Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

目前国外主流的图像类AICG应用有哪些

Answer

目前国外主流的图像类 AICG 应用包括 DALL·E2、StableDiffusion 等。DALL·E2 能够根据输入的文本描述生成逼真且富有创意的图像;StableDiffusion 则以其强大的生成能力和广泛的自定义选项受到众多用户的青睐。

Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
我需要了解最新的Aicg资讯
以下是关于 AIGC 最新资讯的一些内容: AIGC 应用可能引发内生风险、数据隐私问题和知识产权风险。内生风险包括算法的不可解释性和不可问责性,以及代码开源可能带来的安全和伦理担忧。数据隐私方面,AIGC 工具可能导致数据泄露、匿名化不足、未经授权的数据共享等问题。应用风险涉及作品侵权、不当竞争等问题。相关法律和规定对 AIGC 的透明性、数据收集和处理、知识产权归属等提出了要求。然而,著作权归属、数据隐私等问题尚需更多法律明确规定。此外,AIGC 的滥用可能导致虚假信息传播、侵犯隐私等问题,因此需要进一步加强监管和伦理约束。 2024 年 9 月第三周最大的新闻是 OpenAI o1 模型,不过热度下降很快,模型能力和普通人的需求脱节了,大部分人没有用这类的模型的需求,也没办法提出好问题来测试。 AIGC 还有超出了文本、视频、图像、语音生成和数据增强的应用范围。例如,它可以用于音乐生成、游戏开发、医疗保健等等。在医疗保健方面,生成性人工智能可以帮助生成合成医疗数据,以训练机器学习模型,开发新的候选药物,并设计临床试验。这些只是生成性人工智能众多可能性中的一些例子,随着技术的发展,AIGC 或将与更多的终端产品结合。
2025-01-10
我的论文aicg率太高了,我如何降低aigc率
以下是一些常用的 AIGC 论文检测网站和工具,以及它们的功能和使用方法,可帮助您降低论文的 AIGC 率: 1. Turnitin: 功能:是广泛使用的学术剽窃检测工具,最近增加了检测 AI 生成内容的功能。 使用方法:用户上传论文,系统自动分析文本并提供详细报告,标示出可能由 AI 生成的部分。 2. Copyscape: 功能:主要用于检测网络上的剽窃行为,虽不是专门的 AIGC 检测工具,但能发现可能被 AI 生成的重复内容。 使用方法:输入文本或上传文档,系统扫描网络以查找相似或重复内容。 3. Grammarly: 功能:提供语法检查和剽窃检测功能,剽窃检测部分可帮助识别可能由 AI 生成的非原创内容。 使用方法:将文本粘贴到 Grammarly 的编辑器中,选择剽窃检测功能,系统提供分析报告。 4. Unicheck: 功能:基于云的剽窃检测工具,适用于教育机构和学术研究,可检测 AI 生成内容的迹象。 使用方法:上传文档或输入文本,系统分析并生成报告,显示潜在的剽窃和 AI 生成内容。 5. : 功能:专门设计用于检测 AI 生成内容,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。 使用方法:上传文档或输入文本,系统提供详细报告,包括可能的 AI 生成内容。
2024-12-20
AGI、AI、AICG、AIGC,都有什么区别?
AGI(通用人工智能)是一种让机器具备像人类一样广泛的智能能力的目标。 AI(人工智能)是让机器展现智慧的一种目标。 GenAI(生成式人工智能)是让机器产生复杂有结构内容的一种目标。 AIGC(人工智能生成内容)是利用人工智能技术生成包括文本、图像、音频和视频等各种类型内容的新型生产方式。 AIGC、UGC(用户生成内容)和 PGC(专业生成内容)都是内容生成的不同方式,主要区别在于内容的创作者和生成方式。AIGC由人工智能生成,可快速大规模生成内容;UGC由用户生成,内容丰富多样反映用户真实想法和创意;PGC由专业人士或机构生成,内容质量高专业性强。 在应用方面,AIGC 技术可用于自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等。ChatGPT 是 AIGC 技术在文本生成领域的一个应用实例。
2024-12-08
目前国外主流的十大图像类AICG应用有哪些
目前关于国外主流的十大图像类 AICG 应用,暂时没有确切和权威的统一排名。不同的评估标准和应用场景可能会导致结果有所差异。一些常见且受到广泛关注的图像类 AICG 应用包括 DALL·E2、StableDiffusion、Midjourney 等,但要确切指出十大应用会因各种因素而难以确定。
2024-11-13
目前国外主流的图像类AICG应用有哪些
目前国外主流的图像类 AICG 应用包括 DALL·E2、StableDiffusion 等。DALL·E2 能够根据输入的文本描述生成逼真的图像;StableDiffusion 则具有强大的图像生成能力和丰富的自定义选项。
2024-11-13
学习AICG的步骤
学习 AICG(AI 与计算机图形学)通常可以遵循以下步骤: 1. 基础知识储备:了解计算机图形学的基本概念,如几何建模、渲染、动画等,同时掌握一定的数学基础,包括线性代数、微积分等。 2. 学习编程语言:例如 Python,它在 AICG 领域应用广泛。 3. 熟悉相关框架和库:如 TensorFlow、PyTorch 等深度学习框架,以及 OpenCV 等计算机视觉库。 4. 掌握机器学习和深度学习知识:包括神经网络、监督学习、无监督学习等。 5. 研究 AICG 应用案例:通过实际案例了解 AICG 在图像生成、风格迁移、虚拟角色创建等方面的应用。 6. 实践项目:自己动手实现一些 AICG 项目,加深对知识的理解和应用能力。 7. 持续学习和跟进最新技术:关注领域内的最新研究成果和技术发展趋势。
2024-11-12
图像转线稿
以下是关于图像转线稿的相关内容: 在图像转线稿方面,有以下几种方法和流程: 1. 基于真实线稿的背景风格重绘: 可以将图像用蓝色的线连接到 cn 应用。 对于 cn 模型,可以采用深度学习的模型(个人感觉效果更佳),也可以采用“adapterxllineartfp16.safetensors”线稿模型。 对应的生成图片即可。 2. 星流一站式 AI 设计工具中的相关功能: 使用图像控制功能,如空间关系、线稿、人物长相、姿势等,来精准控制生成图像的内容和风格。 入门模式下有多种参考功能,如原图、景深、线稿轮廓、姿势、Lineart 线稿、Scribble 线稿、光影、Segmant 构图分割、SoftEdge 线稿、配色参考、配色打乱、法线贴图、MLSD 线稿等。每种参考功能都有其特定的作用,例如将参考图像转化为深度图以控制人物与背景的纵深关系,将参考图像转化为线稿以控制后续图像生成的轮廓等。 3. 基于 ipadapter 最新工作流“ipadapter_advanced.json”的方法: 工作流中 controlnet 模型(简称“cn”)用来控制 ipadapter 生成的图片。 基于深度学习的重绘,例如将一张黑白素材图片和一张彩色风格图片进行风格迁移完成转绘。 具体步骤包括创建节点加载图片、读取所需风格的图片作为参考图、将图像用蓝色的线连接到 cn 应用(通过 cn 的深度学习模型,如 SDxl 版本)、对要生成的图片进行填写提示词等。 相关资源:作者为 b 站 up 坏心眼猫特效,工作流和模型可参考:
2025-02-15
图像翻译
图像翻译具有以下特点和功能: 多语言支持:涵盖 18 种语言,包括中文、英文、法语、日语、韩语和西班牙语等。 保护图像主体:可选择不翻译品牌名称或重要信息,避免影响关键内容。 高分辨率处理:支持高达 4000×4000 像素的图像,确保翻译后画质清晰。 原始排版恢复:保留原字体、大小及对齐方式,确保设计一致性。 多行文本合并:将多行文本合并为段落翻译,避免逐行翻译造成误解。 清除文本痕迹:翻译后干净移除原文本,并恢复图像空白区域。 此外,以下是一些与图像翻译相关的信息: MangaimageTranslator 能够一键翻译图片文字,具备高效 OCR 和 AI 翻译技术,支持多语言,还能对去文字区域修复上色,重新渲染文本。相关链接:https://github.com/zyddnys/mangaimagetranslator 、https://touhou.ai/imgtrans/ 、https://x.com/imxiaohu/status/1770700877172736238?s=20 。
2025-02-12
一、学习内容 1. AI工具的操作:了解并掌握至少一种AI工具的基本操作,如智能代码、流程管理、智能报表、数据分析、图像识别、文字生成等。 2. AI工具在本职工作的应用:思考并提出AI工具如何帮助你更高效地完成本职工作,包括但不限于提高工作效率、优化工作流程、节约成本、提升交付质量等。 3. AI工具在非本职工作的潜力推演:探索AI工具如何在你的非本职工作领域发挥作用,比如在公司管理、团队领导、跨部门合作、团队发展以及市场研究等方面。提出这些工具如何被有效利用,以及它们可能带来的改
以下是关于学习 AI 的相关内容: 一、AI 工具的操作 要了解并掌握至少一种 AI 工具的基本操作,如智能代码、流程管理、智能报表、数据分析、图像识别、文字生成等。 二、AI 工具在本职工作的应用 思考并提出 AI 工具如何帮助更高效地完成本职工作,包括但不限于提高工作效率、优化工作流程、节约成本、提升交付质量等。 三、AI 工具在非本职工作的潜力推演 探索 AI 工具在非本职工作领域,如公司管理、团队领导、跨部门合作、团队发展以及市场研究等方面的作用,思考如何有效利用这些工具以及它们可能带来的改变。 四、学习路径 1. 对于不会代码的学习者: 20 分钟上手 Python+AI,在 AI 的帮助下可以完成很多基础的编程工作。若想深入,需体系化了解编程及 AI,至少熟悉 Python 基础,包括基本语法(如变量命名、缩进等)、数据类型(如字符串、整数、浮点数、列表、元组、字典等)、控制流(如条件语句、循环语句)、函数(定义和调用函数、参数和返回值、作用域和命名空间)、模块和包(导入模块、使用包)、面向对象编程(类和对象、属性和方法、继承和多态)、异常处理(理解异常、异常处理)、文件操作(文件读写、文件与路径操作)。 2. 新手学习 AI: 了解 AI 基本概念,建议阅读「」部分,熟悉术语和基础概念,浏览入门文章。 开始 AI 学习之旅,在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,也可通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获证书。 选择感兴趣的模块深入学习,掌握提示词技巧。 实践和尝试,理论学习后通过实践巩固知识,在知识库分享实践作品和文章。 体验 AI 产品,如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人,了解其工作原理和交互方式。 五、工具推荐 1. Kimi 智能助手:ChatGPT 的国产平替,上手体验好,适合新手入门学习和体验 AI。不用科学网、不用付费、支持实时联网,是国内最早支持 20 万字无损上下文的 AI,对长文理解做得好,能一次搜索几十个数据来源,无广告,能定向指定搜索源(如小红书、学术搜索)。 PC 端: 移动端(Android/ios): 2. 飞书:汇集各类 AI 优质知识库、AI 工具使用实践的效率工具,助力人人成为效率高手。
2025-02-07
试过了些代码,还是缺失一些生成图像的工具。
如果您在生成图像方面缺少工具,以下为您提供一些相关信息: 对于风格调音器:生成一个代码后,您可以使用 Parameter 添加到提示中。了解有关参数的更多信息可参考:https://docs.midjourney.com/parameterlist 。复制您的提示和参数,在页面底部找到您的自定义代码,单击 Copy 按钮复制原始提示和新生成的 style<code>参数。您可以与朋友分享您的 Style Tuner 页面并生成新代码,而无需使用任何额外的 GPU 分钟。返回不和谐,使用该 /imagine 命令并将复制的提示和 style<code>参数粘贴到 prompt 字段中,即可生成您的图像。您还可以使用其他 Midjourney 工具(例如 Upscale、Pan、ZoomOut、Remix 或 VaryRegion)进一步增强图像。 对于 Wojak memecoze 复刻版本:先写一个阴阳怪气的 prompt,原作里面就是把用户输入的职业、人物或者概念去尽量解构,用讽刺风趣的 meme 来解读。生成图片时没有用图像流里面的工具,而是用工作流,调用插件来实现。例如用 ByteArtist 插件里面的 ImageToolPro 工具,将 model_type 选 2,就可以根据用户图片风格进行生成。输入一个参考丑图,比如从 glif 官网别人的作品里面选一个 10241024 的老大爷,将其 url 输入给 image_url。 对于 ComfyUI BrushNet:通俗易懂地说,这个过程有点像小时候玩的连点成图游戏。掩码就像是一张有洞的纸覆盖在图片上,电脑程序通过这些洞了解哪些部分需要修复。编码器是电脑的大脑,它把需要修复的图片转换成电脑能理解和处理的信息。噪声潜在空间为了让修复的部分不那么单调,程序会加入一些随机性,这样修复出来的图片看起来更自然。BrushNet 和冻结的 UNet(Frozen UNet,值预训练好的固定不变的)是处理图片的工具,就像画家的画笔和调色板,帮助电脑细致地完成修复工作。程序会尝试去除不需要的噪声,并最终创建出看起来很真实的图片部分。最后,程序会用一种特殊的技巧,将新生成的图片和原始图片融合在一起。
2025-02-06
AI智能图像生成软件
以下是为您介绍的 AI 智能图像生成软件: 1. Imagen 3: 功能点: 根据用户输入的 Prompt 生成图像。 能自动拆解用户输入的 Prompt,并提供下拉框选项。 提供自动联想功能,帮助用户选择更合适的词汇。 优势: 无需排队,用户可直接使用。 免费使用。 交互人性化,如自动联想和下拉框选项。 具有较好的语义理解能力,能生成符合描述的图像。 灵活性强,用户可根据自动联想调整 Prompt 生成不同图像。 2. 好用的图生图产品: Artguru AI Art Generator:在线平台,生成逼真图像,给设计师提供灵感,丰富创作过程。 Retrato:AI 工具,将图片转换为非凡肖像,拥有 500 多种风格选择,适合制作个性头像。 Stable Diffusion Reimagine:新型 AI 工具,通过稳定扩散算法生成精细、具有细节的全新视觉作品。 Barbie Selfie Generator:专为喜欢梦幻童话风格的人设计,将上传的照片转换为芭比风格,效果好。 3. 藏师傅教您用 AI 三步制作任意公司的周边图片: 流程: 获取 Logo 图片的描述。 根据 Logo 图片的描述和生成意图生成图片提示词。 将图片和提示词输入 Comfyui 工作生成。
2025-01-23
ai图像生成软件
以下是一些 AI 图像生成软件: 1. 根据视频脚本生成短视频的工具: ChatGPT + 剪映:ChatGPT 生成视频小说脚本,剪映根据脚本自动分析并生成素材和文本框架,实现从文字到画面的快速转化。 PixVerse AI:在线 AI 视频生成工具,支持多模态输入转化为视频。 Pictory:AI 视频生成器,用户提供文本描述即可生成相应视频内容。 VEED.IO:提供 AI 图像和脚本生成器,帮助从图像制作视频并规划内容。 Runway:AI 视频创作工具,能将文本转化为风格化视频内容。 艺映 AI:专注人工智能视频,提供文生视频、图生视频、视频转漫等服务。 2. AI 绘图 Imagen3: 功能点: 图像生成:根据用户输入的 Prompt 生成图像。 Prompt 智能拆解:自动拆解 Prompt,并提供下拉框选项。 自动联想:帮助用户选择更合适的词汇。 优势: 无需排队,可直接使用。 免费使用。 交互人性化,有自动联想和下拉框选项。 语义理解能力较好,能生成符合描述的图像。 灵活性强,用户可根据自动联想调整 Prompt 生成不同图像。 这些工具各有特点,适用于不同的应用场景和需求,能够帮助内容创作者、教育工作者、企业和个人快速生成吸引人的视频内容。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-01-23
有哪些主流的大模型?介绍一下每个大模型的具体信息,用英文回答
Some of the mainstream large models and their specific information are as follows: BERT: It is an encoderonly model commonly used in natural language understanding tasks such as classification and sentiment analysis. T5: An encoderdecoder model from Google, used for tasks like translation and summarization. GPT3: It has a large number of parameters and can complete tasks based on user input descriptions or examples. ChatGPT: Users can complete tasks by having conversations with it like with a human. The "large" in large models refers to the large amount of pretraining data, often from the Internet, including papers, code, and public web pages, usually at the terabyte level. Also, they have a large number of parameters. For example, GPT3 has 170 billion parameters.
2025-02-13
有哪些主流的大模型?用英文回答
The mainstream large models include: OpenAI: GPT3.5 and GPT4. GPT3.5 initiated the current AI boom in November, and GPT4 was first released in spring with more powerful functions. A new variant uses plugins to connect to the internet and other applications. Microsoft's Bing uses a mixture of GPT4 and GPT3.5 and is often the first to introduce new features in the GPT4 family. Google: Bard, driven by various base models, recently a model named PaLM 2. Anthropic: Claude 2, which is notable for having a very large context window.
2025-02-13
有哪些主流的大模型?
目前主流的大模型主要包括以下几类: 1. 大型语言模型:专注于处理和生成文本信息,例如 GPT3 等。通过分析大量的文本数据来理解和生成自然语言,拥有海量的参数和训练数据。 2. 大型多模态模型:能够处理包括文本、图片、音频等多种类型的信息。 3. 基于 Transformer 架构的模型: Encoderonly 模型:通常适用于自然语言理解任务,例如分类和情感分析,最知名的代表模型是 BERT。 Encoderdecoder 模型:同时结合了 Transformer 架构的 encoder 和 decoder 来理解和生成内容,例如翻译和摘要,代表是 Google 的 T5。 Decoderonly 模型:更擅长自然语言生成任务,典型使用包括故事写作和博客生成,如 ChatGPT 等。 大模型的特点包括: 1. 预训练数据量大,往往来自于互联网上的论文、代码、公开网页等,一般用 TB 级别的数据进行预训练。 2. 参数众多,如 GPT3 拥有 1750 亿参数。
2025-02-13
开发agent有哪些主流的方案,并从功能性,开发难易程度,适用场景进行对比
以下是一些主流的 Agent 开发方案,并从功能性、开发难易程度、适用场景进行对比: 1. Coze: 功能性:集成丰富插件工具,拓展 Bot 能力边界。 开发难易程度:相对较易。 适用场景:适用于构建基于 AI 模型的各类问答 Bot。 2. Microsoft 的 Copilot Studio: 功能性:外挂数据、定义流程、调用 API 和操作,部署到各种渠道。 开发难易程度:适中。 适用场景:适用于多种场景。 3. 文心智能体: 功能性:基于文心大模型,支持开发者打造产品能力。 开发难易程度:适中。 适用场景:多种场景。 4. MindOS 的 Agent 平台: 功能性:允许用户定义 Agent 的个性、动机、知识,访问第三方数据和服务或执行工作流。 开发难易程度:适中。 适用场景:多种场景。 5. 斑头雁: 功能性:基于企业知识库构建专属 AI Agent,提供多种成熟模板,功能强大且开箱即用。 开发难易程度:相对较易。 适用场景:客服、营销、销售等。 6. 钉钉 AI 超级助理: 功能性:依托钉钉优势,提供环境感知和记忆功能,在高频工作场景表现出色。 开发难易程度:适中。 适用场景:销售、客服、行程安排等。 Copilot 和 Agent 的区别: 1. 核心功能: Copilot:辅助驾驶员,更多依赖人类指导和提示,功能局限于给定框架。 Agent:主驾驶,具有更高自主性和决策能力,能自主规划和调整处理流程。 2. 流程决策: Copilot:依赖人类确定的静态流程,参与局部环节。 Agent:自主确定动态流程,能自行规划和调整任务步骤。 3. 应用范围: Copilot:主要处理简单、特定任务,作为工具或助手。 Agent:能处理复杂、大型任务,在 LLM 薄弱阶段使用工具或 API 增强。 4. 开发重点: Copilot:依赖 LLM 性能,重点在于 Prompt Engineering。 Agent:依赖 LLM 性能,重点在于 Flow Engineering,把外围流程和框架系统化。 搭建工作流驱动的 Agent 简单情况分为 3 个步骤: 1. 规划: 制定任务关键方法。 总结任务目标与执行形式。 分解任务为子任务,确立逻辑顺序和依赖关系。 设计子任务执行方法。 2. 实施: 在 Coze 上搭建工作流框架,设定节点逻辑关系。 详细配置子任务节点,验证可用性。 3. 完善: 整体试运行 Agent,识别卡点。 反复测试和迭代,优化至达到预期水平。
2025-02-08
什么ai好用,目前主流ai有什么特点
目前主流的 AI 工具各有特点和用途: 邮件写作方面: Grammarly:提供语法检查、拼写纠正、风格建议和语气调整等功能,易于使用,支持多种平台和语言,网站是 https://www.grammarly.com/ 。 Hemingway Editor:简化句子结构,提高可读性,标记复杂句和冗长句,界面简洁,重点突出,网站是 http://www.hemingwayapp.com/ 。 ProWritingAid:全面的语法和风格检查,提供详细的写作报告和建议,功能强大,支持多种平台和集成,网站是 https://prowritingaid.com/ 。 Writesonic:基于 AI 生成各种类型的文本,包括电子邮件、博客文章、广告文案等,生成速度快,网站是 https://writesonic.com/ 。 Lavender:专注于邮件写作优化,提供个性化建议和模板,帮助提高邮件打开率和回复率。 大语言模型方面: OpenAI 系统:包括 3.5 和 4.0 版本,3.5 模型在 11 月启动了当前的 AI 热潮,4.0 模型功能更强大。新的变种使用插件连接到互联网和其他应用程序,Code Interpreter 是一个强大的 ChatGPT 版本,可以运行 Python 程序。未为 OpenAI 付费只能使用 3.5 版本。微软的 Bing 使用 4 和 3.5 的混合,通常是 GPT4 家族中首个推出新功能的模型,连接到互联网。 谷歌:一直在测试自己的人工智能 Bard,由各种基础模型驱动,最近是 PaLM 2 模型。 Anthropic:发布了 Claude 2,其有一个非常大的上下文窗口,不太可能恶意行事。 对于刚入坑 AI 的学习路径: 第一步是带着好奇心去尝试,记住“生成”两个字。现在大部分人说的 AI 本质上是“生成式人工智能”Generative AI。可以随便找一个国产 AI 聊聊,比如小学奥数题、写演讲稿、对 996 的看法等,看看其擅长和不擅长的地方,有没有能帮助到自己的地方,哪些地方做得不够好。如果条件允许,也可以直接使用 ChatGPT 或者 Claude 处理复杂任务。
2025-01-24
目前在各个应用领域,主流的AI工具有哪些,请分别介绍.
以下是一些主流的 AI 工具及其应用领域的介绍: 1. AI 菜谱口味调整工具:如“下厨房口味调整功能”,使用自然语言处理和数据分析技术,市场规模达数亿美元。它能根据用户反馈调整菜谱口味,例如增加甜度、减少辣味等。 2. AI 语言学习纠错平台:像“英语流利说纠错功能”,运用自然语言处理和机器学习,市场规模达数十亿美元。可帮助语言学习者纠正发音、语法等错误,并提供纠正建议和练习。 3. AI 电影剧情分析系统:例如“豆瓣电影剧情分析工具”,借助数据分析和自然语言处理,市场规模达数亿美元。能够分析电影剧情,为用户提供深度解读。 4. AI 办公文件分类系统:比如“腾讯文档分类功能”,采用数据分析和机器学习,市场规模达数亿美元。可自动分类办公文件,方便管理。 5. AI 美容护肤方案定制平台:“美丽修行定制方案功能”,利用图像识别和数据分析,市场规模达数亿美元。能根据用户肤质定制护肤方案,包括产品推荐和使用顺序。 6. AI 游戏道具推荐系统:在一些游戏中的“游戏内商城推荐功能”,通过数据分析和机器学习,市场规模达数亿美元。可根据玩家需求推荐游戏道具,如武器、装备等。 7. AI 天气预报分时服务:“彩云天气分时预报”,运用数据分析和机器学习,市场规模达数亿美元。提供精准的分时天气预报,帮助用户更好地安排出行和活动。 8. AI 医疗病历分析平台:“医渡云病历分析系统”,借助数据分析和自然语言处理,市场规模达数十亿美元。可分析医疗病历,为医生提供辅助诊断建议。 9. AI 会议发言总结工具:“讯飞听见会议总结功能”,使用自然语言处理和机器学习,市场规模达数亿美元。能够自动总结会议发言内容,方便回顾和整理。 10. AI 书法作品临摹辅助工具:“书法临摹软件”,利用图像识别和数据分析,市场规模达数亿美元。帮助书法爱好者进行临摹,提供临摹指导和评价。 11. 超级简历优化助手:“AI 简历优化工具”,运用自然语言处理,市场规模达数亿美元。帮助用户优化简历,提高求职成功率。 12. 酷家乐等设计软件:“AI 室内设计方案生成”,借助图像生成和机器学习,市场规模达数十亿美元。能快速生成个性化室内设计方案。 13. Amper Music:“AI 音乐创作辅助工具”,采用机器学习和音频处理,市场规模达数亿美元。协助音乐创作者进行创作,可根据用户需求生成旋律和编曲。 14. 松果倾诉智能助手:“AI 情感咨询助手”,通过自然语言处理和情感分析,市场规模达数亿美元。为用户提供情感支持和建议,通过文字或语音交流。 15. 小佩宠物智能设备:“AI 宠物健康监测设备”,利用传感器数据处理和机器学习,市场规模达数十亿美元。可实时监测宠物健康状况,提供健康预警。 16. 马蜂窝智能行程规划:“AI 旅游行程规划器”,借助数据分析和自然语言处理,市场规模达数十亿美元。能根据用户需求生成个性化旅游行程。
2025-01-20
ai在hr上有哪些应用,分成国外和国内来介绍一下
目前在 HR 领域,AI 的应用在国内外都有一定的发展。 在国外,AI 被用于人才招聘,通过分析大量的简历和求职者数据,快速筛选出符合要求的候选人;还用于员工培训,根据员工的技能水平和学习需求,定制个性化的培训计划;在绩效管理方面,利用数据分析来评估员工的工作表现,提供更客观准确的评估结果。 在国内,AI 同样在人才招聘中发挥作用,例如利用智能聊天机器人与求职者进行初步沟通,提高招聘效率;在员工福利管理上,通过数据分析为员工提供更贴合需求的福利方案;在人力资源规划方面,借助 AI 预测人力资源需求,为企业战略提供支持。 需要注意的是,AI 在 HR 领域的应用仍在不断发展和完善中。
2025-02-06
国外用户数最多的ai工具
根据所提供的内容,国外访问量最大的 AI 工具中,ChatGPT 独占 140 亿流量,占总流量的 60%。Writerbuddy AI 分析了 3000 多种 AI 工具,选出访问量最大的 50 个工具,共产生超过 240 亿次访问量,且 AI 行业每月增长 2.363 亿访问量,这 50 个工具增长率达 10.7 倍。在分析的前 50 名 AI 工具的地理行为方面,中国排名第 47 位。美国在顶级 AI 公司数量方面领先,欧洲以及澳大利亚和加拿大在 AI 投资和采用方面落后,所有欧盟国家合计产生了 39 亿流量,占总量的 16.21%。
2025-01-29
现在国内国外与cursor和windsurf自动补全代码的ai比肩的产品有哪些,而且可以免费使用
以下是一些与 Cursor 和 Windsurf 自动补全代码功能比肩的产品,且部分可以免费使用: 1. Deepseek:网址为 https://www.deepseek.com/zh ,国内能访问,网页登录方便,目前完全免费。 2. 通义灵码:在 Pytharm 中通过“文件”“设置”“插件”搜索安装(目前免费)。 3. JetBrains 自身的助手插件:在 Pytharm 中通过“文件”“设置”“插件”搜索安装(收费,目前有 7 天免费试用)。 4. Wing Python IDE Pro:https://wingware.com/ ,是一款专为 Python 编程设计的开发环境,年度许可证起价 179 美元/月。 5. Smol Developer:https://github.com/smolai/de ,是一个开源的 AI 开发助手,遵循 MIT 许可证。 6. Cody:https://about.sourcegraph ,个人使用免费。
2025-01-16
superclue 在国内的评测里面什么地位,国外对标的评测是什么
在国内的评测中,SuperCLUE 是大模型时代 CLUE 基准的发展和延续,聚焦于通用大模型的综合性测评。在 SuperCLUE 测评中,国外模型的平均成绩为 69.42 分,国内模型平均成绩为 65.95 分,差距在 4 分左右。国内外的平均水平差距在缩小,11 月差距在 10 分左右。 SuperCLUE 是中文语言理解测评基准 CLUE 的发展,发起于 2019 年,陆续推出了多种广为引用的测评基准。它根据多年的测评经验,构建了多层次、多维度的综合性测评基准。SuperCLUE 始终秉持中立、客观的第三方测评理念,采用自动化方式的客观评估,降低评测过程中的人为评估的不确定性。 国外对标的评测没有明确提及。
2025-01-07
你是国产的大模型还是国外的
目前国内外大模型的发展情况如下: 国内外差距依然明显,GPT 4 Turbo 总分 90.63 分遥遥领先,国内最好模型文心一言 4.0(API)总分 79.02 分,与 GPT 4Turbo 有 11.61 分差距,与 GPT 4(网页)有 4.9 分差距。但过去 1 年国内大模型有长足进步,综合能力超过 GPT 3.5 和 GeminiPro 的模型有 11 个,如百度的文心一言 4.0、阿里云的通义千问 2.0 等。 在 SuperCLUE 测评中,国外模型平均成绩为 69.42 分,国内模型平均成绩为 65.95 分,差距在 4 分左右,不过平均水平差距在缩小,11 月差距在 10 分左右。 国内开源模型在中文上表现好于国外开源模型,如百川智能的 Baichuan213BChat 等。 在语言与知识的测评中,GPT4 Turbo 依然领先,是唯一超过 90 分的大模型。国内大模型也表现相对较好,OPPO 的 AndesGPT、阿里云的通义千问 2.0 等较为接近 GPT4。 国内大模型在中文语言与知识能力上已基本追赶上国外头部大模型。 此外,新用户可在阿里、腾讯官网获取免费试用服务器,如腾讯云的轻量应用服务器、阿里云的服务器 ECS,服务器系统配置选择宝塔系统。免费大模型接口方面,国内有阿里的通义千问大模型、智谱 AI(ChatGLM)、科大讯飞(SparkDesk)等,均有限制一定免费额度的 Token。国外有谷歌的 Gemini 大模型、海外版 Coze 的 GPT4 模型,免费且能图片识别,但需要给服务器挂梯子,具体操作可参考相关教程。
2025-01-04
国外比较主流的大模型有哪些
国外比较主流的大模型有: 1. GPT4Turbo:OpenAI 于 2023 年 11 月 7 日发布的 GPT4 的升级版本。 2. GPT4(网页版):OpenAI GPT4 官方网页版本,支持联网功能。 3. GPT4(API):OpenAI GPT4 官方 API 版本,不支持联网功能。 4. Claude2:Anthropic 官方发布的模型。 5. Geminipro:Google 官方发布的模型。 6. GPT3.5Turbo:OpenAI 的模型。 7. Llama_2_13B_Chat:Meta 发布的模型。
2025-01-03