直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

我如何才能更快的成为AI领域的专家

回答

要更快地成为 AI 领域的专家,您可以参考以下几个方面:

  1. 学习基础:像预医学生一样,从相关的基础课程开始,例如数学、统计学、计算机科学等,为深入学习 AI 奠定坚实的基础。
  2. 实践经验:通过参与实际项目、实习或研究工作,积累实践经验,从实践中获取那些书本上没有的知识和直觉。
  3. 模型训练:采用堆叠模型的训练方式,而非单纯依赖大量数据和生成模型。例如,先训练基础学科的模型,如生物学、化学等,再添加特定领域的数据点。
  4. 开发特定领域模型:创建专门针对特定领域的 AI 模型,如医疗保健领域的专家 AI,而不是追求全能的通用 AI。
  5. 多样化方法:在编码、数据和测试方面采用多样化的方法,创建多个专家 AI 并在需要时提供不同意见。
  6. 现实世界互动:让人类专家配备可穿戴设备,收集现实世界的互动数据供 AI 学习,使 AI 接触到多样化的视角,避免偏见。

总之,成为 AI 领域的专家需要系统的学习、丰富的实践和不断的探索创新。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

为了在医疗保健中产生真正的改变,AI 需要像我们一样学习

鉴于人工智能依赖的神经网络基础,这些专家AI可能通过元学习(或学会学习)比我们预期的更快地获得知识,并带着我们人类一同进步。AI的性质让我们可以做一些我们无法对人做的事情;即将他们一部分一部分地拆解,并研究每一个小部分。通过构建系统以深入探索专家AI的内部工作机制,我们将创造一个学习的飞轮。最终,专家AI可能超越领域专家的角色,成为下一代专家——无论是人类还是AI——的教师。

为了在医疗保健中产生真正的改变,AI 需要像我们一样学习

毫无疑问,AI将不可逆转地改变我们如何预防和治疗疾病。医生将把文档工作交给AI书记员;初级医疗服务提供者将依赖聊天机器人进行分诊;几乎无穷无尽的预测蛋白结构库将极大地加速药物开发。然而,为了真正改变这些领域,我们应该投资于创建一个模型生态系统——比如说,“专家” AI——它们像我们今天最优秀的医生和药物开发者那样学习。成为某个领域顶尖人才通常以多年的密集信息输入开始,通常是通过正规的学校教育,然后是某种形式的学徒实践;数年时间都致力于从该领域最出色的实践者那里学习,大多数情况下是面对面地学习。这是一个几乎不可替代的过程:例如,医学住院医生通过聆听和观察高水平的外科医生所获取的大部分信息,是任何教科书中都没有明确写出来的。通过学校教育和经验,获得有助于在复杂情况下确定最佳答案的直觉特别具有挑战性。这一点对于人工智能和人类都是如此,但对于AI来说,这个问题因其当前的学习方式以及技术人员当前对待这个机会和挑战的方式而变得更加严重。通过研究成千上万个标记过的数据点(“正确”和“错误”的例子)——当前的先进神经网络架构能够弄清楚什么使一个选择比另一个选择更好。我们应该通过使用彼此堆叠的模型来训练AI,而不是仅仅依靠大量的数据,并期望一个生成模型解决所有问题。例如,我们首先应该训练生物学的模型,然后是化学的模型,在这些基础上添加特定于医疗保健或药物设计的数据点。预医学生的目标是成为医生,但他们的课程从化学和生物学的基础开始,而不是诊断疾病的细微差别。如果没有这些基础课程,他们未来提供高质量医疗保健的能力将受到严重限制。同样,设计新疗法的科学家需要经历数年的化学和生物学学习,然后是博士研究,再然后是在经验丰富的药物设计师的指导下工作。这种学习方式可以帮助培养如何处理涉及细微差别的决策的直觉,特别是在分子层面,这些差别真的很重要。例如,雌激素和睾酮只有细微的差别,但它们对人类健康的影响截然不同。

为了在医疗保健中产生真正的改变,AI 需要像我们一样学习

开发这些具有潜在空间层次结构的堆叠AI模型——复杂数据的简化地图,以帮助AI模型理解模式和关系——将反映对每个基本元素的理解或预测能力。我相信,这最初可能会平行于人类教育和教育范例,但随着时间的推移,它可能会专门发展,以在AI学习中培养新型的专业知识。这些堆叠模型可能会以与人脑皮层类似的方式发展。但是,与人类拥有视觉皮层和运动皮层不同,AI可能会拥有生物皮层和药物设计皮层——在这两种情况下,都是针对特定任务专门设计的神经架构。具有讽刺意味的是,创建专门从事诸如医疗保健这样的特定领域的AI可能比创建更接近HAL 9000的东西——具有跨领域的典型人类水平知识——更容易。实际上,我们更需要特定领域的专家AI,而不是一个能做任何普通人能做的事情的全能AI。我预计不仅会创造一个专家AI,而且会创造许多专家AI,它们在编码、数据和测试方面采用多样化的方法,以便在需要时这些模型可以提供第二个(或第三个、第四个)意见。同时,我们必须将AI从其在线基础上摘下,并将其投入到原子的世界中。我们应该让我们最熟练的人类专家配备可穿戴设备,以收集微妙的、现实世界的互动,供AI学习,就像我们即将崭露头角的学术和行业明星一样。解决健康和医学领域最复杂和不确定的问题在位元的世界中根本不存在。必须让这些专家AI接触到顶级从业人员的多样化视角,以避免复制危险的偏见。但AI的黑盒性远不如大众想象中的那么强;我们今天依赖的人类决策,正如我以前[指出的](https://www.nytimes.com/2018/01/25/opinion/artificial-intelligence-black-box.html),可以说更加不透明。我们不能因为对传播人类偏见的恐惧而限制我们探索AI如何帮助我们民主化我们的人类专家知识的意愿,而这些专家是不幸地无法扩展的。

其他人在问
ai训练
AI 的训练是指通过大数据训练出一个复杂的神经网络模型。这一过程需要使用大量标记过的数据来训练相应的系统,使其能够适应特定的功能。训练具有以下特点: 1. 需要较高的计算性能,以处理海量的数据。 2. 具有一定的通用性,以便完成各种各样的学习任务。 机器学习是人工智能的一个分支,其发展有着从以“推理”为重点,到以“知识”为重点,再到以“学习”为重点的脉络。机器学习是实现人工智能的途径之一,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。 自然语言(NLP)是人工智能和语言学领域的分支学科,包括认知、理解、生成等部分。自然语言的认知和理解是让电脑把输入的语言变成有意义的符号和关系,然后根据目的再处理,自然语言生成系统则是把计算机数据转化为自然语言。 推理是指利用训练好的模型,使用新数据推理出各种结论。借助神经网络模型进行运算,利用输入的新数据来一次性获得正确结论的过程,也称为预测或推断。
2024-12-22
小白如何学习AI
对于小白学习 AI,以下是一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多大家实践后的作品、文章分享,欢迎实践后分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 6. 持续学习和跟进: AI 是快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 以下是一些通俗易懂的技术原理与框架内容: 1. 视频一主要回答了什么是 AI 大模型,原理是什么。 生成式 AI 生成的内容,叫做 AIGC。 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习。监督学习是有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。无监督学习是学习的数据没有标签,算法自主发现规律,经典任务包括聚类。强化学习是从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元(因有很多层所以叫深度)的方法。神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型。对于生成式 AI,其中生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。GPT 含义:Transformer 是关键。Transformer 比 RNN 更适合处理文本的长距离依赖性。
2024-12-22
准备在小红书开通账号有什么AI工具可以帮助我运营么
以下是一些可以帮助您运营小红书账号的 AI 工具: 1. 小红书文案专家: 功能价值:见过多个爆款文案,只需输入网页或视频链接,就能生成对应的小红书文案,辅助创作者生成可一键复制发布的初稿,提供创意和内容,节约 10 倍文字内容创作时间。 应用链接:https://www.coze.cn/s/ij5C6LWd/ 一期产品功能:可以提取任何链接中的标题和内容;按照小红书平台文案风格重新整理内容;加入 emoji 表情包让文案更有活力;为文案配图片。 二期计划功能:持续优化升级中,增加全网搜索热点功能,提炼热点新闻或事件关键信息,结合用户想要生成的内容方向输出文案和配图。 2. GPT4、WPS AI 和 chatPPT:可用于制作 PPT 等内容。 此外,还有一些小红书优质科技内容案例中的工具值得参考,如:
2024-12-22
检查文章是否是ai写的,有什么软件
以下是一些可以检查文章是否由 AI 写的软件: 1. Writer.com:提供免费的 AI 内容检测工具,使用时将文本粘贴到在线工具中点击检测按钮,系统会提供分析结果。 2. GPTZero:专门设计用于检测由 GPT3 生成的内容,适用于教育和出版行业。上传文档或输入文本,系统会分析并提供报告。 3. Content at Scale:提供 AI 内容检测功能,将文本粘贴到在线检测工具中,系统会分析并提供结果。 4. Turnitin:广泛使用的学术剽窃检测工具,增加了检测 AI 生成内容的功能。用户上传论文,系统自动分析并提供详细报告。 5. Copyscape:主要用于检测网络剽窃行为,虽不是专门的 AIGC 检测工具,但可发现可能被 AI 生成的重复内容。输入文本或上传文档,系统扫描网络查找相似或重复内容。 6. Grammarly:提供语法检查和剽窃检测功能,将文本粘贴到编辑器中选择剽窃检测功能,系统提供分析报告。 7. Unicheck:基于云的剽窃检测工具,适用于教育机构和学术研究。上传文档或输入文本,系统分析并生成报告。 8. Originality.AI:专门设计用于检测 AI 生成内容,上传文档或输入文本,系统提供详细报告。 以下是一些 AI 文章排版工具: 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,可改进文档整体风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,帮助改进文本清晰度和流畅性。 3. Latex:广泛用于学术论文排版的软件,使用标记语言描述文档格式,有许多 AI 辅助的编辑器和插件简化排版过程。 4. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业。 6. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于您的具体需求,如文档类型、出版标准和个人偏好。对于学术论文,Latex 和 Overleaf 受欢迎;对于一般文章和商业文档,Grammarly 和 PandaDoc 等可能更适用。
2024-12-22
我能不能用AI做一个实时交流的社群
以下是关于您能否用 AI 做一个实时交流社群的相关信息: AI 音乐方面: 存在 AI 音乐共建者的社群。 使用方式:文档中可贴喜欢的音乐或投稿教程,定期组织音乐交流会,社群中可实时交流音乐相关创作作品和经验分享。 加入条件:至少有一首以上的 AI 音乐作品,添加 AAAAAAAJ 备注音乐。 近期活动:「在线音乐会」网友出题,现场生音乐(时间待定);「Reaction」收集 AI 音乐,大家一起欣赏,记录听到意想不到的好听的歌的反应(时间待定)。 有趣的音乐可贴在文档下方,持续收集中。 Inworld AI 方面: 使 NPC 能够自我学习和适应,具有情绪智能。 特点和功能: 实时语音:使用内置语音设置进行最小延迟,可配置角色的性别、年龄、音调和说话速度,或使用第三方服务创建自定义和克隆语音。 “Contextual Mesh”功能:定制 AI 非玩家角色(NPC)的行为和知识。 可配置的安全性:可配置 NPC 对话方式,适应不同年龄级别游戏。 知识:输入“个人知识”控制角色应知道或不应知道的信息,使用“共享知识”定义多个角色拥有的知识。 玩家档案:收集玩家信息,让 NPC 在互动时考虑。 关系:配置角色关系流动性,创建不同关系的角色。 第四堵墙:确保角色只从其世界中的知识获取信息,创建更沉浸的体验。 可与各种游戏引擎(如 Unity、Unreal Engine 等)和其他游戏开发工具无缝对接,帮助品牌创建交互性强的 AI 角色,无需编码。
2024-12-22
制作PPT的AI应用有那些
以下是一些制作 PPT 的 AI 应用: 1. Gamma:这是一个在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片。它支持嵌入多媒体格式,如 GIF 和视频,以增强演示文稿的吸引力。网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出。允许用户通过输入简单的文本描述来生成专业的 PPT 设计,包含丰富的模板库和设计元素,适用于多种场合。网址:https://www.xdesign.com/ppt/ 3. Mindshow:一款 AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,还可能包括互动元素和动画效果。网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 5. 爱设计 PPT:在国内 AI 辅助制作 PPT 的产品中表现出色,背后有实力强大的团队,能敏锐把握市场机遇,已确立市场领先地位。 目前市面上大多数 AI 生成 PPT 通常按照以下思路完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 推荐 2 篇市场分析的文章供参考: 1. 《》 2. 《》 请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-22
我是一个政府部门的基层工作人员,平时要填报各种表格,使用很多系统平台,对接很多乡镇负责人,接很多电话,请问我应该如何学习和运用AI工具让我更快更好地完成工作呢?
对于您的工作情况,以下是一些建议来帮助您学习和运用 AI 工具以提高工作效率和质量: 首先,您可以考虑使用自动化表格处理工具。这类工具能够根据您设定的规则和模板,自动填写和整理表格中的数据,减少手动输入的时间和错误。 其次,利用智能客服系统来处理一部分常见的咨询和问题。您可以将常见问题和回答录入系统,让其自动回复一些简单和重复的咨询,从而节省您接电话的时间。 另外,使用智能办公助手来协助您管理和安排工作任务。它可以根据您的工作优先级和时间安排,提醒您各项任务的截止日期和重要程度。 在学习这些 AI 工具时,您可以先从简单易用的工具入手,通过在线教程、操作手册和视频教程来熟悉其功能和操作方法。同时,多与同事交流和分享使用经验,共同探索如何更好地将 AI 工具应用到工作中。 希望以上建议对您有所帮助。
2024-12-15
请帮我总结AI AGENT的总体架构,帮助我更快学习相关的知识,尽快进行具体场景的商业落地
AI Agent 是一个融合了多学科精髓的综合实体,不仅有实体形态,还有丰富的概念形态,并具备许多人类特有的属性。其总体架构包括以下方面: 1. 大模型 LLM 扮演“大脑”。 2. 规划:包括子目标分解、反思与改进。子目标分解将大型任务分解为较小可管理的子目标以处理复杂任务;反思和改进可对过去的行动进行自我批评和反思,从错误中学习并改进未来步骤,提高最终结果质量。 3. 记忆。 此外,AI Agent 还具有以下特点和应用: 1. 能够自行规划任务执行的工作流路径,面向简单或线性流程的运行。 2. 可以实现多 Agent 协作,例如让大语言模型扮演不同角色,相互协作共同开发应用或复杂程序。
2024-11-04
阅读管理学领域的学术文献,哪个AI的大模型提炼信息更精准,更快速
目前在管理学领域学术文献的信息提炼方面,不同的 AI 大模型各有特点,难以确切地说哪个模型更精准、更快速。一些常见的大模型如 GPT4、文心一言等在处理自然语言和提取信息方面都具有一定的能力,但它们在不同类型和主题的文献处理上可能表现各异。这还取决于文献的具体内容、格式和复杂程度等因素。
2024-10-12
那你可以给我推荐一个学习ai的系列课程,从而让我成为一个更好和更快的数据分析师吗
以下是一些可以帮助你学习 AI 的课程,让你成为更好和更快的数据分析师: 1. 人工智能基础课程 人工智能基础课程是学习 AI 的入门课程,它将帮助你了解 AI 的基本概念和技术,包括机器学习、深度学习、自然语言处理、计算机视觉等。你可以在 Coursera、edX、Udacity 等在线教育平台上找到相关课程。 2. 数据分析基础课程 数据分析是 AI 的重要组成部分,因此了解数据分析的基础知识对于成为一名成功的数据分析师非常重要。你可以学习数据分析的基本概念和技术,包括数据预处理、数据可视化、数据建模等。你可以在 Coursera、edX、Udacity 等在线教育平台上找到相关课程。 3. 机器学习和深度学习课程 机器学习和深度学习是 AI 的核心技术,它们将帮助你了解如何使用数据来训练模型,并使用这些模型进行预测和分类。你可以学习机器学习和深度学习的基本概念和技术,包括监督学习、无监督学习、强化学习等。你可以在 Coursera、edX、Udacity 等在线教育平台上找到相关课程。 4. 自然语言处理课程 自然语言处理是 AI 的一个重要分支,它将帮助你了解如何处理和分析自然语言数据,包括文本分类、情感分析、机器翻译等。你可以学习自然语言处理的基本概念和技术,包括词法分析、句法分析、语义理解等。你可以在 Coursera、edX、Udacity 等在线教育平台上找到相关课程。 5. 计算机视觉课程 计算机视觉是 AI 的一个重要分支,它将帮助你了解如何处理和分析图像和视频数据,包括图像分类、目标检测、图像分割等。你可以学习计算机视觉的基本概念和技术,包括图像处理、特征提取、模型训练等。你可以在 Coursera、edX、Udacity 等在线教育平台上找到相关课程。 6. 实践项目 最后,通过实践项目来巩固你的 AI 知识和技能。你可以参加开源项目、竞赛、实习等,将你所学的知识应用到实际问题中。这将帮助你积累经验、提高技能,并增强你在就业市场上的竞争力。 总之,学习 AI 需要时间和耐心,但是通过系统地学习和实践,你可以成为一名优秀的数据分析师,并在 AI 领域取得成功。
2024-06-13
🚀接着上期SOP+AI:打造职场高效能人士的秘密武器的分享,今天继续聊聊SOP+AI的应用,🎯今天的主题是“怎样利用AI节约10倍内容创作时间?”📚最近跟团队有开始运营小红书账号,就想着先给自己打造点顺手的工具,于是乎「小红书文案专家」就出生啦~🎉[heading1]一、先介绍下我们小Bot[content]🛺BOT名称:小红书文案专家功能价值:见过多个爆款文案长啥样,只需输入一个网页链接或视频链接,就能生成对应的小红书文案,可以辅助创作者生成可以一键复制发布的初稿,提供创意和内容,1
以下是关于“SOP+AI”的相关内容: 怎样利用 AI 节约 10 倍内容创作时间? 最近团队开始运营小红书账号,于是打造了“小红书文案专家”。 BOT 名称:小红书文案专家 功能价值:见过多个爆款文案,输入网页或视频链接就能生成对应的小红书文案,辅助创作者生成可一键复制发布的初稿,提供创意和内容,节约 10 倍文字内容创作时间。 应用链接:https://www.coze.cn/s/ij5C6LWd/ 设计思路: 痛点:个人时间有限,希望有人写初稿并生成配图。 实现思路:为自己和团队设计工作流,让 AI 按运营思路和流程工作。 一期产品功能: 1. 提取任何链接中的标题和内容。 2. 按小红书平台文案风格重新整理内容。 3. 加入 emoji 表情包,使文案更有活力。 4. 为文案配图片。 二期计划功能:持续优化升级,增加全网搜索热点功能,提炼热点新闻或事件关键信息,结合用户想要生成的内容方向输出文案和配图。 SOP+AI:打造职场高效能人士的秘密武器 案例分享:X 公司客服团队引入 SOP 和 AI 助手后,工作效率显著提升。引入 SOP 前,客服工作流程混乱,效率低下,客户满意度不高。引入 SOP 标准化操作后,效率提高。进一步引入 AI 助手,自动回复常见问题、处理简单请求,减少客服工作量,还能及时发现问题帮助优化。结果客服团队工作效率提升 30%以上,客户满意度显著提高。SOP 能提升效率、减少失误、促进协作,借助 AI 助手,SOP 制定和优化更高效智能。
2024-12-20
人工智能与AI诈骗最新专家研究进展及其成果
以下是关于人工智能的最新研究进展及其成果的相关信息: 在医疗领域,AI 在抗癌、抗衰老、早期疾病防治等方面发挥着重要作用。例如,AI 提前三年诊断胰腺癌;两名高中生与医疗技术公司合作发现与胶质母细胞瘤相关的新靶基因;AI 筛查出高效的抗衰老药物候选物;利用 AI 寻找阿尔兹海默症的治疗方法;通过神经网络分析患者体液中的生物标志物帮助早期诊断帕金森。 在 2024 年人工智能发展状况方面,随着 AI 不断发展,新功能带来新漏洞,企业和学者加强了对“越狱”的研究。OpenAI 提出通过“指令层次结构”修复“忽略所有先前指令”攻击的方法,并在 GPT40 Mini 中得到部署。Anthropic 的“警告防御”展现潜力,Gray Swan AI 试用“断路器”,LLM 测试初创公司与 Hugging Face 合作创建红队抵抗组织基准,Scale 推出自己的稳健性排行榜。同时,除了越狱,还存在更隐蔽的攻击,涵盖从训练到偏好数据和微调等内容。 在研究成果方面,许多令人惊奇的 AI 产品源于大公司和顶级大学专家的研究,也有个人和开源社区在流行项目上的卓越工作,如创建自动化代理或将大模型移植到算力更弱的硬件上运行。
2024-12-02
请你作为提示词专家,帮助我写一段提示词,内容是做一个美食时光机的应用,用户输入具体的年份,以及具体的区域,就可以带用户穿越时空,了解当时当地的人们都在吃些什么
以下是为您生成的关于美食时光机应用的提示词: 您好,欢迎使用美食时光机应用。请您输入具体的年份和区域,我将带您穿越时空,领略当时当地人们的饮食风貌。 例如:您可以输入“1980 年,北京”或者“1950 年,上海”等,我会为您呈现那个特定时空下的美食世界。 在为您展示美食的同时,我会详细介绍当时当地的饮食文化、特色食材以及烹饪方式。让您仿佛身临其境,感受那个时代的独特味道。
2024-11-30
请你作为提示词专家,告诉我,如何让提示词能够具有追问的能力,当用户的诉求描述不清时,可以让大模型继续追问
以下是关于让提示词具有追问能力的方法和相关知识: 让提示词具有追问能力可以通过以下方式实现: 1. 给予模型思考时间 美国康奈尔大学的研究报告显示,在提示词中让大模型“深呼吸(take a deep breath)”,让其“慢些思考”“不着急回复”,能在一定程度上提升回复质量。 “Take a deep breath and work on this problem stepbystep”“Let’s think step by step”也是有用的提示词口令。 实施技巧包括: 指导模型在匆忙下结论之前先找出自己的解决方案。例如,在解答有关中国五千年历史的复杂问题之前,请先分阶段梳理历史线索;在对“一带一路”倡议的经济影响进行分析之前,请先详细考察相关的经济数据和政策背景。 使用内部独白或一系列查询来隐藏模型的推理过程。例如,在分析古诗词的意境和语言特色之前,请先逐句解读其含义;在预测明年的股市走势之前,请先回顾并总结过去一年的重大财经事件。 询问模型是否在之前的尝试中遗漏了什么。例如,在列出适合春节期间旅游的目的地之后,请检查是否有遗漏的重要景点或考虑因素;在分析一部电影的主题和风格之后,请回顾是否有未涉及的重要镜头或细节。 2. 了解提示词的概念和作用 提示词是给大语言模型的输入文本,用于指定模型应执行的任务和生成的输出,发挥“提示”模型应做什么的作用。 设计高质量的提示词需根据目标任务和模型能力精心设计,良好的提示词能让模型正确理解人类需求并给出符合预期的结果。 3. 结合大语言模型和知识库 大语言模型像全知全能的人,擅长公共知识、学识技能、日常聊天,但在工作场景下需提示词指定角色和专注技能。 知识库则像工作手册,为模型提供特定的工作信息。 通过以上方法,允许模型有更多时间推理和处理信息,可提高回答的准确性和可靠性,使模型应用更高效和精准。同时,要了解大模型的特性,具备清晰表述需求和任务的能力,才能用好提示词这个工具。
2024-11-29
你是ai领域专家,我是新手小白,给我一些入门nlp的系统性建议
以下是给您的入门 NLP 的系统性建议: 自然语言处理(NLP)是人工智能领域的重要分支,其起源早于“人工智能”概念的诞生,艾伦·图灵在开创性论文《计算机器与智能》中提出的“图灵测试”是该领域被广泛认可的起点。这个概念涵盖了自然语言理解(NLU)和自然语言生成(NLG)两大核心领域。 对于新手入门 NLP,首先要理解 NLP 的基本概念和发展历程,了解其在人工智能中的重要地位。深入学习“图灵测试”的理念,体会让计算机与人类自然流畅对话的目标。 重点掌握 NLU,学会让机器准确理解人类语言的复杂性和微妙之处。同时关注 NLG,研究如何让机器生成流畅、自然、符合语境的人类语言。 通过实际案例和项目实践,加深对 NLP 核心领域的理解和应用能力。
2024-11-18
撰写内容概要:以ai换脸诈骗和声音合成诈骗为蓝本查阅网站、文献期刊等专家在相关方面的研究进展及其成果,并进行汇总评述。(1)表述收集资料的来源情况、收集资料的数量情况;(2)将所收集的资料进行分类,按照几个分类方面逐一进行表述,表述涵盖专家的观点、结论、思路、方案等;(3)小组综合性的对所收集到的资料进行评述,描述当前的进展情况、优劣点、未来发展等。)
以下是根据您提供的资料进行的汇总评述: 一、收集资料的情况 1. 来源情况:资料来源于陶力文律师的相关论述、关于 AI 音乐的论文、质朴发言的研究报告等。 2. 数量情况:共收集到 3 份相关资料。 二、资料分类及专家观点 1. 关于律师如何写好提示词用好 AI 观点:强调结构化内容组织、规定概述内容解读结语结构、案例和挑战结合、结合法规和实际操作、使用商业术语等。 结论:通过多种方式提升文章的专业性和针对性。 思路:从标题、文章结构等方面进行规划。 方案:按照特定的结构和要求进行写作。 2. 基于频谱图的音乐录音中自动调谐人声检测 观点:聚焦音乐中人声音高的自动调音检测,提出数据驱动的检测方法。 结论:所提方法在检测上表现出较高的精确度和准确率。 思路:包括音频预处理、特征提取和分类等步骤。 方案:创建新数据集,进行全面评估。 3. 文生图/文生视频技术发展路径与应用场景 观点:从横向和纵向梳理文生图技术发展脉络,分析主流路径和模型核心原理。 结论:揭示技术的优势、局限性和未来发展方向。 思路:探讨技术在实际应用中的潜力和挑战。 方案:预测未来发展趋势,提供全面深入的视角。 三、综合性评述 当前在这些领域的研究取得了一定的进展,如在音乐自动调音检测方面提出了新的方法和数据集,在文生图/文生视频技术方面梳理了发展路径和应用场景。 优点在于研究具有创新性和实用性,为相关领域的发展提供了有价值的参考。但也存在一些不足,如音乐检测研究中缺乏专业自动调音样本,部分技术在实际应用中可能面临一些挑战。 未来发展方面,有望在数据样本的丰富性、技术的优化和多模态整合等方面取得进一步突破,拓展更多的应用场景。
2024-11-15
智能体在电商领域的应用
智能体在电商领域有以下应用: 1. 电商导购:以“什么值得买”智能体为例,当用户输入“我想买个笔记本电脑”,智能体会先提取关键词“笔记本电脑”,通过相关 API 检索商品信息,与内置提示词组装成上下文,请求大模型回答,提供更好的商品推荐效果。 2. 工作流协作:工作流也可理解为多智能体协作,通过多个智能体的组装解决复杂场景的搜索问题。例如给新产品取名,涉及多个步骤和检测,人工操作费时,而 AI 搜索与 Workflow 模式可有效解决,通过定义多个智能体完成各项功能,并由调度中枢协调工作和决策。 在品牌卖点提炼方面: 1. 构建中对结构的理解和控制最为重要,旨在提供结构化思路,单点可通过不断迭代完善。品牌卖点提炼助手本质是办公助手,能为有营销思维的团队提供思路,提高团队效率。 2. 实际搭建需根据公司业态调整,给智能体更多提示词提升分析合理性。不同行业的线上、线下和人员触点不同,遵循营销管理流程保证输出,调整提示词提升准确度。营销管理结构化提示词中避免依赖举例,决策和洞察力仍依赖人员,智能体作为灵感助手辅助决策。 3. 最终提炼的品牌卖点应用于与用户交互的所有场景,即触点,包括线上(如微信、抖音等平台)、线下(产品到达消费者手上的场景或线下实体门店场景)和人员(线上直播间、人工客服或线下销售人员等)触点。在最终步骤,需找到所有传达品牌卖点的场景,结合需求制作落地页或沟通话术,建立品牌价值。
2024-12-20
当前电商领域有哪些智能体可以用
在电商领域,以下是一些常见的智能体类型及应用示例: 1. 简单反应型智能体:如温控器,根据当前的感知输入直接采取行动,不维护内部状态和考虑历史信息。 2. 基于模型的智能体:像自动驾驶汽车,维护内部状态,对当前和历史感知输入进行建模,能推理未来状态变化并据此行动。 3. 目标导向型智能体:例如机器人导航系统,具有明确目标,能评估行动方案并选择最优行动。 4. 效用型智能体:如金融交易智能体,能量化不同状态的效用值,选择效用最大化的行动。 5. 学习型智能体:例如强化学习智能体,通过与环境交互不断学习最优策略。 以“什么值得买”智能体为例,当用户输入“我想买个笔记本电脑”,智能体会先提取关键词,再通过相关 API 检索商品信息,与内置提示词组装后请求大模型回答,成为电商导购类的垂直搜索应用,在商品推荐方面效果较好。 此外,工作流(Workflow)也可理解为多智能体协作(MultiAgents),通过多个智能体的组装解决复杂场景的搜索问题。例如给新产品取名,可定义多个智能体分别负责不同功能,还需要有调度中枢协调工作和做决策。 还有“买买买!💥产品买点提炼神器强化版🚀”智能体,专注于市场营销领域,能帮助用户从产品出发挖掘卖点并转化为买点,生成小红书文案和抖音短视频脚本等,并保存至飞书文档。
2024-12-20
AI领域最前沿技术的最核心的论文
以下是为您整理的关于 AI 领域最前沿技术核心论文的相关内容: 1. 《Attention is All You Need》:这篇由 Google Brain 团队撰写的论文介绍了 Transformer 架构,彻底改变了 AI 领域的格局。它能够处理未标记的、混乱的数据,并且比以前的方法更加高效。 2. 杰弗里·辛顿(Geoffrey E. Hinton)的相关论文: 描述极化子的“The Contribution of Excitons to the Complex Dielectric Constant of Crystals”(1958 年)。 描述长程电子转移量子力学的“Electron transfer between biological molecules by thermally activated tunneling”(1974 年)。 “Kinetic Proofreading:1974 年)。 “神经网络和具有突发性集体计算能力的物理系统”(1982 年)(被称为 Hopfield 网络)。 与 D.W.Tank 合著的“优化问题中决策的神经计算”(1985 年)。 在这篇文章中,作者分享了一份用于更深入了解现代 AI 的精选资源列表,称其为“AI 典藏”。这些论文、博客文章、课程和指南在过去几年中对该领域产生了巨大影响。同时,还介绍了 AI 技术的发展历程,如 2015 年 AI 系统的局限性,以及 Transformer 架构出现后为 OpenAI 发展带来的影响。
2024-12-19
AI智能体在电商领域可落地的应用
AI 智能体在电商领域有以下可落地的应用: 1. 电商导购:以“什么值得买”智能体为例,当用户输入“我想买个笔记本电脑”,智能体会先提取关键词“笔记本电脑”,通过相关 API 检索商品信息,与内置提示词组装成上下文,请求大模型回答,从而提供更好的商品推荐效果。 2. 工作流优化:工作流也可理解为多智能体协作,通过多个智能体的组装解决复杂场景的搜索问题。例如给新产品取名,涉及多个步骤和检测,人工操作费时,而 AI 搜索与 Workflow 模式可有效解决,通过定义多个完成不同功能的智能体,并由调度中枢协调工作和决策。 3. 品牌卖点提炼:AI 在逻辑推理、数据分析、内容理解和输出上有独特优势,可搭建品牌卖点提炼助手。但在搭建前需明确 AI 的能力边界,如对公司产品、独特之处、核心渠道等了解有限。AI 更适合做引导型助手,在寻找卖点陷入停滞时提供更多思考维度。实际搭建时,除遵循营销管理流程保证输出合理,还需根据公司业态调整智能体提示词以提升信息准确度。对于电商产品,需考虑线上线下不同触点和人员等因素。
2024-12-19
AI智能体在电商领域营销助手应用
AI 智能体在电商领域营销助手方面有以下应用: 1. 品牌卖点提炼: 智能体的构建中,理解和控制结构最为重要,其本质是办公助手,能为有营销思维的团队提供思路,提高效率。 实际搭建要根据公司业态调整,给智能体更多提示词提升分析合理性。例如电商产品,线上触点有淘系、京东系等电商平台和抖音、小红书等兴趣电商内容平台,线下触点包括产品包装、包裹等,人员触点有销售人员等;线下实体服务行业,线上触点有大众点评/美团等,线下触点有门店展示等。 遵循营销管理流程构建智能体可保证输出准确,调整提示词能提升某部分助手信息准确度,但注意营销管理结构化提示词中不要依赖举例,以免限制 AI 创造性思维。 2. 电商导购: 以“什么值得买”智能体为例,用户输入“我想买个笔记本电脑”,智能体会提取关键词,通过 API 检索商品信息,与提示词组装后请求大模型回答,成为电商导购类垂直搜索应用,提升商品推荐效果。 工作流 Workflow 可理解为多智能体协作,通过多个智能体组装解决复杂场景搜索问题,如新产品取名,涉及多个步骤和智能体,还需调度中枢协调工作和决策。 3. 搭建智能体提炼品牌卖点: AI 在逻辑推理、数据分析等方面有强项,可用于品牌卖点提炼,搭建品牌卖点提炼助手。 搭建前要明确 AI 能力边界,如 AI 不了解公司产品、独特之处等。 AI 真正的能力是逻辑推理、处理分析数据等,确定的智能体更适合做引导型助手,在寻找卖点陷入停滞时提供思考维度。
2024-12-19
AI智能体在电商领域到底能做什么
AI 智能体在电商领域主要有以下应用: 1. 电商导购:以“什么值得买”智能体为例,当用户输入购买需求,如“我想买个笔记本电脑”,智能体会提取关键词,通过相关 API 检索商品信息,与内置提示词组装成上下文,请求大模型回答,提供更精准的商品推荐。 2. 工作流协作:通过多个智能体的组装,解决复杂场景的搜索问题。例如给新产品取名,定义多个智能体分别负责不同功能,如给出建议名字、检索是否同名等,同时需要调度中枢协调工作,决定是继续下一步还是回溯。 3. 决策支持:如在理赔提交审核中,将付款方规则转换为有向无环图,智能体遍历决策树,利用语言模型评估相关文件是否符合规则,并在复杂任务中选择最佳方法。 4. 品牌卖点提炼:实际搭建中,遵循营销管理流程保证输出合理性,根据电商业态调整单独智能体的提示词提升信息准确度,为营销团队提供更广阔思路和灵感。
2024-12-19