直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

AI目前最新发展是什么

回答

AI 目前的最新发展包括以下几个方面:

  1. 技术发展历程:
    • 早期阶段(1950s - 1960s):专家系统、博弈论、机器学习初步理论。
    • 知识驱动时期(1970s - 1980s):专家系统、知识表示、自动推理。
    • 统计学习时期(1990s - 2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)。
    • 深度学习时期(2010s - 至今):深度神经网络、卷积神经网络、循环神经网络等。
  2. 当前前沿技术点:
    • 大模型(Large Language Models):GPT、PaLM 等。
    • 多模态 AI:视觉 - 语言模型(CLIP、Stable Diffusion)、多模态融合。
    • 自监督学习:自监督预训练、对比学习、掩码语言模型等。
    • 小样本学习:元学习、一次学习、提示学习等。
    • 可解释 AI:模型可解释性、因果推理、符号推理等。
    • 机器人学:强化学习、运动规划、人机交互等。
    • 量子 AI:量子机器学习、量子神经网络等。
    • AI 芯片和硬件加速。
  3. 产品设计和商业化思路的变化:
    • 从通用能力到专业化细分:如图像生成(Midjourney、Stable Diffusion 等)、视频制作(Pika、Runway 等)、音频处理(各种 AI 配音、音乐生成工具)等,每个细分领域的产品都在不断提升核心能力,为用户提供更精准和高质量的服务。
    • 商业模式的探索与创新:ToB 市场的深耕(如针对内容创作者的 ReadPo)、新型广告模式(如天宫搜索的“宝典彩页”)等,从单纯的技术展示向解决用户痛点和创造商业价值转变。

此外,AI 是一个快速发展的领域,新的研究成果和技术不断涌现。新手可以通过持续学习和跟进,关注 AI 领域的新闻、博客、论坛和社交媒体,考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流来保持对最新发展的了解。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:新手如何学习 AI?

持续学习和跟进:AI是一个快速发展的领域,新的研究成果和技术不断涌现。关注AI领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。考虑加入AI相关的社群和组织,参加研讨会、工作坊和会议,与其他AI爱好者和专业人士交流。

问:AI的技术历史和发展方向,目前最前沿的技术点有哪些

AI技术的发展历程和前沿技术点可以概括如下:[heading2]AI技术发展历程[content]1.早期阶段(1950s-1960s):专家系统、博弈论、机器学习初步理论2.知识驱动时期(1970s-1980s):专家系统、知识表示、自动推理3.统计学习时期(1990s-2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)4.深度学习时期(2010s-至今):深度神经网络、卷积神经网络、循环神经网络等[heading2]当前AI前沿技术点[content]1.大模型(Large Language Models):GPT、PaLM等2.多模态AI:视觉-语言模型(CLIP、Stable Diffusion)、多模态融合3.自监督学习:自监督预训练、对比学习、掩码语言模型等4.小样本学习:元学习、一次学习、提示学习等5.可解释AI:模型可解释性、因果推理、符号推理等6.机器人学:强化学习、运动规划、人机交互等7.量子AI:量子机器学习、量子神经网络等8.AI芯片和硬件加速

2024年AI产品设计和商业化思路的一些变化及讨论

近两年来,人工智能技术,特别是大语言模型(LLM)的快速发展,给科技界和普通用户都带来了巨大冲击。从2022年底ChatGPT的横空出世,到如今各类AI应用的百花齐放,AI产品的发展趋势正在悄然发生变化。本文将从几个关键角度,分析当前AI产品发展的新特点和未来可能的方向。[heading3]从通用能力到专业化细分[content]早期的AI产品,如ChatGPT,以其强大的通用能力吸引了大量用户。然而,随着时间推移,单一的通用型产品已经难以满足用户的多样化需求。目前,我们看到越来越多的AI产品开始专注于特定领域或功能:图像生成:如Midjourney、Stable Diffusion等视频制作:Pika、Runway等音频处理:如各种AI配音、音乐生成工具这种专业化趋势使得每个细分领域的AI产品都在不断提升其核心能力,为用户提供更加精准和高质量的服务。"现在每个单功能的AI产品,只要是现在这个节点出来的都很牛逼。"[heading3]商业模式的探索与创新[content]随着AI技术的成熟,如何将技术转化为可持续的商业模式成为了关键问题。一些创新性的尝试正在涌现:ToB市场的深耕:如针对内容创作者的ReadPo,为专业用户提供高效的信息获取和创作工具。新型广告模式:如天宫搜索的"宝典彩页",允许用户认领特定主题词,获得相关搜索流量并实现变现。这些探索表明,AI产品正在从单纯的技术展示向真正解决用户痛点和创造商业价值的方向转变。

其他人在问
我是一个有着20年logo设计经验的资深设计师,我想为一个心理精神科诊所设计一套VI,请推荐一个AI软件
目前在 VI 设计方面,有一些常用的 AI 软件,比如 Adobe Illustrator ,它具有强大的绘图和编辑功能,能够满足您对高质量图形设计的需求;还有 Sketch ,其界面简洁,操作相对便捷。不过,具体选择哪款软件还需根据您的个人使用习惯和具体设计要求来决定。
2024-11-18
喂AI文档,表格不识别怎么办
如果 AI 文档中的表格不被识别,您可以参考以下内容: 召回排序过程中会过滤掉标题里携带了【已废弃】、【已过期】、【已停用】、【已删除】、【已作废】、【已过时】、【弃用】等字眼的片段。如果某些文档已经过期、内容不再准确,但是又需要保留存档,可以在文档总标题里加上关键字眼,避免这些文档进入问答、影响答案的准确性。 当前文档里插入的表格(包括普通表格、电子表格、多维表格)内容虽然已经能被 AI 识别,但是识别效果还在进一步提升中。某篇文档如果主要用于 AI 智能问答,现阶段为了保证更好的问答效果,可以尽量都使用普通文本描述,避免大量有价值的信息都包含在表格中。 随着飞书团队持续丰富支持识别的数据类型,这些局限会逐渐消除、问答效果也会持续提升。
2024-11-18
怎么通过AI辅助创作一个小程序
以下是通过 AI 辅助创作小程序的步骤: 1. 基础小任务 让 AI 按照最佳实践为您写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,从而学会必备的调试技能。 如果使用 o1mini,可以在提示词最后添加“请生成 create.sh 脚本(Windows 机器则是 create.cmd),运行脚本就能直接创建插件所需要的所有文件。请教我如何运行脚本”,勤勉的 o1mini 会为您生成代码并给出提示,复制粘贴并执行即可一次性生成多个目录和文件。 2. 明确项目需求 通过与 AI 的对话,逐步明确项目需求。如果您是训练有素的产品经理,可以忽略这一步。 让 AI 帮助梳理出产品需求文档,包含影响技术方案选择的细节,后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 案例参考 您可以参考以下案例获取更多灵感和方法: 使用 GPT 的视觉功能和 TTS API 处理和讲述视频:这个笔记本演示了如何通过视频使用 GPT 的视觉功能。GPT4 不直接将视频作为输入,但可以使用视觉和新的 128 K 上下文 widnow 来同时描述整个视频的静态帧。 开发:GLM 等大模型外接数据库:可以调整 prompt,匹配不同的知识库,让 LLM 扮演不同的角色,如上传公司财报充当财务分析师、上传客服聊天记录充当智能客服、上传经典 Case 充当律师助手、上传医院百科全书充当在线问诊医生。 开发:微信小程序:手把手教如何利用 chatgpt 来实现微信小程序的搭建,包括注册和开发上线。 开发:知识库/聊天机器人搭建安全提示词 prompt 。 需要注意的是,在开发过程中可能会遇到挫折,如问题描述不清楚导致得到错误指引、AI 给出的方案复杂或代码正确但其他配置错误等。小白最好通过 AI 能直接搞定的小项目先学明白背后的原理,在此基础上开发复杂项目,同时最好有人类导师将任务拆解到足够小,针对性地设计学习路径,并密切关注随时帮助解决问题。
2024-11-18
AI 在营销获客的落地应用有哪些
以下是 AI 在营销获客方面的落地应用: 1. 医疗行业: 疾病的诊断与预测。 药物研发。 个性化医疗。例如麻省理工学院利用 AI 发现新型广谱抗生素 Halicin。 2. 广告营销行业: 从初期的市场分析、中期的客户转化到后期的客户复购均可参与,为消费者提供更个性化、智能化和互动性强的营销体验。 对于广告图案的生成,可通过 AI+设计相关的 SOP 来提高效率。 降低内容制作成本并加速创意的实现过程。 具体案例: 亨氏使用番茄酱瓶的图像和类似标签来论证“这就是人工智能眼中‘番茄酱’的样子”。 雀巢使用维米尔画作的人工智能增强版来帮助销售其酸奶品牌。 Stitch Fix 服装公司使用 DALLE 2 根据客户对颜色、面料和款式的偏好创建服装可视化。 美泰使用该技术生成用于玩具设计和营销的图像。 3. 汽车行业: AI 辅助“市场营销”和“新媒体运营”,包括汽车+热点营销、用户画像预测、营销内容创作、内容审核、用户评论回复,以及“一键生图”符合营销要求。 AI 提升“销售体验”,引导“留资或下单”,如智能“试驾”促进“转化”、“金牌销售”智能导购、“互动游戏”智能导购。 AI 提升“销售能力”(专业知识/销售话术),基于汽车销售的各个场景和环节自动出题,用户答题后进行得分评估和给出建议。还可复制到其他学习类场景,增加“对话”或者“情景模拟”的形式开展,如 AI 扮演客户进行销售对练。
2024-11-18
你是ai领域专家,我是新手小白,给我一些入门nlp的系统性建议
以下是给您的入门 NLP 的系统性建议: 自然语言处理(NLP)是人工智能领域的重要分支,其起源早于“人工智能”概念的诞生,艾伦·图灵在开创性论文《计算机器与智能》中提出的“图灵测试”是该领域被广泛认可的起点。这个概念涵盖了自然语言理解(NLU)和自然语言生成(NLG)两大核心领域。 对于新手入门 NLP,首先要理解 NLP 的基本概念和发展历程,了解其在人工智能中的重要地位。深入学习“图灵测试”的理念,体会让计算机与人类自然流畅对话的目标。 重点掌握 NLU,学会让机器准确理解人类语言的复杂性和微妙之处。同时关注 NLG,研究如何让机器生成流畅、自然、符合语境的人类语言。 通过实际案例和项目实践,加深对 NLP 核心领域的理解和应用能力。
2024-11-18
我是一个教育机构,我想使用ai代替我的家教老师团队,对学生进行1v1的辅导,包括:根据学生当天学习的课程出题,定时监督并整理错题,有什么ai工具,可以帮助我
目前在市场上,还没有能够完全替代家教老师团队进行 1v1 辅导,包括根据学生当天学习课程出题、定时监督并整理错题等全方位功能的单一 AI 工具。但您可以考虑结合使用以下几种 AI 相关的技术和工具来部分实现您的需求: 1. 智能学习管理系统:这类系统可以根据学生的学习进度和表现生成一些练习题,但可能无法完全针对当天学习的课程精准出题。 2. 自然语言处理工具:帮助分析学生的学习情况和问题,为后续的辅导提供一定的参考。 需要注意的是,AI 工具在教育中的应用仍处于不断发展和完善的阶段,不能完全替代人类教师的情感支持、个性化引导和灵活应变能力。
2024-11-18
马斯克脑机接口最新发展
马斯克脑机接口的最新发展包括以下方面: 脑虎科技创始人彭雷指出脑机接口是人类脑计划的核心底层工具,能长期稳定读取大规模神经元活动信号。脑机接口是交叉领域,存在侵入式解决方案,如马斯克采用的柔性脑机结构,其柔性丝比头发细很多,通道无上限,可通过脑机信号控制物体。 2024 年 8 月 4 日,《马斯克最新 6 万字访谈!8.5 小时详解脑机接口、机器人、外星人,以及 AI 与人类的未来(一)》发布,这是马斯克第 5 次参加 Lex Fridman 播客,也是有史以来时间最长、最完整、信息量最大的一次,全球首位 Neuralink 脑机接口植入者 Noland 也参与了对话。 2024 年 1 月 30 日,马斯克宣布首例人类大脑芯片植入手术成功。
2024-11-16
人工智能最新信息
以下是人工智能的一些最新信息: 神经网络研究在 2010 年左右开始有巨大发展,ImageNet 大型图像集合催生了相关挑战赛。 2012 年卷积神经网络用于图像分类使错误率大幅下降,2015 年微软研究院的 ResNet 架构达到人类水平准确率。 从 2015 年到 2020 年,神经网络在图像分类、对话语音识别、自动化机器翻译、图像描述等任务中陆续实现人类水平准确率。 过去几年大型语言模型如 BERT 和 GPT3 取得巨大成功,得益于大量通用文本数据。 OpenAI 通用人工智能(AGI)的计划中,原计划 2026 年发布的 GPT7 因埃隆·马斯克的诉讼被暂停,计划 2027 年发布的 GPT8 将实现完全的 AGI。GPT3 及其升级版本 GPT3.5 是朝着 AGI 迈出的巨大一步。
2024-11-16
国内AI行业最新发展状况
以下是关于国内 AI 行业最新发展状况的介绍: OpenAI 的 o1 模型主导:OpenAI 最新推出的 o1 模型正在重新定义 AI 在数学、科学和推理方面的极限,使竞争对手困惑甚至“破产”。 中国的 AI 崛起:无视制裁,中国的模型凭借坚韧和战略智慧正在“屠榜”,证明他们仍在牌桌之上。 生成式 AI 的数十亿繁荣:AI 初创公司正赚得盆满钵满,但可持续性难以捉摸。 AI 产业链中的机会分析: 1. 基础设施层:布局投入确定性强,但资金投入量大,入行资源门槛高,未来更多由“国家队”负责,普通人可考虑“合作生态”切入机会。 2. 技术层:技术迭代迅速,小规模团队或个人须慎重考虑技术迭代风险,基础通用大模型非巨无霸公司不建议考虑,竞争激烈,最终赢家通吃。 3. 应用层:是广阔蓝海,当前成熟应用产品不多,“杀手级”应用凤毛麟角,普通个体和小团队推荐重点布局,发展空间巨大。 AI 产品发展的未来展望: 1. 更深度的行业整合:AI 技术将与各行各业更紧密结合。 2. 用户体验的持续优化:易用性和稳定性将进一步提升。 3. 新兴应用场景的出现:可能在智能家居、自动驾驶等领域找到新突破口。 相关报告及解读链接: (报告 212 页)
2024-11-14
最新的文生视频/图生视频能力是什么
以下是关于最新的文生视频/图生视频能力的介绍: PIKA1.0 启用了全新的模型,文生视频质量大幅提升,例如输入“Cinematic,happy laughing girl in office,Pixar style”的 Prompt 能瞬间生成匹配皮克斯水平的镜头,且稳定性和神情表现出色,爆杀市面上所有的 AI 视频。在文生图方面,新模型也极其稳定。同时,图生视频效果很棒,人的一致性逆天,语义理解强,动作幅度大。此外,还有一些小技巧,如在右下角第三个设置里,负面提示(Negative prompt)可以常驻“blurry,out of focus,twisted,deformed”,提示词相关性别设 5 15 之间效果较好。 这半年来,除传统的文生视频、图生视频能力迭代外,主要技术发展还围绕着通过转绘改变画风、视频内人物识别和替换方向。在服务头部创作者方面,未来产品会强化编辑器能力和视频细节可控性,并智能化后期制作任务。影视后期方向,可将动捕演员表演转化为虚拟角色提高特效制作效率。专业领域,创作者能通过草图分镜验证效果。在 C 端大众消费侧,AI 视频有望在小说、网文阅读、短情景剧等内容消费方向发挥潜力,人物识别和替换可衍生电商平台虚拟试衣间能力。Viggle、DomoAI 的产品中的模板套用能力若低成本开放在短视频产品中,可能带来新的爆发周期。 Stable Video Diffusion 1.1 新模型以及 stablevideo.com 开始内测,清晰度、控制方式和效果都有很大提升,目前提供文生视频、图生视频两种方式,文生视频先生成 4 张图像选一张用于生成视频,图生视频提供几种控制方式(仅开放了一部分),另外目前提供 17 种风格。
2024-11-10
ChatGPT最新的版本是什么
目前 ChatGPT 官网主要有以下版本: 1. GPT3.5:免费版本,拥有 GPT 账号即可使用,但智能程度相对较低,无法使用 DALL.E3(AI 画图功能)、GPTs 商店和高级数据分析等插件,知识更新到 2022 年 1 月。 2. GPT4:智能程度较高,知识更新到 2023 年 12 月。想要使用更多功能需要升级到 PLUS 套餐,收费标准为 20 美金一个月,还有团队版和企业版,费用更贵,一般推荐使用 PLUS 套餐。 3. ChatGPT 4o:5.13 发布,可免费体验,但免费体验次数有限,知识更新到 2023 年 10 月。想要更多功能也需要升级到 PLUS 套餐。
2024-11-09
最新AI搜索相关产品总结
以下是关于最新 AI 搜索相关产品的总结: 自今年二月份以来,AI 搜索赛道不断有新的产品出现,市场定位有所差异。 在国内,有大模型厂商推出的 ChatBot 产品,如智谱清言、Kimi Chat、百小应、海螺 AI 等;也有搜索厂商或创业团队推出的 AI 搜索产品,如 360 AI 搜索、秘塔、博查 AI、Miku 等。 在海外,有很多成熟的和新出的泛 AI 搜索产品,如 Perplexity、You、Phind 等。中国公司和团队也有面向全球市场的出海产品,如 ThinkAny、GenSpark、Devv 等。 ThinkAny 选择出海做全球市场,主要考虑国内竞争激烈、用户付费意愿不高、存在政策风险等因素。 从解决的需求或面向的群体分类,可分为通用搜索和垂直搜索两类。通用搜索如 Perplexity、ThinkAny,没有明显的受众倾向,任何人可以搜任何问题,都能得到相对不错的搜索结果。垂直搜索如 Phind、Devv、Reportify,一般面向特定人群或特定领域,在某类问题的搜索上会有更好的结果。 AI 搜索目前主要有两类产品形态: 1. 大模型厂商或第三方推出的 ChatBot,主要交互是一个对话框+RAG 联网检索,这类产品包括 ChatGPT、Kimi Chat 等。 2. 专门做 AI 搜索的产品,主要交互是一个搜索框+搜索详情页,这类产品包括 Perplexity、秘塔等。 以下是一些推荐的 AI 搜索引擎: 1. 秘塔 AI 搜索:由秘塔科技开发,提供多模式搜索、无广告干扰、结构化展示和信息聚合等功能,旨在提升用户的搜索效率和体验。 2. Perplexity:一款聊天机器人式的搜索引擎,允许用户用自然语言提问,使用生成式 AI 技术从各种来源收集信息并给出答案。 3. 360AI 搜索:360 公司推出的 AI 搜索引擎,通过 AI 分析问题,生成清晰、有理的答案,并支持增强模式和智能排序。 4. 天工 AI 搜索:昆仑万维推出的搜索引擎,采用生成式搜索技术,支持自然语言交互和深度追问,未来还将支持图像、语音等多模态搜索。 5. Flowith:一款创新的 AI 交互式搜索和对话工具,基于节点式交互方式,支持多种 AI 模型和图像生成技术,提供插件系统和社区功能。 6. Devv:面向程序员的 AI 搜索引擎,专注于提供编程、软件开发和人工智能等领域的专业建议和指导。 7. Phind:专为开发者设计的 AI 搜索引擎,利用大型语言模型提供相关的搜索结果和动态答案,特别擅长处理编程和技术问题。 这些 AI 搜索引擎通过不同的技术和功能,为用户提供更加精准、高效和个性化的搜索体验。但内容由 AI 大模型生成,请仔细甄别。
2024-11-07
目前市面上能力最强的AI模型是哪家的
目前市面上能力较强的 AI 模型来自多家公司和机构。 OpenAI 的 GPT4 是一个表现出色的大型多模态模型,在各种专业和学术基准测试中表现出与人类相当的水平。此外,OpenAI 还带来了其他优秀的模型,如 DALL·E 3 等。 Meta 开发的 Llama 3.1 是迄今为止最大版本,其在推理、数学、多语言和长上下文任务中能够与 GPT4 相抗衡,标志着首次开放模型缩小与专有前沿的差距。 谷歌 DeepMind 与纽约大学团队开发的 AlphaGeometry 在奥林匹克级几何问题基准测试中表现优异。 中国的 DeepSeek、零一万物、知谱 AI 和阿里巴巴等开发的模型在 LMSYS 排行榜上取得了优异的成绩,尤其在数学和编程方面表现出色,且在某些子任务上挑战了 SOTA。 Mistral 7B 是一个具有 73 亿参数的模型,在所有基准测试上超越了 Llama 2 13B,在许多基准测试上超越了 Llama 1 34B,在代码任务上接近 CodeLlama 7B 的性能,同时在英语任务上表现良好。 需要注意的是,AI 模型的能力评估会因不同的任务和应用场景而有所差异,且技术在不断发展和进步,新的更强的模型可能会不断涌现。
2024-11-18
目前最强 llm
目前在大型语言模型(LLM)领域,Llama2 70B 可能是最强大的开源权重模型。它由 Meta.ai 发布,包含 700 亿个参数,模型的权重、架构和相关论文均已公开,在文件系统上表现为两个文件:一个包含参数的文件,以及一段运行这些参数的代码。参数文件大小约 104GB,采用 float 16 数据类型。 此外,GPT4V 是基于最先进的 LLM 并使用大量多模态数据训练的具有视觉能力的先进模型,在理解和处理不同输入模态的任意组合方面表现出色,支持多种输入和工作模式。 需要注意的是,尽管语言模型能力令人印象深刻,但仍存在一些限制,如生成的“幻觉”问题,在需要高级推理能力的任务上存在困难,还需要更具挑战性和强大的评估来衡量其真正的理解能力。
2024-11-15
目前国内有哪些AI只能软件
目前国内的 AI 智能软件有以下几种: 1. AI 摄影参数调整助手:利用图像识别、数据分析技术,常见于摄影 APP 中,可根据场景自动调整摄影参数,市场规模达数亿美元。 2. AI 音乐情感分析平台:运用机器学习、音频处理技术,有相关音乐情感分析软件,能分析音乐的情感表达,市场规模达数亿美元。 3. AI 家居智能照明系统:基于物联网技术、机器学习,如小米智能照明系统,实现家居照明的智能化控制,市场规模达数十亿美元。 4. AI 金融风险预警平台:通过数据分析、机器学习,有金融风险预警软件,可提前预警金融风险,市场规模达数十亿美元。 5. AI 旅游路线优化平台:借助数据分析、自然语言处理,如马蜂窝路线优化功能,能根据用户需求优化旅游路线,市场规模达数亿美元。 国内免费的大模型 APP 有:Kimi 智能助手(Moonshot AI 出品,能一口气读完二十万字的小说,还会上网冲浪)、文心一言(百度出品,定位是智能伙伴,能写文案、想点子,又能陪你聊天、答疑解惑)、通义千问(由阿里云开发,能够与人交互、回答问题及协作创作)。 做 PPT 的 AI 产品有: 1. Gamma:在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式,如 GIF 和视频。网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出,用户通过输入简单的文本描述来生成专业的 PPT 设计。网址:https://www.xdesign.com/ppt/ 3. Mindshow:AI 驱动的 PPT 辅助工具,提供一系列智能设计功能,如自动布局、图像选择和文本优化等。网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用科大讯飞在语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/
2024-11-14
目前国内有哪些AI软件
目前国内的 AI 软件有: 智联招聘 APP:AI 招聘筛选工具,使用自然语言处理、机器学习技术,市场规模达数亿美元,能帮助企业快速筛选简历,提高招聘效率。 贝壳找房 APP:AI 房地产评估系统,运用数据分析、机器学习技术,市场规模达数亿美元,可准确评估房地产价值,为买卖双方提供参考。 腾讯游戏助手:AI 游戏角色生成器,借助图像生成、机器学习技术,市场规模达数亿美元,能为游戏开发者生成独特的游戏角色。 墨迹天气 APP:AI 天气预报助手,通过数据分析、机器学习技术,市场规模达数亿美元,提供精准的天气预报和气象预警。 QQ 音乐:AI 音乐分类器,采用机器学习、音频处理技术,市场规模达数亿美元,可自动分类音乐,方便用户查找和管理。 科沃斯扫地机器人:AI 家居清洁机器人调度系统,利用机器学习、物联网技术,市场规模达数十亿美元,能优化家居清洁机器人的工作安排,提高清洁效率。 东方财富 APP:AI 金融风险评估工具,基于数据分析、机器学习技术,市场规模达数十亿美元,帮助金融机构评估风险,做出更明智的决策。 马蜂窝 APP:AI 旅游景点解说系统,结合语音识别、自然语言处理技术,市场规模达数亿美元,为游客提供景点解说服务,丰富旅游体验。 与思维导图相关的 AI 工具有: GitMind:免费的跨平台 AI 思维导图软件,支持多种模式,可通过 AI 自动生成思维导图。 ProcessOn:国内思维导图+AIGC 的工具,能利用 AI 生成思维导图。 AmyMind:轻量级在线 AI 思维导图工具,无需注册登录,支持自动生成节点。 Xmind Copilot:Xmind 推出的基于 GPT 的 AI 思维导图助手,可一键拓展思路,生成文章大纲。 TreeMind:“AI 人工智能”思维导图工具,能输入需求由 AI 自动完成思维导图生成。 EdrawMind:提供一系列 AI 工具,包括 AI 驱动的头脑风暴功能,帮助提升生产力。
2024-11-14
目前国外主流的图像类AICG应用有哪些
目前国外主流的图像类 AICG 应用包括 DALL·E2、StableDiffusion 等。DALL·E2 能够根据输入的文本描述生成逼真且富有创意的图像;StableDiffusion 则以其强大的生成能力和广泛的自定义选项受到众多用户的青睐。
2024-11-13
目前国外主流的十大图像类AICG应用有哪些
目前关于国外主流的十大图像类 AICG 应用,暂时没有确切和权威的统一排名。不同的评估标准和应用场景可能会导致结果有所差异。一些常见且受到广泛关注的图像类 AICG 应用包括 DALL·E2、StableDiffusion、Midjourney 等,但要确切指出十大应用会因各种因素而难以确定。
2024-11-13
撰写内容概要:以ai换脸诈骗和声音合成诈骗为蓝本查阅网站、文献期刊等专家在相关方面的研究进展及其成果,并进行汇总评述。(1)表述收集资料的来源情况、收集资料的数量情况;(2)将所收集的资料进行分类,按照几个分类方面逐一进行表述,表述涵盖专家的观点、结论、思路、方案等;(3)小组综合性的对所收集到的资料进行评述,描述当前的进展情况、优劣点、未来发展等。)
以下是根据您提供的资料进行的汇总评述: 一、收集资料的情况 1. 来源情况:资料来源于陶力文律师的相关论述、关于 AI 音乐的论文、质朴发言的研究报告等。 2. 数量情况:共收集到 3 份相关资料。 二、资料分类及专家观点 1. 关于律师如何写好提示词用好 AI 观点:强调结构化内容组织、规定概述内容解读结语结构、案例和挑战结合、结合法规和实际操作、使用商业术语等。 结论:通过多种方式提升文章的专业性和针对性。 思路:从标题、文章结构等方面进行规划。 方案:按照特定的结构和要求进行写作。 2. 基于频谱图的音乐录音中自动调谐人声检测 观点:聚焦音乐中人声音高的自动调音检测,提出数据驱动的检测方法。 结论:所提方法在检测上表现出较高的精确度和准确率。 思路:包括音频预处理、特征提取和分类等步骤。 方案:创建新数据集,进行全面评估。 3. 文生图/文生视频技术发展路径与应用场景 观点:从横向和纵向梳理文生图技术发展脉络,分析主流路径和模型核心原理。 结论:揭示技术的优势、局限性和未来发展方向。 思路:探讨技术在实际应用中的潜力和挑战。 方案:预测未来发展趋势,提供全面深入的视角。 三、综合性评述 当前在这些领域的研究取得了一定的进展,如在音乐自动调音检测方面提出了新的方法和数据集,在文生图/文生视频技术方面梳理了发展路径和应用场景。 优点在于研究具有创新性和实用性,为相关领域的发展提供了有价值的参考。但也存在一些不足,如音乐检测研究中缺乏专业自动调音样本,部分技术在实际应用中可能面临一些挑战。 未来发展方面,有望在数据样本的丰富性、技术的优化和多模态整合等方面取得进一步突破,拓展更多的应用场景。
2024-11-15
你觉得ai+健康 会如何发展 ,优势和挑战分别是什么
AI 在健康领域的发展具有巨大潜力,同时也面临着一些优势和挑战。 优势方面: 有助于推进医疗保健中负责任地使用 AI,促进开发价格合理且能拯救生命的药物。 能够为教育者提供支持,例如在学校中提供个性化辅导,从而变革教育模式。 挑战方面: 存在工作场所监视、偏见和岗位替代等风险,可能影响劳动者权益。 可能会出现对劳动者补偿不足、不公平评估工作申请以及妨碍劳动者组织的情况。 对于医疗保健中 AI 应用的安全性需要建立相应的程序来接收和处理相关报告,并采取补救措施。 总之,AI 在健康领域的发展前景广阔,但需要妥善应对潜在的挑战,以实现其最大的价值和效益。
2024-11-14
2023年大模型发展有什么重要技术
2023 年大模型发展的重要技术包括以下方面: 模型发布:百川智能发布 Baichuan2—Turbo,字节云雀大模型等。 涉及领域:涵盖通用、医疗、汽车、教育、金融、工业、文化/零售/交通等多个行业。 关键进展:从 22 年 11 月 ChatGPT 的惊艳面世,到 23 年 3 月 GPT4 作为“与 AGI(通用人工智能)的第一次接触”,再到 23 年末多模态大模型的全面爆发。 多模态大模型的应用: 优点:适应性极好,方便适应各种奇葩需求;对算法要求降低,大部分功能由大模型提供,特别是非结构化信息处理;API 访问方式简化了边缘设备要求,方便在多种设备适配。 缺点:推理时长是最大障碍,传统目标检测或人脸识别优化后能达到 100 300ms,而大模型动则需要 10 秒的延时,限制了许多场景;模型的幻象和错误率较高,在多链路复杂应用中迅速变得不可行;在大多数生产模式下,仍需使用云服务数据中心,存在隐私问题;商业私有化部署是刚需,当下开源模型与 GPT4 有代差。
2024-11-14
AI 图像识别的发展历程
AI 图像识别的发展历程如下: 早期处理印刷体图片的方法是将图片变成黑白、调整为固定尺寸,与数据库对比得出结论,但这种方法存在多种字体、拍摄角度等例外情况,且本质上是通过不断添加规则来解决问题,不可行。 神经网络专门处理未知规则的情况,如手写体识别。其发展得益于生物学研究的支持,并在数学上提供了方向。 CNN(卷积神经网络)的结构基于大脑中两类细胞的级联模型,在计算上更高效、快速,在自然语言处理和图像识别等应用中表现出色。 ImageNet 数据集变得越来越有名,为年度 DL 竞赛提供了基准,在短短七年内使获胜算法对图像中物体分类的准确率从 72%提高到 98%,超过人类平均能力,引领了 DL 革命,并开创了新数据集的先例。 2012 年以来,在 Deep Learning 理论和数据集的支持下,深度神经网络算法大爆发,如卷积神经网络(CNN)、递归神经网络(RNN)和长短期记忆网络(LSTM)等,每种都有不同特性。例如,递归神经网络是较高层神经元直接连接到较低层神经元;福岛邦彦创建的人工神经网络模型基于人脑中视觉的运作方式,架构基于初级视觉皮层中的简单细胞和复杂细胞,简单细胞检测局部特征,复杂细胞汇总信息。
2024-11-14