直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

当前电商领域有哪些智能体可以用

回答

在电商领域,以下是一些常见的智能体类型及应用示例:

  1. 简单反应型智能体:如温控器,根据当前的感知输入直接采取行动,不维护内部状态和考虑历史信息。
  2. 基于模型的智能体:像自动驾驶汽车,维护内部状态,对当前和历史感知输入进行建模,能推理未来状态变化并据此行动。
  3. 目标导向型智能体:例如机器人导航系统,具有明确目标,能评估行动方案并选择最优行动。
  4. 效用型智能体:如金融交易智能体,能量化不同状态的效用值,选择效用最大化的行动。
  5. 学习型智能体:例如强化学习智能体,通过与环境交互不断学习最优策略。

以“什么值得买”智能体为例,当用户输入“我想买个笔记本电脑”,智能体会先提取关键词,再通过相关 API 检索商品信息,与内置提示词组装后请求大模型回答,成为电商导购类的垂直搜索应用,在商品推荐方面效果较好。

此外,工作流(Workflow)也可理解为多智能体协作(Multi-Agents),通过多个智能体的组装解决复杂场景的搜索问题。例如给新产品取名,可定义多个智能体分别负责不同功能,还需要有调度中枢协调工作和做决策。

还有“买买买!💥产品买点提炼神器强化版🚀”智能体,专注于市场营销领域,能帮助用户从产品出发挖掘卖点并转化为买点,生成小红书文案和抖音短视频脚本等,并保存至飞书文档。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

问:什么是智能体 Agent

智能体可以根据其复杂性和功能分为几种类型:1.简单反应型智能体(Reactive Agents):这种智能体根据当前的感知输入直接采取行动。不维护内部状态,也不考虑历史信息。示例:温控器,它根据温度传感器的输入直接打开或关闭加热器。2.基于模型的智能体(Model-based Agents):维护内部状态,对当前和历史感知输入进行建模。能够推理未来的状态变化,并根据推理结果采取行动。示例:自动驾驶汽车,它不仅感知当前环境,还维护和更新周围环境的模型。3.目标导向型智能体(Goal-based Agents):除了感知和行动外,还具有明确的目标。能够根据目标评估不同的行动方案,并选择最优的行动。示例:机器人导航系统,它有明确的目的地,并计划路线以避免障碍。4.效用型智能体(Utility-based Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动。评估行动的优劣,权衡利弊。示例:金融交易智能体,根据不同市场条件选择最优的交易策略。5.学习型智能体(Learning Agents):能够通过与环境的交互不断改进其性能。学习模型、行为策略以及目标函数。示例:强化学习智能体,通过与环境互动不断学习最优策略。

工具:我做了一个 AI 搜索引擎

以Kimi+的“什么值得买”智能体举例,假设用户输入“我想买个笔记本电脑”,智能体会先做Query Rewrite提取出“笔记本电脑”关键词,再通过“什么值得买”的API检索对应的商品信息,拿到检索结果后,跟智能体内置的提示词组装成上下文,请求大模型回答。于是这个智能体便成了一个电商导购类的垂直搜索()应用,在商品推荐方面有更好的回答效果。1.工作流Workflow工作流Workflow也可以理解为多智能体协作Multi-Agents,通过多个智能体的组装,解决一些复杂场景的搜索问题。比如:给新产品取名,我习惯的步骤是告诉大模型新产品是做什么的,大模型推荐几个可取的名字选择其中一个名字,去谷歌检索,是否有同名去Twitter检索是否有同名去Github检索是否有同名选择一个域名,去Namecheap搜索是否已被注册全部检测通过,确定产品名,注册域名这里涉及到一个回溯的问题,也就是在其中某个步骤发现产品名不可用,要回到第一步重新选择名字,再继续走后面的检测步骤。人工去做这件事,毫无疑问是很费时间的。AI搜索+Workflow的模式,可以有效解决这个问题。首先定义几个智能体,每个智能体完成一项功能。比如A智能体只负责给出建议的名字,B智能体负责检索谷歌是否有同名,C智能体负责检索Twitter是否有同名,D智能体负责检测Github是否有同名,E智能体负责检测可用的域名...另外还需要有一个调度中枢,协调每个智能体的工作,需要做决策,决定是继续下一步还是回溯到之前的步骤。

【买买买!💥产品买点提炼神器强化版🚀】 一站式营销内容解决方案

|智能体名称|买买买!💥产品买点提炼神器强化版🚀||-|-||智能体简介|🏷️领域:市场营销——深耕营销10年,服务上百个品牌,深谙营销理论与实践。<br>🏷️解决痛点:在市场营销领域,普遍存在这样一种现象,即往往越是专业的人,越容易讲出供给侧视角的专业语言(业内“黑话”),但用户真的听得懂/可以彻底理解吗?我们究竟是为了显得我们专业?还是为了把产品/服务卖给用户,让其付费买单?如果是后者,那是不是应该用更容易打动用户的需求侧语言来做营销呢?<br>🏷️本智能体是产品营销阶段的重要经验总结,将帮助用户从产品出发,通过沟通,准确挖掘属于产品的卖点(供给侧视角),并将他们转化成用户更友好的买点(需求侧视角),并基于此,帮助用户生成好用的“小红书文案”和“抖音短视频脚本”,并可以将内容保存至飞书文档。|

其他人在问
智能体在电商领域的应用
智能体在电商领域有以下应用: 1. 电商导购:以“什么值得买”智能体为例,当用户输入“我想买个笔记本电脑”,智能体会先提取关键词“笔记本电脑”,通过相关 API 检索商品信息,与内置提示词组装成上下文,请求大模型回答,提供更好的商品推荐效果。 2. 工作流协作:工作流也可理解为多智能体协作,通过多个智能体的组装解决复杂场景的搜索问题。例如给新产品取名,涉及多个步骤和检测,人工操作费时,而 AI 搜索与 Workflow 模式可有效解决,通过定义多个智能体完成各项功能,并由调度中枢协调工作和决策。 在品牌卖点提炼方面: 1. 构建中对结构的理解和控制最为重要,旨在提供结构化思路,单点可通过不断迭代完善。品牌卖点提炼助手本质是办公助手,能为有营销思维的团队提供思路,提高团队效率。 2. 实际搭建需根据公司业态调整,给智能体更多提示词提升分析合理性。不同行业的线上、线下和人员触点不同,遵循营销管理流程保证输出,调整提示词提升准确度。营销管理结构化提示词中避免依赖举例,决策和洞察力仍依赖人员,智能体作为灵感助手辅助决策。 3. 最终提炼的品牌卖点应用于与用户交互的所有场景,即触点,包括线上(如微信、抖音等平台)、线下(产品到达消费者手上的场景或线下实体门店场景)和人员(线上直播间、人工客服或线下销售人员等)触点。在最终步骤,需找到所有传达品牌卖点的场景,结合需求制作落地页或沟通话术,建立品牌价值。
2024-12-20
AI智能体在电商领域可落地的应用
AI 智能体在电商领域有以下可落地的应用: 1. 电商导购:以“什么值得买”智能体为例,当用户输入“我想买个笔记本电脑”,智能体会先提取关键词“笔记本电脑”,通过相关 API 检索商品信息,与内置提示词组装成上下文,请求大模型回答,从而提供更好的商品推荐效果。 2. 工作流优化:工作流也可理解为多智能体协作,通过多个智能体的组装解决复杂场景的搜索问题。例如给新产品取名,涉及多个步骤和检测,人工操作费时,而 AI 搜索与 Workflow 模式可有效解决,通过定义多个完成不同功能的智能体,并由调度中枢协调工作和决策。 3. 品牌卖点提炼:AI 在逻辑推理、数据分析、内容理解和输出上有独特优势,可搭建品牌卖点提炼助手。但在搭建前需明确 AI 的能力边界,如对公司产品、独特之处、核心渠道等了解有限。AI 更适合做引导型助手,在寻找卖点陷入停滞时提供更多思考维度。实际搭建时,除遵循营销管理流程保证输出合理,还需根据公司业态调整智能体提示词以提升信息准确度。对于电商产品,需考虑线上线下不同触点和人员等因素。
2024-12-19
AI智能体在电商领域营销助手应用
AI 智能体在电商领域营销助手方面有以下应用: 1. 品牌卖点提炼: 智能体的构建中,理解和控制结构最为重要,其本质是办公助手,能为有营销思维的团队提供思路,提高效率。 实际搭建要根据公司业态调整,给智能体更多提示词提升分析合理性。例如电商产品,线上触点有淘系、京东系等电商平台和抖音、小红书等兴趣电商内容平台,线下触点包括产品包装、包裹等,人员触点有销售人员等;线下实体服务行业,线上触点有大众点评/美团等,线下触点有门店展示等。 遵循营销管理流程构建智能体可保证输出准确,调整提示词能提升某部分助手信息准确度,但注意营销管理结构化提示词中不要依赖举例,以免限制 AI 创造性思维。 2. 电商导购: 以“什么值得买”智能体为例,用户输入“我想买个笔记本电脑”,智能体会提取关键词,通过 API 检索商品信息,与提示词组装后请求大模型回答,成为电商导购类垂直搜索应用,提升商品推荐效果。 工作流 Workflow 可理解为多智能体协作,通过多个智能体组装解决复杂场景搜索问题,如新产品取名,涉及多个步骤和智能体,还需调度中枢协调工作和决策。 3. 搭建智能体提炼品牌卖点: AI 在逻辑推理、数据分析等方面有强项,可用于品牌卖点提炼,搭建品牌卖点提炼助手。 搭建前要明确 AI 能力边界,如 AI 不了解公司产品、独特之处等。 AI 真正的能力是逻辑推理、处理分析数据等,确定的智能体更适合做引导型助手,在寻找卖点陷入停滞时提供思考维度。
2024-12-19
AI智能体在电商领域到底能做什么
AI 智能体在电商领域主要有以下应用: 1. 电商导购:以“什么值得买”智能体为例,当用户输入购买需求,如“我想买个笔记本电脑”,智能体会提取关键词,通过相关 API 检索商品信息,与内置提示词组装成上下文,请求大模型回答,提供更精准的商品推荐。 2. 工作流协作:通过多个智能体的组装,解决复杂场景的搜索问题。例如给新产品取名,定义多个智能体分别负责不同功能,如给出建议名字、检索是否同名等,同时需要调度中枢协调工作,决定是继续下一步还是回溯。 3. 决策支持:如在理赔提交审核中,将付款方规则转换为有向无环图,智能体遍历决策树,利用语言模型评估相关文件是否符合规则,并在复杂任务中选择最佳方法。 4. 品牌卖点提炼:实际搭建中,遵循营销管理流程保证输出合理性,根据电商业态调整单独智能体的提示词提升信息准确度,为营销团队提供更广阔思路和灵感。
2024-12-19
有那些AI工具能运用到抖音电商中
以下是一些能运用到抖音电商中的 AI 工具: 1. 像这样的工具,可帮助品牌创建引人注目的产品照片。 2. 能够制作用于电子邮件或社交媒体的营销材料。 3. 可以编写经过 SEO 优化的产品描述。 此外,使用 AI 来完成电商相关的优化还可以采取以下步骤: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,快速识别关键信息。 2. 关键词优化:AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述。 3. 产品页面设计:AI 设计工具根据市场趋势和用户偏好生成吸引人的页面布局。 4. 内容生成:AI 文案工具撰写有说服力的产品描述和营销文案。 5. 图像识别和优化:AI 图像识别技术选择或生成高质量的产品图片。 6. 价格策略:AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:AI 分析客户评价和反馈,优化产品和服务。 8. 个性化推荐:AI 根据用户购买历史和偏好提供个性化产品推荐。 9. 聊天机器人:AI 驱动的聊天机器人提供 24/7 客户服务。 10. 营销活动分析:AI 分析不同营销活动效果。 11. 库存管理:AI 预测需求,优化库存管理。 12. 支付和交易优化:AI 分析支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:AI 帮助在社交媒体上找到目标客户群体,精准营销提高品牌知名度。 14. 直播和视频营销:AI 分析观众行为,优化直播和视频内容。 还有,它收集了十几款电商领域能用得上的 AI 工具,按照电商的角色进行区分,有产品形态和具体的使用描述,无论您是买家、卖家、渠道还是生产者,都能找到合适的 AI 工具。
2024-12-19
AI在电商领域的应用场景
AI 在电商领域有以下应用场景: 1. 产品推荐:通过分析客户数据,为每个客户推荐可能感兴趣的产品。 2. 搜索和个性化:改善搜索结果,为客户提供个性化的购物体验。 3. 动态定价:根据市场需求动态调整产品价格。 4. 聊天机器人:提供服务,回答客户问题并解决他们的问题。 在生成式 AI 方面,电子商务已成为富有成效的垂直行业之一。相关工具可帮助品牌创建引人注目的产品照片,如将连衣裙的静态照片变成女人穿着裙子在花园行走的形象,预期未来用途将极度个性化,如展示沙发在用户公寓中的照片。品牌还能通过 AI 创作多种内容类型,如用于电子邮件或社交媒体的营销材料、SEO 优化的产品描述等。未来,用户有望仅通过描述期望的审美并点击按钮,创建完整的电商商店及市场营销材料。 此外,还有以下案例场景: 1. 品牌:提升品牌价值,涉及品牌洋葱图思维模型、产品信息、人群等 19 个关键词库。 2. 品牌:分析品牌舆论传播,涵盖舆论传播、数据分析、主题等 25 个关键词库。 3. 推广:制定上市推广方案,包含品牌、产品信息、新品等 28 个关键词库。
2024-12-14
智能体搭建案例
以下为您提供两个智能体搭建案例: 案例一: 智能体名称:市场分析报告 智能体简介:品牌营销公司在用的生成智能体,输入行业/类目关键词自动检索关联信息并生成报告。数据化呈现更具真实性,附带信息来源网址便于源信息校正。可帮助品牌主/营销人员减少信息收集时间,聚焦决策判断。 应用场景: 目标人群:企业管理层(做发展策略评估)、投资者(评估投资机会)、创业者(评估项目可行性)、营销人员(做营销计划依据)。 当前痛点:信息收集需要长时间;报告的真实性是否可验证;现有大模型做的市场报告太过概念化,不能做有效参考。 应用价值:减少信息收集时间、真实可验证、聚焦决策判断。 智能体主要功能:根据用户的要求或指定的行业、产品,搜索网络信息,生成一份完整的市场调研报告,用数据支撑,并附引用链接。 案例二: 智能体开发平台:字节扣子和腾讯元器。 概念定义:智能体(Agent)简单理解就是 AI 机器人小助手,参照移动互联网,类似 APP 应用的概念。AI 大模型是技术,面向用户提供服务的是产品,很多公司开始关注 AI 应用层的产品机会。 C 端案例:社交方向,用户注册后先捏一个自己的 Agent,然后让自己的 Agent 和其他人的 Agent 聊天,两个 Agent 聊到一起后再真人介入;还有借 Onlyfans 入局打造个性化聊天的创业公司。 B 端案例:帮助 B 端商家搭建 Agent。 智能体开发平台介绍:字节于 2 月 1 日正式推出 AI 聊天机器人构建平台 Coze 的国内版“扣子”,主要用于开发下一代 AI 聊天机器人。国内还有很多智能体开发平台,如 Dify.AI,但个人比较常用的还是扣子。
2024-12-20
哪个智能体能够根据用户的购物历史、浏览行为和偏好,提供个性化的产品推荐。
以下智能体能够根据用户的购物历史、浏览行为和偏好提供个性化的产品推荐: 1. 电子商务网站:通过收集用户的购物历史和浏览习惯等数据,使用机器学习和数据挖掘技术进行分析,从而推荐相似产品。 2. 基于人工智能的语音助手:可以分析用户行为、偏好以及历史购买记录,为用户提供更个性化的商品推荐,提升购物体验。 3. 中小企业:利用 AI 分析客户行为数据,包括购买历史、浏览记录、反馈等,基于分析结果生成个性化的产品推荐和服务。 4. 扣子模板中的个性化推荐引擎:利用人工智能和机器学习算法,根据用户的历史行为和偏好,实时推荐最相关的产品或服务,以提升转化率。
2024-12-20
我想用coze搭建一个智能体,关于自然语言课程的期末复习指南,要将我的教材导入扣子作为知识库,智能体支持用户提问,搜索知识点,结合知识库和互联网搜索的内容给出问答,需要使用多智能体或工作流,使用卡片功能进行显示,请给出我搭建这个智能体的步骤
以下是使用 Coze 搭建一个关于自然语言课程期末复习指南智能体的步骤: 1. 访问 Coze 官网(https://www.coze.cn),注册并登录。 2. 点击页面左上角的⊕,通过【标准创建】填入智能体的基本信息。 3. 了解 Bot 开发调试界面: 人设与回复逻辑(左侧区域):设定智能体的对话风格、专业领域定位,配置回复的逻辑规则和限制条件,调整回复的语气和专业程度。 功能模块(中间区域): 技能配置: 插件:扩展智能体的专业能力,如计算器、日历等工具。 工作流:设置固定的处理流程和业务逻辑。 图像流:处理和生成图像的相关功能。 触发器:设置自动化响应条件。 知识库管理: 文本:存储文字类知识材料。 表格:结构化数据的存储和调用。 照片:图像素材库。 记忆系统: 变量:存储对话过程中的临时信息。 数据库:管理持久化的结构化数据。 长期记忆:保存重要的历史对话信息。 文件盒子:管理各类文档资料。 交互优化(底部区域): 开场白:设置初次对话的问候语。 用户问题建议:配置智能推荐的后续问题。 快捷指令:设置常用功能的快速访问。 背景图片:自定义对话界面的视觉效果。 预览与调试(右侧区域):实时测试智能体的各项功能,调试响应效果,优化交互体验。 4. 设定智能体的人设与回复逻辑后,为智能体配置对应的技能,以保证其可以按照预期完成目标任务。例如,以获取 AI 新闻的智能体为例,需要为它添加一个搜索新闻的接口来获取相关新闻。具体操作如下: 在智能体编排页面的技能区域,单击插件功能对应的+图标。 在添加插件页面,选择相关功能,然后单击新增。 修改人设与回复逻辑,指示智能体使用相应插件来搜索所需内容。 (可选)为智能体添加开场白,让用户更好地了解智能体的功能。开场白功能目前支持豆包、微信公众号(服务号)。 5. 配置好智能体后,在预览与调试区域中测试智能体是否符合预期。可单击清除图标清除对话记录。 6. 完成测试后,将智能体发布到社交渠道中使用。具体操作如下: 在智能体的编排页面右上角,单击发布。 在发布页面输入发布记录,并勾选发布渠道。 单击发布。 更多内容,请访问 Coze 官方文档: 英文版:https://www.coze.com/docs/welcome.html 中文版:https://www.coze.cn/docs/guides/welcome
2024-12-20
智能图书馆的技术价值
智能图书馆的技术价值主要体现在以下方面: RAG(检索增强生成)技术: 工作原理: 检索(Retrieval):如同图书馆员根据描述从庞大知识库中找出相关书籍和文章,系统从知识库或文档集合中找到与用户问题相关的内容。 增强(Augmented):类似图书馆员挑选出最相关段落和信息并汇总,大模型对检索到的信息进行筛选和优化,确保选中最相关和有用的信息。 生成(Generation):如同图书馆员把汇总信息组织成连贯、易懂的回答,大模型将整合的信息生成自然流畅的回答。 综合解释:RAG 就像超级智能的图书馆员,先检索相关信息,再筛选优化,最后生成连贯回答。 优点: 成本效益:实现成本低于训练和维护大型专有模型。 灵活性:可利用多种数据源,包括结构化和非结构化数据,迅速适应不同领域和变化的数据。 可扩展性:随时增加或更新知识库内容,无需重新训练模型。 缺点:回答准确性不如专有模型的方案。 其他相关技术: DALLE 3:与 ChatGPT 结合,用户输入会话命令可获得匹配图像,改善了之前图像生成器的操作方式。 开放式有声读物集合:微软和麻省理工学院联手,使用文本转语音技术将 5000 本书转换为免费有声读物并在 Spotify 上提供。 AudioShake 的 AI 程序:可隔离预先录制音频的元素,分解成组成部分,解决老音乐音轨分离问题。 Ai Pin:磁性连接衣服成为 AI 助手,使用专有软件和 OpenAI 的 GPT,仅用声音就能完成多种操作。
2024-12-19
怎么用扣子搭建一个仿写文章的智能体
以下是关于用扣子搭建仿写文章智能体的相关信息: 生物医药小助手:这是生物医药垂直领域的第一个智能体,其创建者将个人发布的大量生物医药文章转化为可交互数据库,以解决读者咨询占用过多时间的问题。通过扣子平台,解决了高成本搭建问题,并实现了一问一答的形式,用户可在扣子的 bot 商店或公众号中发起问答。 手搓插件:可参考相关文章和链接,了解在扣子中手搓插件的方法,包括 API 参数测试等步骤。 竖起耳朵听智能体:其编排包括插件、工作流和知识库。插件如同工具箱,可添加现有或自制的 API 以增强智能体能力;工作流像可视化拼图游戏,由多个节点组成,可组合各种功能创建复杂稳定的业务流程。 如果您想进一步了解具体的搭建步骤和细节,还需要您提供更明确的需求。
2024-12-19
aigc的当前生态
AIGC 的当前生态主要包括以下方面: 1. 概述:GenAI(生成式 AI)能够从已有数据中学习并生成新的数据或内容,利用 GenAI 创建的内容即 AIGC。作为强大的技术,能赋能诸多领域,但存在合规风险,我国对 AIGC 的监管框架由多部法律和规定构成。 2. 分类:AIGC 主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用多种模型,如 GPT4 和 GeminiUltra;图像生成依赖多种技术,代表项目有 Stable Diffusion 和 StyleGAN 2;音视频生成利用多种模型,代表项目有 Sora 和 WaveNet。 3. 应用领域:AIGC 可应用于音乐生成、游戏开发、医疗保健等领域,在游戏开发和制作的整个生命周期的多个阶段都有应用,例如用文本生成平面图像,像 Midjourney、Stable Diffusion 和 DallE 2 等工具可将文本描述生成高质量二维图像。 4. 产品原型设计工具:目前有 UIzard、Figma、Sketch 等基于 AIGC 的工具可用于产品原型设计,其 AI 功能包括自动生成设计元素、提供设计建议、优化用户界面布局等。随着技术发展,未来可能会有更多专门针对产品原型设计的 AIGC 工具出现。
2024-12-13
当前应用AGI,作为一个普通的人,如何挖掘赚钱的机会
以下是关于普通人在 AGI 应用中挖掘赚钱机会的一些分析和建议: 从历史角度看,在 IT 产业中,只有微软的操作系统曾接近垄断并获得超额收益,这并非必然,与当时的多种因素相关。在大模型时代,这种情况能否重演存在不确定性。 在 2024 年,一些可能的赚钱机会包括: 图片超短视频的精细操控,如表情、细致动作、视频文字匹配方面。 生成有一定操控能力的风格化、动漫风生成式短视频,真人稍晚。 AI 音频能力的长足进展,如带感情的 AI 配音基本成熟。 “全真 AI 颜值网红”出现,用于直播带货。 游戏 AI NPC 有里程碑式进展,带来新的游戏生产方式。 AI 男/女朋友聊天基本成熟,记忆有突破,加入视频音频,粘性提升并开始出圈。 实时生成的内容在社交媒体内容、广告中出现。 AI Agent 有明确进展,办公场景“AI 助手”有良好使用体验。 AI 的商业模式在数据合成、工程平台、模型安全等方面开始有明确用例。 从长远来看,到 2025 2027 年: AI 3D 技术、物理规则成熟,全真 AI 虚拟人成熟,AR/VR 技术大规模商用。 人与 AI 配合的工作方式成为常态,很多日常决策由 AI 执行。 基于国产芯片的软硬件联合优化固件生态是明确的机会。 但同时需要注意,AGI 可能会造成极端垄断,提供前所未有的中心化操控能力。在这种情况下,作为个体需要思考应对策略。
2024-12-09
如何才能做到用AI制作超级搞笑、引发共鸣、结合当前热点的段子,类似于脱口秀台词,需要几个步骤,怎么做
以下是用 AI 制作类似于脱口秀台词的超级搞笑、引发共鸣且结合当前热点段子的步骤: 1. 明确主题和热点:确定您想要围绕的当前热点话题,以及段子的大致主题和方向。 2. 构思创意:思考有趣、独特且能引发共鸣的情节和表述方式。 3. 生成台词:利用 AI 工具,输入相关的提示词,如描述您想要的幽默风格、情感色彩、语言特点等,让 AI 生成初步的台词。 4. 剪辑流程:对生成的台词进行筛选和整理,确定镜号、内容和对应的 Prompt。例如,像“男人躺在云中,四肢伸展,表情惬意”这样的具体描述。 5. 优化和完善:检查生成的段子是否足够搞笑、是否能引发共鸣、是否紧密结合了热点,对不满意的部分进行修改和优化。
2024-12-09
当前国内逻辑推理能力最强的大模型是什么
目前国内逻辑推理能力较强的大模型有以下几种: 1. Baichuan213BChat(百川智能):是百川智能自主训练的开源大语言模型。在逻辑推理、知识百科、生成与创作、上下文对话等基础能力上排名 200 亿参数量级国内模型第一,其中逻辑推理能力超过 34B 参数量级的大模型,生成与创作能力超过 72B 参数量级的模型。可应用于小说/广告/公文写作等内容创作场景、智能客服/语音助手以及任务拆解规划等场景,还能部署在教育、医疗、金融等垂直行业中应用,同时可部署在低算力终端处理基础智能任务。 2. 智谱清言(清华&智谱 AI):是智谱 AI 和清华大学推出的大模型产品,基础模型为 ChatGLM 大模型。在工具使用排名国内第一,在计算、逻辑推理、传统安全能力上排名国内前三。可应用于 AI 智能体方面相关的应用,包括任务规划、工具使用及一些长文本记忆相关的场景,在较复杂推理应用上的效果也不错,广告文案、文学写作方面也是很好的选择。 3. 文心一言 4.0API(百度):在计算、逻辑推理、生成与创作、传统安全这 4 大基础能力上排名国内第一。另外在代码、知识与百科、语言理解与抽取、工具使用能力上排名国内前三。能力栈较为广泛,可应用于查询搜索知识应用、任务拆解规划 Agent、文案写作以及代码编写及纠错等方面,在科学研究、教育、工业方面的落地能力也值得关注。
2024-12-08
当前AI绘图的前沿图景
当前 AI 绘图的前沿图景包括以下几个方面: 定义与发展: AI 绘画是利用人工智能技术,通过算法和模型让计算机生成具有一定艺术效果的图像。早期成果较为简单粗糙,随着技术进步,尤其是深度学习算法如卷积神经网络的应用,能生成更复杂、逼真和富有创意的图像,涵盖各种风格和题材,并在与人类艺术家的互动融合中不断创新,为艺术创作带来新的可能和挑战。 场景应用: 1. 广告设计:可快速生成各种创意概念图,为广告策划提供灵感和初稿。 2. 游戏开发:用于创建游戏场景、角色形象等,提高开发效率。 3. 影视制作:辅助生成特效场景、概念设计等。 4. 建筑设计:帮助设计师构想建筑外观和内部布局。 艺术与科技的融合: 艺术与科技的融合呈现出前所未有的奇妙景象,AI 绘画作为杰出代表,将二者完美结合,开启探索之旅,引领艺术界走向未来。艺术创作通常依赖手工技艺和个人感悟,而人工智能技术的发展使艺术创作经历革命性变革,AI 绘画利用机器学习和深度学习等技术,能模拟创作过程并生成令人惊叹的作品,为艺术家提供新工具,为观众带来新体验,也打破了传统创作的局限,为缺乏绘画技巧的人提供参与机会,使艺术更具民主化和包容性。 商业实战案例: 如 Midjourney 在概念篇中生成令人惊叹的宇宙星空、未来主题等超现实主义的图片,包括宇宙飞船、星系、行星、太空等元素,呈现出高度详细、动态、富有表现力的效果,具有逼真的灯光和阴影,应用于未来太空科技风格等领域,带来震撼的视觉体验。 您可以通过以下链接体验 AI 绘画助手: BotID:7387390303403671587
2024-12-03
ChatGPT当前的局限是什么
ChatGPT 目前存在以下局限: 1. 在深度逻辑推理、复杂计算、科研探索等领域存在较大局限性。 2. 在进行最后阶段的 RLHF 时,可能仅在做通用泛化上的对齐,如基于 QA 交互层面对生成内容的交互性、合理性、安全性、风险性等进行对齐。 3. 对稍微大一点的场景设计容易出现上下文衔接不上的问题,回复可能越到后面越脱离当前场景做新的不符合当前场景的设计。 4. 有时候会虚构事实并作出错误的推理。 5. 需要使用一种可能与大脑相当不同且在某些方面效率远低于大脑的策略,内部没有“循环”或“重新计算数据”,这不可避免地限制了其计算能力。 6. 目前尚不清楚如何在解决相关问题的同时保持训练系统的合理效率。
2024-12-03
AI领域最前沿技术的最核心的论文
以下是为您整理的关于 AI 领域最前沿技术核心论文的相关内容: 1. 《Attention is All You Need》:这篇由 Google Brain 团队撰写的论文介绍了 Transformer 架构,彻底改变了 AI 领域的格局。它能够处理未标记的、混乱的数据,并且比以前的方法更加高效。 2. 杰弗里·辛顿(Geoffrey E. Hinton)的相关论文: 描述极化子的“The Contribution of Excitons to the Complex Dielectric Constant of Crystals”(1958 年)。 描述长程电子转移量子力学的“Electron transfer between biological molecules by thermally activated tunneling”(1974 年)。 “Kinetic Proofreading:1974 年)。 “神经网络和具有突发性集体计算能力的物理系统”(1982 年)(被称为 Hopfield 网络)。 与 D.W.Tank 合著的“优化问题中决策的神经计算”(1985 年)。 在这篇文章中,作者分享了一份用于更深入了解现代 AI 的精选资源列表,称其为“AI 典藏”。这些论文、博客文章、课程和指南在过去几年中对该领域产生了巨大影响。同时,还介绍了 AI 技术的发展历程,如 2015 年 AI 系统的局限性,以及 Transformer 架构出现后为 OpenAI 发展带来的影响。
2024-12-19
对人工智能伦理规范的理解,包括现有规范具体内容、现有问题、应当如何规范,并从一个具体领域说明,例如:金融人工智能
以下是关于人工智能伦理规范的相关内容: 现有规范具体内容: 国家人工智能产业综合标准化体系建设指南(征求意见稿)中,安全/治理标准包括人工智能领域的安全、治理等部分。安全标准规范了人工智能全生命周期的安全要求,治理标准规范了人工智能的技术研发和运营服务等要求,包括伦理治理要求。 欧洲议会和欧盟理事会规定了人工智能的统一规则,其中提到高级别专家组制定了七项不具约束力的人工智能伦理原则,包括人类主体和监督、技术稳健性和安全性、隐私和数据治理、透明度、多样性、非歧视和公平、社会和环境福祉以及问责制。 现有问题: 文中未明确提及现有规范存在的具体问题。 应当如何规范: 鼓励非高风险人工智能系统的提供者制定行为守则,包括相关的治理机制,以促进自愿适用适用于高风险人工智能系统的部分或全部强制性要求,并根据系统的预期目的和所涉及的较低风险进行调整,考虑可用的技术解决方案和行业最佳实践。 鼓励所有人工智能系统的提供者和模型的提供者,在自愿的基础上适用与欧洲可信人工智能伦理准则要素、环境可持续性、人工智能素养措施、人工智能系统的包容性和多样化设计与开发等有关的额外要求。 以金融人工智能为例: 在金融领域应用人工智能时,应遵循上述的伦理规范和要求。例如,要确保数据的隐私和安全,模型的稳健性和可靠性,避免歧视和不公平,保证透明度和可解释性,同时要接受监管和审查,以降低金融风险,保障金融市场的稳定和公平。
2024-12-18