Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

DeepSeek R1和ChatGPT相比有什么优势?

Answer

DeepSeek R1 与 ChatGPT 的优势比较如下:

  • 在数字乘法任务中,ChatGPT 和精简版的隐式 CoT 模型无法达到 100%的准确率,而从头开始训练的 DeepSeek R1 在将扩散采样步骤设置为 1 的情况下,能够保持显著的吞吐量同时达到 100%的准确率。
  • 在数学问题求解常用基准测试中,GPT-4 相对于 ChatGPT 表现出显著的改进,GPT-4 在许多复杂问题中展示了更深入的理解,并能够应用适当的推理。而 ChatGPT 通常会采用低级启发式方法,提到与问题仅是表面相关的公式和概念,表明缺乏实际理解。
Content generated by AI large model, please carefully verify (powered by aily)

References

融合RL与LLM思想,探寻世界模型以迈向AGI「中·下篇」

同时,作者进一步提出了DoT的多通道(MP)变体,称为DoTMP,该变体以一个接一个的思维范式生成理由。这种方法分离了多个理由的生成,并引入了因果归纳偏差,使得后续的理由可以在生成过程中被先前理由的更强条件信号所引导。具体来说,在第一轮中,作者通过模型生成第一个理由r1。然后将r1与s作为条件[s;r1]连接起来,通过模型采样得到r2。通过多次迭代,可以得到最终答案。作者首先从头开始训练DoT以完成数字乘法任务作为初步调查,如下表所示。可以观察到,ChatGPT和精简版的隐式CoT模型都无法达到100%的准确率。GPT-2可以通过微调达到高准确率,但在CoT过程中牺牲了吞吐量。有趣的是,从头开始训练的DoT能够在将扩散采样步骤设置为1的情况下,保持显著的吞吐量同时达到100%的准确率。随后作者从头开始在GSM8K上训练DoT,但只能达到5.61%的准确率,这低于GPT-2的微调版本。作者认为,这主要是由于从头开始训练DoT时缺乏预训练的自然语言理解能力。这就是为什么作者开始通过使用预训练的扩散模型进行进一步的微调探索。

宝玉 日报

🫧宝玉日报「12月25日」✨✨✨✨✨✨✨✨1⃣️📚ChatGPT无法直接抓取网页内容的知识点限制原因:ChatGPT不会直接抓取URL内容,仅依赖内部知识库或通过必应搜索,但必应搜索结果(尤其中文)往往不够准确。解决方法:推荐手动复制网页内容,粘贴为Markdown或纯文本后再提交给ChatGPT,解析效果更佳。🔗[https://x.com/dotey/status/1871821505874579589](https://x.com/dotey/status/1871821505874579589)2⃣️🚀使用OpenAI o1的感受:回不去GPT-3.5了!能力提升显著:相比GPT-4,不仅能力进一步提升,还减少了对提示词的依赖。上下文优势:无需手动拆分长上下文,处理更复杂任务时表现稳定。🔗[https://x.com/dotey/status/1871648457070625015](https://x.com/dotey/status/1871648457070625015)3⃣️🎮游戏套壳事件:热度蹭得vercel老板都转发了

报告:GPT-4 通用人工智能的火花

简单地说,我们因此可以看到该模型的缺点是「幼稚」的注意力错误与更基本的限制之间的组合,因为其「线性思维」作为下一个标记预测机器。一个重要的问题是上述问题中哪些可以通过进一步的训练(也许是使用更大的模型)来缓解。对于前者问题,我们认为进一步的训练可以缓解这个问题,因为超人类的编码能力证明了这种注意力错误也将是致命的;一个关键的区别是GPT-4很可能是在比数学数据更多的代码上进行训练的。我们认为后者问题构成了更为深刻的限制,我们将在第8节中更详细地讨论。在本节的其余部分中,我们评估了模型在数学问题求解常用基准测试中的能力,并展示了模型在实际场景中应用定量思维的能力。我们还比较了GPT-4和ChatGPT在基准测试和其他数学问题上的表现(附录D中有更多例子)。粗略地说,我们发现GPT-4相对于ChatGPT表现出显著的改进:GPT-4在许多复杂问题中展示了更深入的理解,并能够应用适当的推理。另一方面,ChatGPT通常会采用低级启发式方法,提到与问题仅是表面相关的公式和概念,这表明缺乏实际理解。我们在本节末尾给出了几个示例,展示了高级数学方面的能力。

Others are asking
chatgpt4.5的使用方法
以下是关于 ChatGPT 4.5 的使用方法: 1. 目前 ChatGPT 官网有 GPT3.5、GPT4 和 ChatGPT 4.5 三个版本。ChatGPT 4.5 发布后引起关注,其可以免费体验,但免费体验次数有限。 2. GPT3.5 为免费版本,拥有账号即可使用,但智能程度不如 ChatGPT 4.5,且无法使用 DALL.E3 等功能和插件。 3. ChatGPT 4.5 的知识更新到 2023 年 10 月,而 ChatGPT 4 更新到 2023 年 12 月。 4. 若想使用更多功能更智能的 ChatGPT 4.5,需要升级到 PLUS 套餐,收费标准为 20 美金一个月。GPT4 还有团队版企业版,但费用更贵,一般推荐使用 PLUS 套餐。 5. 关于注册、安装和订阅的详细步骤,您可以参考相关文章,如作者为 JessieZTalk 的亲测文章(原文链接:https://mp.weixin.qq.com/s/tzCVGrwgeG6Bss83Xmep0g )。
2025-03-28
deepseek与chatgpt的区别
DeepSeek 与 ChatGPT 存在以下区别: 1. 在 App Store 排名方面,DeepSeek R1 冲到了美国区 App Store 第一名,超越了 ChatGPT。 2. 口碑与技术实力方面,DeepSeek 没有市场部,也没有做任何市场投放,完全依靠技术实力和口碑赢得用户认可。 3. 技术特点上,DeepSeek R1 效果比肩顶尖闭源模型 o1,但价格仅为 o1 的 27 分之一,且开源让行业认知整体拉齐,得到全世界尊重和喜爱。 4. 创新模型 R1 Zero 方面,跳过了监督微调进行训练,且发现模型的思考能力可以自我涌现,具有革命性。 5. 影响方面,DeepSeek R1 的发布引发美国科技界恐慌,Meta 内部对其出色表现感到震惊,其低成本和高性能使得英伟达市场地位受到挑战,导致股价下跌、市值蒸发。 6. 对于未来展望,开源模型的进步将超越闭源模型,顶级模型推理价格急速下降,技术更加普惠平权,AI 编程效率提升、门槛降低,创作能力不断提升,催生更多可消费内容形式。 此外,ChatGPT 采用人们熟悉的聊天框,形成单线程任务,而 flowith 跳出单一聊天框,用画布和节点构建多线程思维流,更适用于深度内容生成,其由资料库、创作画布、内容编辑三部分组成,优势在于可自由调用不同 AI 模型处理不同任务,涵盖文字和图片生成,任务能有机组合形成同频任务流。
2025-03-27
deepseek与chatgpt之间的差别
DeepSeek 与 ChatGPT 存在以下差别: 1. App Store 排名:DeepSeek R1 冲到了美国区 App Store 第一名,超越了 ChatGPT。 2. 口碑与推广:DeepSeek 没有市场部和市场投放,依靠技术实力和口碑获得认可;而 ChatGPT 可能有不同的推广策略。 3. 性能与成本:DeepSeek R1 效果比肩顶尖闭源模型 o1,价格仅为 o1 的 27 分之一。 4. 开源与创新:DeepSeek R1 开源让行业认知拉齐,得到尊重和喜爱;ChatGPT 可能在开源方面有所不同。 5. 创新模型:DeepSeek R1 的创新模型 R1 Zero 跳过监督微调(SFT)阶段,直接采用强化学习(RL)训练,且发现模型思考能力可自我涌现。 6. 影响:DeepSeek R1 的发布引发美国科技界恐慌,挑战英伟达市场地位;ChatGPT 也有其自身的影响。 此外,游戏科学创始人冯骥称 DeepSeek 具备强大、便宜、开源、免费、联网和本土等六大优势,全面超过现有 AI 大模型。相关报道还指出 DeepSeek R1 在美国 App Store 夺冠,成为开源 AI 领域的领军者。
2025-03-27
chatgpt是什么
ChatGPT 是一种基于 GPT(生成式预训练变换器)架构的人工智能模型,由 OpenAI 开发。它是一种自然语言处理(NLP)工具,能够理解和生成接近人类水平的文本。 目前 ChatGPT 官网有两个版本,分别是 GPT3.5 和 GPT4。GPT3.5 是免费版本,拥有 GPT 账号即可使用,但其智能程度不如 GPT4,且无法使用 DALL.E3(AI 画图功能)、GPTs 商店和高级数据分析等插件。若想使用更多功能更智能的 GPT4,需升级到 PLUS 套餐,收费标准为 20 美金一个月。此外,GPT4 还有团队版和企业版,功能更多,限制更少,但费用也更贵,一般推荐使用 PLUS 套餐。 在注册 ChatGPT 账号之前,建议先注册一个谷歌账号,因为国外很多软件支持谷歌账号一键登录,可省去很多日后的注册流程。 ChatGPT 的基本概念是从网络、书籍等来源获取大量人类创作的文本样本,然后训练神经网络生成“类似”的文本,特别是能够从“提示”开始,继续生成“类似于训练内容”的文本。 从 OpenAI 的官网可知,2022 年宣发时称 ChatGPT 是一种模型,而在官网的帮助页面中称其是一种服务。目前我们所熟知的 ChatGPT 逐渐演变成了一种可以兼容多种 GPT 模型的聊天应用(服务)。
2025-03-27
chatgpt
ChatGPT 是一种基于 GPT 架构的人工智能模型,由 OpenAI 开发。 它的工作原理是:从网络、书籍等来源获取大量人类创作的文本样本,然后训练神经网络生成“类似”的文本。具体来说,它能够从“提示”开始,继续生成“类似于训练内容”的文本。其神经网络由大量简单元素组成,基本操作是为每个新单词(或单词部分)生成“输入”,然后将其“通过其元素”(无循环等)。 ChatGPT 在生成文本方面表现出色,结果通常接近人类所产生的。但它也有一些限制,例如在训练(学习)时,其使用的策略可能与大脑不同且效率较低,内部没有“循环”或“重新计算数据”,这限制了其计算能力。 目前 ChatGPT 官网有两个版本,GPT3.5 是免费版,拥有账号即可使用,但智能程度不如 GPT4,且无法使用 DALL.E3 等插件。GPT4 的 PLUS 套餐收费标准为 20 美金一个月,还有团队版和企业版,功能更多、限制更少,但费用更贵,一般推荐使用 PLUS 套餐。 在注册 ChatGPT 账号前,建议先注册一个谷歌账号,因为国外很多软件支持谷歌账号一键登录,注册谷歌账号支持国内手机号码和国内邮箱验证,过程简单。
2025-03-25
什么是ChatGPT
ChatGPT 是一种基于 GPT(生成式预训练变换器)架构的人工智能模型,由 OpenAI 开发。 它是一种自然语言处理(NLP)工具,能够理解和生成接近人类水平的文本。目前 ChatGPT 官网有两个版本,分别是 GPT3.5 和 GPT4。GPT3.5 是免费版本,拥有 GPT 账号即可使用,但智能程度不如 GPT4 高,且无法使用 DALL.E3(AI 画图功能)和 GPTs 商店、高级数据分析等插件。若想使用更多功能更智能的 GPT4,需升级到 PLUS 套餐,收费标准为 20 美金一个月,此外还有团队版和企业版,功能更多、限制更少,但费用更贵,一般推荐使用 PLUS 套餐。 ChatGPT 的基本概念是从网络、书籍等来源获取大量人类创作的文本样本,然后训练神经网络生成“类似”的文本,特别是能够从“提示”开始,继续生成“类似于训练内容”的文本。 ChatGPT 中的实际神经网络由简单元素组成,尽管数量庞大。其基本操作是为每个新单词(或单词部分)生成“输入”,然后将其“通过其元素”。但这个过程能产生成功地“类似于”网络、书籍等内容的文本,不仅是连贯的人类语言,而且“说的话”遵循其提示,利用其“读到”的内容。 ChatGPT 实质功能是“单字接龙”,长文由单字接龙的回归所生成。GPT 作为大脑,也就是模型需要通过材料学习不断训练,训练方式不是记忆而是学习“提问和回答的通用规律”,学习后的模型可以实现举一反三。但它不是搜索引擎的升级版,可能会出现“幻觉”,混淆记忆,无法直接查看和更新所学,且高度依赖学习材料,存在缺乏及时性和准确性的缺点。
2025-03-21
deepseek api
Jina DeepSearch 是一项基于推理大模型的深度搜索服务,其 API 已上线且开源。它可以在搜索时进行不断推理、迭代、探索、读取和归纳总结,直到找到最优答案为止。与 OpenAI 和 Gemini 不同,Jina DeepSearch 专注于通过迭代提供准确的答案,而不是生成长篇文章。它针对深度网络搜索的快速、精确答案进行了优化,而不是创建全面的报告。 使用入口:官方深度搜索 API 与 OpenAI API 架构完全兼容,您可以前往官网(jina.ai/deepsearch)了解详情;或者前往应用页面(search.jina.ai)体验。 此外,北京时间 00:30 至 08:30 期间,DeepSeek API 价格大幅下调。DeepSeekV3 降至原价的 50%,DeepSeekR1 低至 25%,鼓励用户在夜间空闲时段调用 API,以更低成本享受服务。
2025-03-30
DEEPseek 教程
以下是为您整理的关于 DeepSeek 的教程相关信息: 有众多关于 DeepSeek 的学习资料,如《DeepSeek R1本地部署完全手册》.pdf、00 Deepseek 官方提示词.txt、普通人学 AI 指南.pdf、清华大学:DeepSeek 从入门到精通【高清版】.pdf 等。 火山方舟 DeepSeek 申请免费额度及 API 使用方法:包含飞书多维表格调用、Coze 智能体调用、浏览器插件调用等方式。可以使用邀请码 D3H5G9QA,邀请链接为 https://www.volcengine.com/activity/deepseek?utm_term=202502dsinvite&ac=DSASUQY5&rc=D3H5G9QA,邀请可拿 3000 万 tokens。 第三期「AI 实训营」手把手学 AI 中,有关于阿里云上 DeepSeek 玩法的教学,课程于 2025.02.25/26 日每晚 20:00 进行,讲师为许键,包括用 DeepSeek 搭建智能体、全网最简单的 DeepSeek 的部署和蒸馏手把手教程等内容,飞书会议链接为 https://vc.feishu.cn/j/254331715 ,共学文档链接为 。
2025-03-30
deepseek
DeepSeek 具有以下特点: 1. 其秘方被认为是硅谷味儿的。将其比喻成“AI 界的拼多多”是偏颇的,早在 2024 年 5 月 DeepSeekV2 发布时,就以多头潜在注意力机制(MLA)架构的创新在硅谷引发轰动,而当时在国内舆论场被描摹成“大模型价格战的发起者”。 2. 如果 V3 是 DeepSeek 的 GPT3 时刻,接下来的发展未知,但它已成为中国最全球化的 AI 公司之一,赢得尊重的秘方也是硅谷味儿的。 3. 华尔街分析师对 DeepSeek 有不同反应,如 Jefferies 警告其技术可能打破资本开支狂热,Citi 对其技术突破提出质疑,高盛预测其可能改变竞争格局等。 4. 在实际使用体验方面,文字能力在中文场景中表现突出,符合日常写作习惯,但在专业论文总结方面稍弱;数学能力经过优化表现不错,编程能力略逊于 GPT。GRPO 算法替代传统 PPO,降低价值函数估计难度,提高语言评价场景的灵活性与训练速度。
2025-03-30
怎么下载deepseek
以下是关于 DeepSeek 的相关信息及下载方式: 论文下载: 下载方式:pc 端鼠标移到文章上面,会有下载链接,手机端类似。 模型下载地址:https://github.com/deepseekai/Janus 活动信息: DeepSeek+阿里云实训营全新升级上线,不用下载,教您稳定调用、开发满血版 DeepSeek 智能体,更多隐藏玩法等您解锁。2 月 20 日周四下午 2 点开始在线直播,可通过参与。 金融行业·大模型挑战赛|用大模型理解金融市场,初赛阶段(2024/12/3 2025/2/10),详情: 。 全新 AI 整活第六期|DeepSeek 小说家,投稿内容:使用 DeepSeek 写一篇以“反转”为主题的 1000 字内短篇小说。投稿地址:通往 AGI 之路 腾讯频道 【deepseek 专区】点击投稿,2 月 16 日晚 8 点截止并现场直播评选。活动详情: 。
2025-03-30
deepseek
DeepSeek 的秘方具有硅谷特色: 早在 2024 年 5 月 DeepSeekV2 发布时,其以多头潜在注意力机制(MLA)架构的创新在硅谷引发小范围轰动,V2 的论文在 AI 研究界被广泛分享和讨论。 当时在国内舆论场,DeepSeek 被描摹成“大模型价格战的发起者”,形成平行时空的感觉。 如果 V3 是 DeepSeek 的 GPT3 时刻,接下来的发展充满未知,但 DeepSeek 已成为中国最全球化的 AI 公司之一,其赢得尊重的秘方也是硅谷味儿的。 华尔街分析师对 DeepSeek 的反应: DeepSeek 展示出媲美领先 AI 产品性能的模型,成本低,在全球主要市场的 App Store 登顶。 Jefferies 警告其技术可能打破资本开支狂热,Citi 对其技术突破提出质疑,高盛预测其可能改变科技巨头与初创公司的竞争格局,降低 AI 行业进入门槛。 DeepSeek 的实际使用体验: 文字能力在中文场景中突出,符合日常和写作习惯,但在专业论文总结方面稍弱。 数学能力经过优化表现不错,编程能力略逊于 GPT。 GRPO 算法替代传统 PPO,降低价值函数估计难度,提高语言评价场景的灵活性与训练速度。 此外,复旦大学 OpenMOSS 发布实时语音交互模型。
2025-03-30
deepseek写论文
以下是关于使用 DeepSeek 写论文的相关信息: 有人使用 DeepSeek 写论文,如 Yvonne。 DeepSeek 在写文方面全面领先,但长文可能会太发散,文风用力过猛,可能导致审美疲劳,且模型多样性不够,相同 prompt 提问多次答案雷同。 写理性文章时,可先与 DeepSeek 讨论思路,再用 Cloud 3.5 批量生成。 控制创作字数方面,可用 O1 模型对 AI 创作的字数控制有一定效果,也可通过多轮对话让 AI 增删改查来调整字数。
2025-03-30
我公司想部署一个deepseek-R1,用云服务器请问大概需要多少钱?
部署 DeepSeekR1 模型使用云服务器的价格因云计算厂商而异: 华为昇腾社区:部署 DeepSeekR1 模型用 BF16 权重进行推理至少需要 4 台 Atlas 800I A2(864G)服务器,用 W8A8 量化权重进行推理则至少需要 2 台 Atlas 800I A2。服务器调用 Docker 下载部署权重资源,非 API 调用模式。 阿里云(人工智能平台 PAI):以 R1 为例,所需计算资源价格 316.25/小时。模型部署成在线服务,在人工智能平台 PAI 下的模型部署下的模型在线服务 EAS。 阿里云(阿里云百炼):免费额度:10000000/10000000,通过 API 调用。 腾讯云(自建服务器):多机分布式部署,节点数量:2 个,单节点配置:HCCPNV6 机型,可在线体验(需开通 T1 平台服务)。 腾讯云(调用 API):API 调用 DeepSeek 系列模型限时免费。即日起至北京时间 2025 年 2 月 25 日 23:59:59,所有腾讯云用户均可享受 DeepSeekV3、DeepSeekR1 模型限时免费服务,单账号限制接口并发上限为 5。在此之后,模型价格将恢复至原价。 京东云:“deepseekr1:1.5b、“deepseekr1:7b”、“deepseekr1:32b”,1.89/小时起;服务器部署的方式。 gitee ai:R1 价格 0.1 元/次,基于沐曦曦云 GPU 及曦源一号国产替代算力集群,有在线体验。 需要注意的是,价格可能会有所变动,具体以各云计算厂商的最新公布为准。
2025-03-25
我想学习有关ai的知识,但是并不是单单的系统性的学,而是想利用现有的模型比如说deep seekr1模型来训练一个自己的模型这样的,来实现某些功能
以下是关于 DeepSeek R1 模型的相关知识: 1. DeepSeek R1 引入了纯强化学习(RL),不依赖大量人类标注数据,而是通过自我探索和试错来学习。在“冷启动”阶段,仅通过少量人工精选的思维链数据进行初步引导,建立符合人类阅读习惯的推理表达范式,随后主要依靠强化学习,在奖励系统的反馈下(只对结果准确率与回答格式进行奖励),自主探索推理策略,不断提升回答的准确性,实现自我进化。准确率奖励用于评估最终答案是否正确,格式奖励强制结构化输出,让模型把思考过程置于<think></think>标签之间。 2. 与其他模型相比,Alpha Zero 只训练了三天,就以 100 比 0 的战绩完胜 Alpha Go Lee,Alpha Go(老)采用监督学习+强化学习,学习人类棋谱,更接近人类职业棋手风格,继承了人类的局限,Alpha Zero(新)完全摒弃人类数据的纯强化学习,从零开始自我博弈,不受限于人类经验,具有创造性的下棋风格。DeepSeek R1 在训练中更注重学习推理的底层策略,培养通用推理能力,使其能够实现跨领域的知识迁移运用和推理解答。 3. 使用 DeepSeek R1 给老外起中文名的操作指引: 点击邀请,复制邀请链接或下载邀请海报分享给好友。 打开火山引擎的模型页面(https://zjsms.com/iP5QRuGW/),使用习惯的方式登录。 登录后点击左侧列表里的“在线推理”,再点击“快速入门”。 获取 API Key,点击“创建 API Key”,可修改名字后创建,创建完成后点击“查看并选择”,将“已复制”的提示内容找个地方存一下。 复制 R1 的调用示例代码,选择模型为“DeepSeek R1”,修改示例代码中的相关内容,然后点击右侧的复制按钮,将代码找个地方存起来。 上述接入方法是快速入门方式,平台会自动创建在线推理接入点,并提供 50 万 Token 的免费额度,用完才需充值。如需充值,点击页面右上角的“费用”》“充值汇款”,根据账单适当充值。 4. DeepSeek R1 不同于先前的普通模型,它与 OpenAI 现在最先进的模型 o1、o3 同属于基于强化学习 RL 的推理模型。在回答用户问题前,R1 会先进行“自问自答”式的推理思考,提升最终回答的质量,这种“自问自答”是在模拟人类的深度思考,其“聪明”源于独特的“教育方式”,在其他模型还在接受“填鸭式教育”时,它已率先进入“自学成才”新阶段。
2025-03-22
DeepSeek R1卡顿如何解决
以下是解决 DeepSeek R1 卡顿的方法: 1. 拥有扣子专业版账号:如果您还是普通账号,请自行升级或注册专业号后使用。 2. 开通 DeepSeek R1 大模型: 访问地址:https://console.volcengine.com/cozepro/overview?scenario=coze 打开火山方舟,找到开通管理,找到 DeepSeek R1 模型,点击开通服务。 添加在线推理模型,添加后在扣子开发平台才能使用。 3. 创建智能体:点击创建,先完成一个智能体的创建。 4. 创建工作流: 创建一个对话流,命名为 r1_with_net。 开始节点,直接使用默认的。 大模型分析关键词设置:模型选择豆包通用模型lite,输入直接使用开始节点的 USER_INPUT 作为大模型的输入,系统提示词为“你是关键词提炼专家”,用户提示词为“根据用户输入`{{input}}`提炼出用户问题的关键词用于相关内容的搜索”。 bingWebSearch搜索:插件选择 BingWebSearch,参数使用上一个节点大模型分析输出的关键词作为 query 的参数,结果中 data 下的 webPages 是网页搜索结果,将在下一个节点使用。 大模型R1 参考搜索结果回答:在输入区域开启“对话历史”,模型选择韦恩 AI 专用 DeepSeek,输入包括搜索结果和开始节点的 USER_INPUT,开启对话历史并设置 10 轮。 结束节点设置:输出变量选择大模型R1 参考搜索结果回答的输出,回答内容里直接输出:{{output}}。 测试并发布工作流:输入测试问题,测试完成后直接发布工作流。 此外,您还可以通过以下途径获取更多相关信息: 1. 2 月 14 日 8 点直播进行中:火山引擎解决方案专家带大家在 Coze 搭建满血版 R1 bot,飞书会议直播结束,回放看: 2. 学习文档: 3. 模板更新了:
2025-03-20
我想从Nanobrowser里植入DeepSeek的R1模型,来让它帮我做网页搜索之类的工作,我该怎么做,给出详细教程
以下是从 Nanobrowser 里植入 DeepSeek 的 R1 模型来进行网页搜索的详细教程: 1. 阿里云百炼平台相关: 模型广场:百炼平台的模型广场有各种模型,包括音频理解、视频理解等,通义的一些强模型也在其中。 无需部署:百炼平台无需部署,可直接使用 Deepseek R1 模型。 价格与免费额度:Deepseek R1 模型价格与各大平台差不多,有大量免费额度,如 100 万 token,不同版本的模型如 7B、14B、32B 等也送了 100 万 token,LLAVA 限时免费。 授权与实名认证:使用 Deepseek R1 模型需要解锁和授权,没有授权按钮的需要对阿里云进行实名认证,可通过支付宝扫码或在右上角头像处进行,共学群里有相关指引。 模型效果对比:在首页体验模型页面可对比不同模型的效果,如 V3 和 R1,R1 会先思考,速度较快。 多模态能力:多模态可以识别更多输入信息,如读文件、图片等,而 Deepseek R1 本身不是多模态模型。 连接 Chat Box:通过模型广场的 API 调用示例获取链接,截断后粘贴到 Chat Box 的设置中,添加自定义提供方,设置模型名称为 Deepseek R1,并获取 API key。 API key 重置:可删除旧的 API key 并重新创建,方便本地软件连接。 2. 工作流创建: 创建一个对话流,命名为 r1_with_net。 开始节点,直接使用默认的。 大模型分析关键词设置:模型选择豆包通用模型lite,输入直接使用开始节点的 USER_INPUT 作为大模型的输入,系统提示词为“你是关键词提炼专家”,用户提示词为“根据用户输入`{{input}}`提炼出用户问题的关键词用于相关内容的搜索”。 bingWebSearch搜索:插件选择 BingWebSearch,参数使用上一个节点大模型分析输出的关键词作为 query 的参数,结果中 data 下的 webPages 是网页搜索结果,将在下一个节点使用。 大模型R1 参考搜索结果回答:在输入区域开启“对话历史”,模型选择韦恩 AI 专用 DeepSeek(即火山方舟里配置的 DeepSeek R1 模型),输入包括搜索结果(选择搜索节点 data 下的 webPages)和开始节点的 USER_INPUT,开启对话历史,设置 10 轮,默认不开启对话历史,开启后默认是 3 轮,系统提示词不需要输入,用户提示词为空。 结束节点设置:输出变量选择大模型R1 参考搜索结果回答的输出,回答内容里直接输出:{{output}}。测试完成后,直接发布工作流。 3. 网页聊天相关: 安装插件:使用 Chrome 或 Microsoft Edge 浏览器,点击此链接,安装浏览器插件,添加到拓展程序:https://chromewebstore.google.com/detail/pageassist%E6%9C%AC%E5%9C%B0ai%E6%A8%A1%E5%9E%8B%E7%9A%84web/jfgfiigpkhlkbnfnbobbkinehhfdhndo 。 打开聊天页面:点击右上角的插件列表,找到 Page Assist 插件,点击打开。 配置“DeepSeekR1”模型的 API key:基础 URL 为 https://ark.cnbeijing.volces.com/api/v3 ,填好之后,点击保存,关掉提醒弹窗。 添加“DeepSeekR1”模型。 打开联网功能,支持联网搜索使用 R1。
2025-03-20
以DeepSeek R1为代表的推理模型,与此前模型(如 ChatGPT-4、Claude 3.5 sonnet、豆包、通义等)的差异点主要在于
以 DeepSeek R1 为代表的推理模型与此前模型(如 ChatGPT4、Claude 3.5 sonnet、豆包、通义等)的差异点主要在于: 1. 技术路线:DeepSeek R1 与 OpenAI 现在最先进的模型 o1、o3 一样,属于基于强化学习 RL 的推理模型。 2. 思考方式:在回答用户问题前,R1 会先进行“自问自答”式的推理思考,模拟人类的深度思考,从用户初始问题出发,唤醒所需的推理逻辑与知识,进行多步推导,提升最终回答的质量。 3. 训练方式:在其他模型还在接受“填鸭式教育”时,DeepSeek R1 已率先进入“自学成才”的新阶段。 4. 模型制作:R1 是原生通过强化学习训练出的模型,而蒸馏模型是基于数据微调出来的,基础模型能力强,蒸馏微调模型能力也会强。此外,DeepSeek R1 还能反过来蒸馏数据微调其他模型,形成互相帮助的局面。 5. 与 Claude 3.7 Sonnet 相比,Claude 3.7 Sonnet 在任务指令跟随、通用推理、多模态能力和自主编程方面表现出色,扩展思考模式在数学和科学领域带来显著提升,在某些方面与 DeepSeek R1 各有优劣。
2025-03-19
我想在飞书云中用DeepSeek-R1模型提取链接中的信息,请问如何写指令呢?我刚刚进行了尝试,发现提取出的信息和我点开链接看到的信息不一致,这个问题又该如何解决呢?
在飞书云中使用 DeepSeekR1 模型提取链接中的信息并解决提取信息不一致的问题,您可以参考以下内容: 对于指令编写: 虽然 R1 推理能力较强,但您想表达的不一定完全与模型吻合,因此建议多加清晰指令。 模糊指令优化方面,比如对于宽泛需求可添加维度约束,如原句“写小说”可修正为“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构”;对于主观表述可量化标准,如原句“写得专业些”可修正为“符合 IEEE 论文格式,包含 5 项以上行业数据引用”。 迭代优化法包括首轮生成获取基础内容、特征强化(如加强第三段的技术细节描述)、风格调整(如改用学术会议报告语气,添加结论部分)、最终校验(检查时间逻辑一致性,列出可能的事实性错误)。 对于提取信息不一致的问题: 信息幻觉:追加请标注所有不确定陈述,并提供验证方法。 格式偏离:使用严格遵循以下模板:第一行...第二行... 深度不足:触发请继续扩展第三章节内容,添加案例佐证。 另外,关于获取字节火山 DeepSeek 系列 API 完整教程及使用方法: 1. 注册并登录火山引擎,点击立即体验进入控制台。 2. 创建一个接入点,点击在线推理创建推理接入点。 3. 为接入点命名为 DeepSeekR1。 4. 若有提示“该模型未开通,开通后可创建推理接入点”,点击“立即开通”,勾选全部模型和协议一路开通(免费)。 5. 确认无误后,点击“确认接入”按钮。 6. 自动返回创建页面,复制多出的接入点名为“DeepSeekR1”的推理点 ID 并保存。 7. 点击【API 调用】按钮,进入后点击【选择 API Key 并复制】。 8. 若已有 API key 直接查看并复制,没有则点击【创建 API key】。 9. 复制并保存好 API key。 在实现新闻播报自动化工作流方面: 第一步是内容获取,输入新闻链接,系统自动提取核心内容。开始节点的入参包括新闻链接和视频合成插件 api_key。添加网页图片链接提取插件,获取网页里的图片。接着利用调整图片的节点,将 url 属性的图片内容转化为 image 属性的图片。然后使用链接读取节点,将文字内容提取出来。在提取链接后面接上一个大模型节点,用 DeepSeekR1 模型生成有吸引力的口播内容。若想加上自己的特征,可在提示词里写“开头加上‘这里是伊登 AI’之类的个性化台词防伪”。
2025-03-18
详细讲解一下ragflow框架,同时对比一下ragflow与常规知识库有什么优势,在graphrag的实现方面ragflow又是怎么做的?
RAG(检索增强生成)是一种有效的解决方案,下面为您详细讲解: RAG 工作流程: 1. 检索(Retrieval):如同在图书馆中,系统会从知识库或文档集合中找出与用户问题相关的内容。 2. 增强(Augmented):对检索到的信息进行筛选和优化,挑出最相关和有用的部分。 3. 生成(Generation):将整合的信息生成自然流畅、易于理解的回答。 RAG 类似于一个超级智能的图书馆员,综合起来: 1. 检索:从庞大知识库中找到相关信息。 2. 增强:筛选优化确保找到最相关部分。 3. 生成:整合信息给出连贯回答。 RAG 的优势: 1. 成本效益:相比训练和维护大型专有模型,实现成本更低。 2. 灵活性:能利用多种数据源,包括结构化和非结构化数据,迅速适应不同领域和变化的数据。 3. 可扩展性:随时增加或更新知识库内容,无需重新训练模型。 RAG 与常规知识库的对比优势: 常规知识库可能存在知识更新不及时、数据来源单一等问题。而 RAG 能够从多种数据源获取信息,并且可以根据用户的实时需求进行检索和优化,生成更贴合需求的回答。 在 GraphRAG 的实现方面,目前提供的内容中未明确提及相关具体实现方式。 同时需要注意的是,RAG 也存在一些缺点,比如相比于专有模型的方案,回答准确性可能不够。
2025-03-28
现在deepseek从普通用户的层面,相比于其他模型,优势有哪些
DeepSeek 对于普通用户的优势包括: 1. 国产之光,在国内被广泛接入和使用。 2. 生成代码的质量可与国外顶尖大模型媲美。 3. 深度思考版本 DeepSeek R1 基于强化学习 RL 的推理模型,在回答用户问题前会先进行“自问自答”式的推理思考,提升回答质量。其“聪明”源于独特的“教育方式”,率先进入“自学成才”新阶段。 4. 思考与表达能力出色,在思考过程和输出结果的语气、结构、逻辑上表现优秀,碾压其他模型。 然而,DeepSeek 也存在一些不足,例如对于协助编程,其最大的上下文长度只有 64k,较短,导致无法处理更长的上下文和更复杂的代码项目。
2025-03-27
deepseek的优势是什么?
DeepSeek 的优势包括以下方面: 1. 性能与成本:展示出媲美领先 AI 产品的性能,但成本仅为其一小部分,在全球主要市场的 App Store 登顶。 2. 文字能力:在文字能力上表现突出,尤其在中文场景中高度符合日常、写作习惯,但在专业论文总结方面稍弱。 3. 数学能力:经过优化,表现不错。 4. 模型特点: 推理型大模型:通过理解用户的真实需求和场景来提供答案,不需要用户提供详细步骤指令。 更懂人话:能够理解用户用“人话”表达的需求,无需特定提示词模板。 深度思考:回答问题时能够进行深度思考,非简单罗列信息。 文风转换器:可以模仿不同作家的文风进行写作,适用于多种文体和场景。 5. 开源与创新:开源了多模态模型 JanusPro,在参数上领先,具备多种能力,通过优化训练策略、海量数据和大规模参数实现更强智能表现,统一 Transformer 架构,提供多种规模,全面开源,支持商用,部署使用便捷,Benchmark 表现优异。
2025-03-24
微调大模型的优势与运用的功能场景是什么?微调具体步骤是?
微调大模型具有以下优势和运用的功能场景: 优势: 提高模型在特定任务中的性能:可以输入更多示例,经过微调的模型在特定任务中表现更好,虽然可能会失去一些通用性。 提高模型效率:实现更低的延迟和更低的成本,可通过专门化模型使用更小的模型,且只对输入输出对进行训练,舍弃示例或指令进一步改善延迟和成本。 功能场景:适用于需要在特定领域(如法律、医学等)获得更优表现的情况。 微调大模型的具体步骤如下: 从参数规模的角度,大模型的微调分成两条技术路线:全量微调(FFT)和参数高效微调(PEFT)。全量微调是对全量的模型参数进行全量的训练,PEFT 则只对部分模型参数进行训练。从成本和效果综合考虑,PEFT 是目前业界较流行的微调方案。 微调是在较小的、特定领域的数据集上继续大模型的训练过程,通过调整模型本身的参数来提高性能。 您可以参考 OpenAI 官方微调教程:https://github.com/openai/openaicookbook/blob/main/examples/How_to_finetune_chat_models.ipynb
2025-03-23
背景:我是一名高中生,想学习AI知识,逐步从入门到精通 目标:希望在<3个月>内具备一定能力。 请结合我的背景和优势,为我设计一份学习路线: - 列出每阶段(例如每一个礼拜)的学习重点(比如编程基础、数学)。 - 为每个阶段推荐<具体资源>(书籍、在线课程、练习项目等)。 - 提供一些学习技巧或注意事项。
以下是为您设计的一份在 3 个月内从入门到具备一定能力的 AI 学习路线: 第一个月: 学习重点:了解 AI 基本概念,包括术语、主要分支及它们之间的联系;掌握编程基础,如 Python 语言。 推荐资源: 书籍:《人工智能:一种现代方法》 在线课程:Coursera 上的“人工智能入门”课程 练习项目:使用 Python 实现简单的数据分析和可视化 学习技巧和注意事项:多做笔记,理解概念,注重实践。 第二个月: 学习重点:深入学习数学基础,包括统计学、线性代数和概率论;了解算法和模型中的监督学习和无监督学习。 推荐资源: 书籍:《概率论与数理统计》《线性代数及其应用》 在线课程:edX 上的“机器学习基础”课程 练习项目:使用监督学习算法进行数据分类预测 学习技巧和注意事项:通过实际案例加深对数学知识的理解,多做练习题。 第三个月: 学习重点:掌握神经网络基础,包括网络结构和激活函数;学习模型的评估和调优。 推荐资源: 书籍:《深度学习》 在线课程:Udacity 上的“深度学习入门”课程 练习项目:构建并优化一个简单的神经网络模型 学习技巧和注意事项:积极参与在线讨论,及时解决学习中的问题。 在整个学习过程中,您还可以: 体验 AI 产品,如 ChatGPT、文心一言等,了解其工作原理和交互方式。 掌握提示词的技巧,提高与 AI 的交互效果。 参与相关的社区和论坛,分享学习经验和成果。
2025-03-21
部署大模型的一体机有什么优势
部署大模型的一体机具有以下优势: 1. 语言翻译方面: 语境理解与适配:能够通过深度的上下文分析,理解语言背后的真正含义,避免词不达意和语境脱节的问题,尤其在处理隐喻、习语或文化特征的文本时,能更精准地捕捉并传达原文意图。 流畅自然的翻译输出:通过对大量自然语言数据的学习,能够生成更加流畅、自然且地道的翻译,接近母语水平,保持原文的语言风格和情感色彩。 灵活性与多场景适应:强大的适应性,能够根据不同的翻译场景灵活调整策略,在多场景翻译中表现得更具灵活性和精准度。 文化适配与行业专用翻译:能够深入理解语言背后的文化内涵,避免因文化差异导致的误解或偏差,在专业领域能提供更加专业且符合行业标准的翻译结果。 2. 模型部署方面: 内存优化:由于大模型参数众多,内存需求大,在实际部署时会进行模型压缩,使用内存占用更小的数据类型,如 16 位的浮点数,可直接减少内存使用。 解决传输瓶颈:在训练大模型中,CPU 与内存之间的传输速度往往是系统瓶颈,减小内存使用是首要优化点。 3. 硬件架构方面: 存算一体架构:运行几百亿个参数的大模型,存算一体架构是最佳选择,可避免数据搬运。 4. 知识结合方面: 大模型在通用知识方面表现出色,但对专业领域知识了解有限。将领域知识结合进大模型的方法包括重新训练、微调、RAG、关键词工程和加长 Context 等。目前在学术界,做深度学习的人偏向于用 RAG,做过搜索的人偏向于用 Long Context。
2025-03-19