离谱事件。 1. 项目初始化与配置: 选择编程语言和技术栈: 前端:React.js 或 Vue.js,适合构建动态的用户界面,有丰富的组件库支持多媒体内容展示。 后端:Node.js 加上 Express.js,可使用 JavaScript 同时开发前端和后端,简化开发过程,其非阻塞 IO 特性适合处理实时通讯需求。 数据库:MongoDB,适合存储文档形式的数据,如离谱生物档案和相关事件。 语音处理:使用 Google Cloud SpeechtoText 和 TexttoSpeech API 实现语音与文本的相互转换,支持语音对话。 开发环境配置: IDE:Visual Studio Code,免费、开源,支持大量插件,适用于前端和 Node.js 开发。 Node.js 和 NPM:安装 Node.js 时会一并安装 npm,用于管理项目依赖。 项目结构模板:项目目录可能如下所示。 此外,为您列举一些人工智能音频初创公司: 将书面内容转化为引人入胜的音频,并实现无缝分发。 专业音频、语音、声音和音乐的扩展服务。 (被 Spotify 收购) 提供完全表达的 AI 生成语音,带来引人入胜的逼真表演。 利用合成媒体生成和检测,带来无限可能。 一键使您的内容多语言化,触及更多人群。 生成听起来真实的 AI 声音。 为游戏、电影和元宇宙提供 AI 语音演员。 为内容创作者提供语音克隆服务。 超逼真的文本转语音引擎。 使用单一 AI 驱动的 API 进行音频转录和理解。 听起来像真人的新声音。 从真实人的声音创建逼真的合成语音的文本转语音技术。 生成听起来完全像你的音频内容。 为所有人提供开放的语音技术。
2024-10-28
有哪些ai写ppt的好的案例
以下是一些 AI 写 PPT 的好的案例和相关工具: Gamma:在线 PPT 制作网站,支持输入文本和想法提示快速生成幻灯片,可嵌入多媒体格式。网址:https://gamma.app/ 美图 AI PPT:由美图秀秀开发团队推出,通过输入简单文本描述生成专业 PPT 设计,有丰富模板库和设计元素。网址:https://www.xdesign.com/ppt/ Mindshow:AI 驱动的 PPT 辅助工具,提供智能设计功能,如自动布局、图像选择和文本优化等。网址:https://www.mindshow.fun/ 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术,提供智能文本生成等功能。网址:https://zhiwen.xfyun.cn/ 此外,还有以下相关案例和工具: 案例: 营销:蓝色光标 X 京东|AIGC 代言人营销新模式,OPEN AD 时代来临 营销:定制营销报告 办公:高效做 PPT 工具: SlidesAI Decktopus AI Tome MagicSlides Presentations.AI Canva Simplified GlimmerAI Sendsteps Plus AI Microsoft 365 Copilot Canva Magic Design ChatGPT Beautiful.AI 您还可以参考熊猫 Jay 的实践教程:https://mp.weixin.qq.com/s/uVoIIcePa7WTx7GNqkAPA
2024-10-24