Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

请你作为提示词专家,告诉我,如何让提示词能够具有追问的能力,当用户的诉求描述不清时,可以让大模型继续追问

Answer

以下是关于让提示词具有追问能力的方法和相关知识:

让提示词具有追问能力可以通过以下方式实现:

  1. 给予模型思考时间

    • 美国康奈尔大学的研究报告显示,在提示词中让大模型“深呼吸(take a deep breath)”,让其“慢些思考”“不着急回复”,能在一定程度上提升回复质量。
    • “Take a deep breath and work on this problem step-by-step”“Let’s think step by step”也是有用的提示词口令。
    • 实施技巧包括:
      • 指导模型在匆忙下结论之前先找出自己的解决方案。例如,在解答有关中国五千年历史的复杂问题之前,请先分阶段梳理历史线索;在对“一带一路”倡议的经济影响进行分析之前,请先详细考察相关的经济数据和政策背景。
      • 使用内部独白或一系列查询来隐藏模型的推理过程。例如,在分析古诗词的意境和语言特色之前,请先逐句解读其含义;在预测明年的股市走势之前,请先回顾并总结过去一年的重大财经事件。
      • 询问模型是否在之前的尝试中遗漏了什么。例如,在列出适合春节期间旅游的目的地之后,请检查是否有遗漏的重要景点或考虑因素;在分析一部电影的主题和风格之后,请回顾是否有未涉及的重要镜头或细节。
  2. 了解提示词的概念和作用

    • 提示词是给大语言模型的输入文本,用于指定模型应执行的任务和生成的输出,发挥“提示”模型应做什么的作用。
    • 设计高质量的提示词需根据目标任务和模型能力精心设计,良好的提示词能让模型正确理解人类需求并给出符合预期的结果。
  3. 结合大语言模型和知识库

    • 大语言模型像全知全能的人,擅长公共知识、学识技能、日常聊天,但在工作场景下需提示词指定角色和专注技能。
    • 知识库则像工作手册,为模型提供特定的工作信息。

通过以上方法,允许模型有更多时间推理和处理信息,可提高回答的准确性和可靠性,使模型应用更高效和精准。同时,要了解大模型的特性,具备清晰表述需求和任务的能力,才能用好提示词这个工具。

Content generated by AI large model, please carefully verify (powered by aily)

References

安迪:写给职场人的 AI 办公手册——如何与 AI 高效对话

美国康奈尔大学有一份研究报告显示,在提示词中让大模型“深呼吸(take a deep breath)”,从而让大模型“慢些思考”、“不着急回复”,可以在一定程度上提升大模型的回复质量。Take a deep breath and work on this problem step-by-stepLet’s think step by step,也是一个非常有用的提示词口令。给模型思考的时间,这就像在解答数学问题时,我们可能不会立即知道17乘以28的结果,但给予时间可以计算出来一样,模型在尝试立即回答时也容易犯更多的推理错误,而不是花时间去计算答案。在答案之前要求一个“思考链(CoT,ChAIn-of-Thought Prompting)”可以帮助模型更可靠地推理出正确答案。实施技巧:技巧1:指导模型在匆忙下结论之前先找出自己的解决方案示例1:在解答有关中国五千年历史的复杂问题之前,请先分阶段梳理历史线索。示例2:在对’一带一路’倡议的经济影响进行分析之前,请先详细考察相关的经济数据和政策背景。技巧2:使用内部独白或一系列查询来隐藏模型的推理过程示例1:在分析古诗词的意境和语言特色之前,请先逐句解读其含义。示例2:在预测明年的股市走势之前,请先回顾并总结过去一年的重大财经事件。技巧3:询问模型是否在之前的尝试中遗漏了什么示例1:在列出适合春节期间旅游的目的地之后,请检查是否有遗漏的重要景点或考虑因素。示例2:在分析一部电影的主题和风格之后,请回顾是否有未涉及的重要镜头或细节。这种策略的优点在于,通过允许模型有更多的时间来推理和处理信息,可以提高回答的准确性和可靠性。这对于处理复杂或需要深入分析的问题尤为重要。通过细化问题,并鼓励模型逐步推理,我们可以使得GPT模型的应用更加高效和精准。

小七姐:提示词思考总结

提示词(Prompt)是给大语言模型(以下简称模型)的输入文本,用于指定模型应该执行什么样的任务并生成什么样的输出。提示词发挥了“提示”模型应该做什么的作用。设计高质量的提示词需要根据目标任务和模型能力进行精心设计,良好的提示词可以让模型正确理解人类需求并给出符合预期的结果。我们来看一些示例,以便更准确的理解提示词的实际使用:[heading3]直接提问型:[heading3]策略建议型:[heading3]翻译型[heading3]算数型[heading3]概念解释型:[heading2]二、为什么提示词需要学习?[content]首先了解大模型的特性,了解它能做到什么,不擅长做什么,完全无法做什么。随后要求写好brief的能力,也就是清晰表述自己的需求和任务的能力。两者兼具,才能用好这个工具。

【AI+知识库】商业化问答场景,让AI回复更准确,一篇专为所有“小白”讲透RAG的实例教程(上篇)

大语言模型:是一个学习过无数本书、拥有无穷智慧的人。他读过无数的书、看过无数的段子,因此对公共知识、学识技能、日常聊天十分擅长。然而,在工作场景下,只会聊天侃大山可不行,你想让他帮你干活。这个时候,就需要“提示词”出场了,提示词:是你告诉这个全知全能的人,他是一个什么样的角色、他要专注于哪些技能,让他能够按照你的想法,变成一个你需要的“员工”。知识库:相当于你给这个“聪明”员工的发放了一本工作手册。即使是看过再多的书、浏览过再多的文字,也不会准确的知道见到老板娘过来吃饭要打三折,张梦飞过去吃饭要打骨折。而知识库,就是把这些内容写在了工作手册上。让这个聪明的员工,见到有人来的时候,就翻一翻手册,然后再做出反应。我的设定:AI模型:这里使用的是阿里千问模型。提示词:这里设定的角色是“美嘉”,是按照美嘉的人设、背景和对话风格做的设定。知识库:这里放的是《爱情公寓》全季的剧情,让“美嘉”拥有了自己过往的“记忆”,知道自己做过什么、好朋友是谁等等。图中右侧是一个十分简单的问答,我问:“你是谁?你和子乔在台球厅吵架那次是为了什么吵架?”她的回复是:“我是陈美嘉,那次在台球厅和吕子乔吵架是因为他约会被人撞见,我讽刺他脸大影响信号,他还反击我。后来谈到过去的事情,我指责他忘恩负义,他就说我平。最后,我伤心地说要分手,因为他之前甩过我。”

Others are asking
如何通过设置智能体的配置信息实现自动追问功能
自动追问功能通常是指一个系统能够根据用户的问题和上下文自动生成相关的问题,以便获取更多信息或深入了解某个话题。在设置智能体的配置信息以实现这一功能时,可以遵循以下步骤: 1. 定义追问规则:根据业务需求和对话场景,定义何时以及如何发起追问。例如,如果用户的问题不包含足够的信息来提供准确的答案,或者如果需要更多细节来提供个性化的建议。 2. 配置上下文理解:智能体需要能够理解对话的上下文,包括用户的问题、之前的对话历史以及任何相关的主题或领域特定的信息。 3. 设计问题生成算法:开发或集成一个算法,用于根据当前对话上下文生成追问问题。这可能涉及到自然语言处理(NLP)技术,如语言模型、意图识别和实体识别。 4. 设置追问策略:确定追问的策略,例如,是否需要在每次对话中追问,或者只在特定情况下追问。 5. 集成机器学习模型:如果追问功能需要更高级的理解能力,可能需要集成预训练的机器学习模型,如BERT、GPT等,来增强语言理解能力。 6. 实现反馈机制:设置机制以收集用户对追问问题的反馈,以便不断优化追问策略和问题生成算法。 7. 测试和调整:在实际对话中测试自动追问功能,并根据测试结果进行调整。确保追问问题的相关性和有效性。 8. 用户界面集成:在用户界面中集成自动追问功能,确保它能够无缝地与用户的交互流程集成。 9. 隐私和合规性:确保自动追问功能遵守相关的隐私法规和最佳实践,尤其是在处理个人数据时。 10. 持续监控和优化:持续监控自动追问功能的表现,并根据用户反馈和系统性能进行优化。 在技术实现上,可以通过编程方式设置智能体的配置文件或数据库中的相关参数,来控制追问功能的行为。例如,可以创建一个配置文件,其中包含追问的触发条件、问题模板、用户反馈处理规则等,并在智能体的代码中读取这些配置来执行相应的追问逻辑。 请注意,自动追问功能的设计和实现可能需要跨学科的知识和技能,包括人工智能、机器学习、自然语言处理和软件开发等。
2024-05-23
能继续追问的ai
能继续追问的 AI 可以提供更有价值的帮助。以 Pi 为例,它在机制设置上采取提问式结尾、不断主动追问,这更有让人聊下去的欲望。同时,Pi 还可以准确地找出与棒球相关的作品,主动引导讨论其中的角色,准确概括角色的特点,并介绍现实里有名的棒球选手。然而,当涉及到观点讨论时,Pi 的态度过于乐观。此外,智能助产术教学法也强调了教师的善于追问和学生的自我省察能力,以及持续追问的动力、关怀并教导学生向善的艺术和持续追问的机制等关键要素。这些都可以为 AI 的发展提供有益的启示。
2024-05-22
如何修改提示词
以下是关于修改提示词的一些方法和要点: 在 Midjourney 官方用户端: 点击提示栏右端的设置图标,可以更改提示词的固定设置,包括图像大小(通过移动光标调整横竖屏和常见比例)、模式(在标准模式和原始模式之间切换)、版本(选择使用的 MidJourney 版本)、个性化(开启后自动应用最新代码设置)、美学(如风格化、奇异度、多样性的数值调整)以及更多选项(如速度选择放松、快速或极速模式)。 对于 Claude2: 优化提示词类似于进行一系列实验。进行测试,解释结果,然后根据结果调整变量(提示词或输入)。 当 Claude2 测试失败,尝试确定失败原因,调整提示词,例如更明确地编写规则或添加新规则,通过添加示例和规范输出展示如何正确处理,在某一类型输入表现良好时尝试其他输入类型,确保尝试极端情况,添加规则和示例直至在代表性输入集合上取得良好表现,建议进行“保留测试”。 在 SD 新手入门中: 根据想画的内容写出提示词,多个提示词之间使用英文半角逗号“,”分隔。 一般而言,概念性、大范围、风格化的关键词写在前面,叙述画面内容的其次,描述细节的最后,大致顺序为:(画面质量提示词)、(画面主题内容)(风格)、(相关艺术家)、(其他细节)。 每个词语在模型中的自带权重可能不同,训练集中较多出现的关键词输入一个就能极大影响画面,反之输入多个相关词汇可能影响有限。提示词顺序很重要,越靠后权重越低。 关键词应具有特异性,措辞越具体越好,避免抽象和有解释空间的措辞。 可以使用括号人工修改提示词的权重,例如“”在提示词中使用字面意义上的括号字符。
2025-02-21
提示词
提示词相关知识如下: 1. 什么是提示词: 用于描绘您想生成的画面。 输入语言方面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),支持中英文输入。 启用提示词优化后,能帮您扩展提示词,更生动地描述画面内容。 2. 如何写好提示词: 可以点击提示词上方官方预设词组进行生图。 提示词内容要准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 调整负面提示词,点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可以帮助 AI 理解我们不想生成的内容,比如:不好的质量、低像素、模糊、水印。 利用“加权重”功能,让 AI 明白重点内容,可在功能框增加提示词,并进行加权重调节,权重数值越大,越优先,也可对已有的提示词权重进行编辑。 辅助功能包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。 3. 提示词要素: 提示词可以包含指令(想要模型执行的特定任务或指令)、上下文(包含外部信息或额外的上下文信息,引导语言模型更好地响应)、输入数据(用户输入的内容或问题)、输出指示(指定输出的类型或格式)。 4. 提示工程与提示词的区别: 提示工程是人工智能领域中,特别是在自然语言处理和大型语言模型的上下文中,一个相对较新的概念,涉及设计和优化输入提示,以引导 AI 模型生成特定类型的输出或执行特定的任务。 提示词通常指的是直接输入到 AI 模型中的问题、请求或指示,是提示工程的一部分。 提示工程是一个更广泛的概念,不仅包括创建提示词,还涉及理解模型的行为、优化提示以获得更好的性能、以及创造性地探索模型的潜在应用。提示工程的目标是最大化 AI 模型的效用和性能,而提示词是实现这一目标的手段之一。在实际应用中,提示工程可能包括对 AI 模型的深入分析、用户研究、以及对特定任务的定制化提示设计。
2025-02-21
deekseek生成助手提示词的指令
以下是关于 DeepSeek 生成助手提示词的相关内容: 一、核心原理认知 1. AI 特性定位 多模态理解:支持文本/代码/数学公式混合输入 动态上下文:对话式连续记忆(约 4K tokens 上下文窗口,换算成汉字是 8000 字左右) 任务适应性:可切换创意生成/逻辑推理/数据分析模式 2. 系统响应机制 采用意图识别+内容生成双通道 自动检测 prompt 中的:任务类型/输出格式/知识范围 反馈敏感度:对位置权重(开头/结尾)、符号强调敏感 二、基础指令框架 如果不知道如何表达,还是可以套用框架指令 1. 四要素模板 2. 格式控制语法 强制结构:使用```包裹格式要求 占位符标记:用{{}}标注需填充内容 优先级符号:>表示关键要求,!表示禁止项 三、进阶控制技巧 1. 思维链引导 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差 2. 知识库调用 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破 3. 多模态输出 四、高级调试策略 1. 模糊指令优化 问题类型 修正方案 示例对比 宽泛需求:添加维度约束,原句:“写小说”→修正:“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构” 主观表述:量化标准,原句:“写得专业些”→修正:“符合 IEEE 论文格式,包含 5 项以上行业数据引用” 2. 迭代优化法 首轮生成:获取基础内容 特征强化:请加强第三段的技术细节描述 风格调整:改用学术会议报告语气,添加结论部分 最终校验:检查时间逻辑一致性,列出可能的事实性错误 五、行业应用案例 1. 技术开发场景 2. 商业分析场景 六、异常处理方案 1. 信息幻觉:追加请标注所有不确定陈述,并提供验证方法 2. 格式偏离:使用严格遵循以下模板:第一行...第二行... 3. 深度不足:触发请继续扩展第三章节内容,添加案例佐证 七、效能监测指标 1. 首次响应准确率:目标>75% 2. 多轮对话效率:问题解决平均轮次<3 3. 复杂任务分解:支持 5 级子任务嵌套 此外,还有关于利用 DeepSeek 生成小红书爆款单词视频的相关内容: 1. 生成单词 开始:输入单词主题、图片风格、单词数量。 生成单词数组:选择 deepseekr1 模型,输入单词主题、单词数量,这样 deepseek 就可以为用户输出指定数量的几个单词,以数组方式输出。 2. 角色:您是一个专业的单词生成助手,擅长围绕各种主题挖掘相关英语单词,为用户提供精准且实用的单词、中文、美式音标内容。 3. 技能:输出关联英语单词,当用户输入主题时,分析主题内涵,运用专业知识,输出指定数量个与该主题紧密关联的英语单词、中文翻译、美式音标,将该单词用于一句英文中(不超过 15 个单词),并将这句英文句子翻译成中文句子,并以数组形式呈现。 4. 限制:仅围绕用户输入主题输出相关英语单词、中文翻译、美式音标,不涉及其他领域内容。输出必须为符合要求的数组形式,英文单词对应变量 yingwen,中文翻译对应变量 zhongwen,美式音标对应变量 yinbiao,英文句子对应变量 juzi_yingwen,中文句子翻译对应变量 juzi_zhongwen,不得有其他格式偏差。
2025-02-21
如何使用ai提示词
以下是关于如何使用 AI 提示词的详细介绍: 1. 提示词的定义和输入语言: 提示词用于描绘您想要的画面。 不同模型对输入语言有不同要求,如星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如“一个长头发的金发女孩”),基础模型 1.5 使用单个词组(如“女孩、金发、长头发”),且支持中英文输入。 2. 写好提示词的方法: 预设词组:小白用户可点击提示词上方官方预设词组进行生图。 内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,例如“一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量”。 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,输入不想生成的内容,如“不好的质量、低像素、模糊、水印”。 利用“加权重”功能:在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。还可对已有的提示词权重进行编辑。 辅助功能:包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。 3. 对使用提示词的认识: 不能期待设计一个完美的提示词就得到完美答案,提示词实际上是一个相对完善的“谈话方案”,成果在与 AI 的对话中产生,需要在对话中限缩自己思维中的模糊地带。 要接受 AI 的“不稳定性”,对其进行教育、监督和鞭策。
2025-02-21
Prompt 提示词
以下是关于 Prompt 提示词的全面介绍: 一、如何编写提示词 1. 明确任务:清晰定义任务,如写故事时包含背景、角色和主要情节。 2. 提供上下文:若任务需特定背景知识,提供足够信息。 3. 使用清晰语言:用简单、清晰的语言描述,避免模糊或歧义词汇。 4. 给出具体要求:明确格式、风格等要求。 5. 使用示例:提供期望结果的示例。 6. 保持简洁:避免过多信息导致困惑。 7. 使用关键词和标签:帮助模型理解任务主题和类型。 8. 测试和调整:根据生成结果检查并调整。 二、如何润色或优化 Prompt 1. 明确具体描述:使用更具体、细节的词语和短语。 2. 添加视觉参考:插入相关图片参考。 3. 注意语气和情感:用合适的形容词、语气词调整整体语气和情感色彩。 4. 优化关键词组合:尝试不同搭配和语序。 5. 增加约束条件:添加限制性条件,如分辨率、比例等。 6. 分步骤构建 Prompt:将复杂需求拆解为逐步的子 Prompt。 7. 参考优秀案例:研究有效的 Prompt 范例,借鉴写作技巧和模式。 8. 反复试验、迭代优化:多次尝试不同写法并根据效果反馈优化。 三、星流一站式 AI 设计工具中的 Prompt 输入框 1. 提示词用于描绘画面。 2. 输入语言: 星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发)。 支持中英文输入。 3. 提示词优化:启用后可扩展提示词,更生动描述画面内容。 4. 写好提示词的方法: 预设词组:小白用户可点击官方预设词组生图。 提示词内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等。 调整负面提示词:点击齿轮按钮弹出负面提示词框,帮助 AI 理解不想生成的内容。 利用“加权重”功能:在功能框增加提示词并调节权重,数值越大越优先,也可编辑已有提示词权重。 辅助功能:包括翻译功能(一键将提示词翻译成英文)、删除所有提示词(清空提示词框)、会员加速(加速图像生图速度,提升效率)。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-21
图像生成的提示词
以下是关于图像生成提示词的相关内容: 1. 藏师傅教您用 AI 三步制作任意公司的周边图片: 第一步:将生成的提示词填入{图像描述}位置,将想生成的周边填入{周边描述}部分。例如:“The pair of images highlights a logo and its realworld use for a hitech farming equipment;this logo is applied as a black and white tattoo on lower back of an inmate”。参考此内容和风格特点创作类似提示词,然后根据{周边描述}设计配套的右侧面板描述,表达“展示同样的内容(可以是角色、标志等)”的意思。 第二步:将第二步的提示词和 Logo 图片放到 Comfyui 工作流,Lora 需要用到 InContext LoRA 中的 visualidentitydesign 从 https://huggingface.co/alivilab/InContextLoRA/tree/main 下载,工作流下载:https://github.com/op7418/Comfyuiworkflow/blob/main/FLUX/Logo%20%E5%91%A8%E8%BE%B9%E7%94%9F%E6%88%90.json 。 相关文件下载: 。 2. “城市狂想”直接上手操作的教程中图片提示词生成: 提供了猫叔之前写的一段提示词的 prompt,例如: 远景,三分法构图,俯视视角,数字绘画,云雾缭绕的山谷,群山连绵起伏,山谷间云雾缭绕,阳光透过云层洒在山间,形成光与影的对比,模拟观众的视线逐渐接近这片土地,新印象派风格特征,使用数字画笔和渐变工具ar 16:9v 6.1 。 远景,中心对称构图,俯视视角,摄影风格,云雾中的山谷,山峦在云雾中若隐若现,山谷中隐约可见的河流蜿蜒流淌,云雾的流动感和山的静态形成对比,现实主义风格特征,使用长焦镜头和景深控制技术ar 3:2v 6.1 。 远景,对角线构图,俯视视角,水墨画风格,云雾缭绕的山谷,山峦线条流畅,云雾以墨色深浅表现,山谷中的云雾仿佛在流动,给人以动态的视觉感受,中国山水画风格特征,使用毛笔和水墨渲染技术ar 2:3v 6.1 。 为大家直接生成了 1 组共 12 段提示词,可直接使用。注意:提示词在悠船和 MJ 中可直接使用,在其他平台工具请复制后删除包含以后的部分。 以悠船为例,进入悠船页面,点击开始想象按钮,粘贴提示词,回车等待几十秒生成 4 张图片,可选择喜欢的图片进行变化、高清、重塑、扩图等操作。变化会生成 4 张新图片,高清选择直接变化不明显,选择强烈会修改细节,重塑分为细微和强烈两种方式,会展现不同画面类型和内容。
2025-02-21