Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

阅读管理学领域的学术文献,哪个AI的大模型提炼信息更精准,更快速

Answer

目前在管理学领域学术文献的信息提炼方面,不同的 AI 大模型各有特点,难以确切地说哪个模型更精准、更快速。一些常见的大模型如 GPT-4、文心一言等在处理自然语言和提取信息方面都具有一定的能力,但它们在不同类型和主题的文献处理上可能表现各异。这还取决于文献的具体内容、格式和复杂程度等因素。

Content generated by AI large model, please carefully verify (powered by aily)
Others are asking
如何让企业微信可以接上 AI?让我的企业微信号变成一个 AI 客服
要让企业微信接上 AI 并变成一个 AI 客服,可以参考以下内容: 1. 基于 COW 框架的 ChatBot 实现方案:这是一个基于大模型搭建的 Chat 机器人框架,可以将多模型塞进微信(包括企业微信)里。张梦飞同学写了更适合小白的使用教程,链接为: 。 可以实现打造属于自己的 ChatBot,包括文本对话、文件总结、链接访问、联网搜索、图片识别、AI 画图等功能,以及常用开源插件的安装应用。 正式开始前需要知道:本实现思路需要接入大模型 API 的方式实现(API 单独付费)。 风险与注意事项:微信端因为是非常规使用,会有封号危险,不建议主力微信号接入;只探讨操作步骤,请依法合规使用,大模型生成的内容注意甄别,确保所有操作均符合相关法律法规的要求,禁止将此操作用于任何非法目的,处理敏感或个人隐私数据时注意脱敏,以防任何可能的滥用或泄露。 支持多平台接入,如微信、企业微信、公众号、飞书、钉钉等;多模型选择,如 GPT3.5/GPT4.0/Claude/文心一言/讯飞星火/通义千问/Gemini/GLM4/LinkAI 等等;多消息类型支持,能处理文本、语音和图片,以及基于自有知识库进行定制的企业智能客服功能;多部署方法,如本地运行、服务器运行、Docker 的方式。 2. DIN 配置:先配置 FastGpt、OneAPI,装上 AI 的大脑后,可体验知识库功能并与 AI 对话。新建应用,在知识库菜单新建知识库,上传文件或写入信息,最后将拥有知识库能力的 AI 助手接入微信。
2025-05-09
围棋AI
围棋 AI 领域具有重要的研究价值和突破。在古老的围棋游戏中,AI 面临着巨大挑战,如搜索空间大、棋面评估难等。DeepMind 团队通过提出全新方法,利用价值网络评估棋面优劣,策略网络选择最佳落子,且两个网络以人类高手对弈和 AI 自我博弈数据为基础训练,达到蒙特卡洛树搜索水平,并将其与蒙特卡洛树搜索有机结合,取得了前所未有的突破。在复杂领域 AI 第一次战胜人类的神来之笔 37 步,也预示着在其他复杂领域 AI 与人类智能对比的进一步突破可能。此外,神经网络在处理未知规则方面具有优势,虽然传统方法在处理象棋问题上可行,但对于围棋则困难重重,而神经网络专门应对此类未知规则情况。关于这部分内容,推荐阅读《这就是 ChatGPT》一书,其作者备受推崇,美团技术学院院长刘江老师的导读序也有助于了解 AI 和大语言模型计算路线的发展。
2025-05-08
什么AI工具可以实现提取多个指定网页的更新内容
以下 AI 工具可以实现提取多个指定网页的更新内容: 1. Coze:支持自动采集和手动采集两种方式。自动采集包括从单个页面或批量从指定网站中导入内容,可选择是否自动更新指定页面的内容及更新频率。批量添加网页内容时,输入要批量添加的网页内容的根地址或 sitemap 地址然后单击导入。手动采集需要先安装浏览器扩展程序,标注要采集的内容,内容上传成功率高。 2. AI Share Card:能够一键解析各类网页内容,生成推荐文案,把分享链接转换为精美的二维码分享卡。通过用户浏览器,以浏览器插件形式本地提取网页内容。
2025-05-01
AI文生视频
以下是关于文字生成视频(文生视频)的相关信息: 一些提供文生视频功能的产品: Pika:擅长动画制作,支持视频编辑。 SVD:Stable Diffusion 的插件,可在图片基础上生成视频。 Runway:老牌工具,提供实时涂抹修改视频功能,但收费。 Kaiber:视频转视频 AI,能将原视频转换成各种风格。 Sora:由 OpenAI 开发,可生成长达 1 分钟以上的视频。 更多相关网站可查看:https://www.waytoagi.com/category/38 。 制作 5 秒单镜头文生视频的实操步骤(以梦 AI 为例): 进入平台:打开梦 AI 网站并登录,新用户有积分可免费体验。 输入提示词:涵盖景别、主体、环境、光线、动作、运镜等描述。 选择参数并点击生成:确认提示词无误后,选择模型、画面比例,点击「生成」按钮。 预览与下载:生成完毕后预览视频,满意则下载保存,不理想可调整提示词再试。 视频模型 Sora:OpenAI 发布的首款文生视频模型,能根据文字指令创造逼真且充满想象力的场景,可生成长达 1 分钟的一镜到底超长视频,视频中的人物和镜头具有惊人的一致性和稳定性。
2025-04-20
Ai在设备风控场景的落地
AI 在设备风控场景的落地可以从以下几个方面考虑: 法律法规方面:《促进创新的人工智能监管方法》指出,AI 的发展带来了一系列新的安全风险,如对个人、组织和关键基础设施的风险。在设备风控中,需要关注法律框架是否能充分应对 AI 带来的风险,如数据隐私、公平性等问题。 趋势研究方面:在制造业中,AI Agent 可用于生产决策、设备维护、供应链协调等。例如,在工业设备监控与预防性维护中,Agent 能通过监测传感器数据识别异常模式,提前通知检修,减少停机损失和维修成本。在生产计划、供应链管理、质量控制、协作机器人、仓储物流、产品设计、建筑工程和能源管理等方面,AI Agent 也能发挥重要作用,实现生产的无人化、决策的数据化和响应的实时化。
2025-04-20
ai视频
以下是 4 月 11 日、4 月 9 日和 4 月 14 日的 AI 视频相关资讯汇总: 4 月 11 日: Pika 上线 Pika Twists 能力,可控制修改原视频中的任何角色或物体。 Higgsfield Mix 在图生视频中,结合多种镜头运动预设与视觉特效生成视频。 FantasyTalking 是阿里技术,可制作角色口型同步视频并具有逼真的面部和全身动作。 LAM 开源技术,实现从单张图片快速生成超逼真的 3D 头像,在任何设备上快速渲染实现实时互动聊天。 Krea 演示新工具 Krea Stage,通过图片生成可自由拼装 3D 场景,再实现风格化渲染。 Veo 2 现已通过 Gemini API 向开发者开放。 Freepik 发布视频编辑器。 Pusa 视频生成模型,无缝支持各种视频生成任务(文本/图像/视频到视频)。 4 月 9 日: ACTalker 是多模态驱动的人物说话视频生成。 Viggle 升级 Mic 2.0 能力。 TestTime Training在英伟达协助研究下,可生成完整的 1 分钟视频。 4 月 14 日: 字节发布一款经济高效的视频生成基础模型 Seaweed7B。 可灵的 AI 视频模型可灵 2.0 大师版及 AI 绘图模型可图 2.0 即将上线。
2025-04-20
希望用AI工具帮助小学生建立学习习惯,管理学习,学习习惯统计管理
目前针对使用 AI 工具帮助小学生建立学习习惯、管理学习以及进行学习习惯统计管理,暂时没有相关的具体内容。但可以考虑以下思路: 1. 利用智能学习软件,这类软件可以根据小学生的学习进度和表现制定个性化的学习计划,并进行学习时间的管理和提醒。 2. 借助具有语音交互功能的 AI 助手,鼓励小学生通过与它交流来分享学习心得和困惑,从而培养良好的学习反思习惯。 3. 运用一些具备学习数据统计分析功能的工具,帮助家长和老师了解小学生的学习行为模式,以便针对性地进行引导和纠正。 需要注意的是,在使用 AI 工具时,要确保其内容适合小学生的年龄和认知水平,同时也要关注使用时间,避免过度依赖。
2025-03-03
如何搭建精准回答的本地知识库
搭建精准回答的本地知识库可以参考以下步骤: 1. 登录。 2. 在左侧导航栏的工作区区域,选择进入指定团队。 3. 在页面顶部进入知识库页面,并单击创建知识库。 4. 在弹出的页面配置知识库名称、描述,并单击确认。需注意一个团队内的知识库名称不可重复,必须是唯一的。 5. 在单元页面,单击新增单元。 6. 在弹出的页面选择要上传的数据格式(默认是文本格式),然后选择一种文本内容上传方式完成内容上传。 如果想要对知识库进行更加灵活的掌控,可以使用额外的软件AnythingLLM,其安装地址为:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步: 1. 第一步:选择大模型。 2. 第二步:选择文本嵌入模型。 3. 第三步:选择向量数据库。 在AnythingLLM中有一个Workspace的概念,可以创建自己独有的Workspace跟其他的项目数据进行隔离。具体操作如下: 1. 首先创建一个工作空间。 2. 上传文档并且在工作空间中进行文本嵌入。 3. 选择对话模式,AnythingLLM提供了两种对话模式: Chat模式:大模型会根据自己的训练数据和我们上传的文档数据综合给出答案。 Query模式:大模型仅仅会依靠文档中的数据给出答案。 4. 测试对话。
2025-03-11
如何去训练ai,让ai可以更精准的回答问题分析趋势
要训练 AI 使其更精准地回答问题和分析趋势,可以从以下几个方面入手: 检索原理: 1. 信息筛选与确认:系统会对检索器提供的信息进行评估,筛选出最相关和最可信的内容,同时验证信息的来源、时效性和相关性。 2. 消除冗余:识别并去除多个文档或数据源中的重复信息,避免在生成回答时出现重复或矛盾的内容。 3. 关系映射:分析不同信息片段之间的逻辑和事实关系,如因果、对比、顺序等,构建结构化的知识框架,使信息在语义上更连贯。 4. 上下文构建:将筛选和结构化的信息组织成连贯的上下文环境,包括对信息进行排序、归类和整合,形成统一的叙述或解答框架。 5. 语义融合:在必要时合并意义相近但表达不同的信息片段,减少语义重复并增强信息表达力。 6. 预备生成阶段:将整合好的上下文信息编码成适合生成器处理的格式,如转化为适合输入到生成模型的向量形式。 大模型生成回答: 最终全新的上下文被传递给大语言模型,大语言模型根据提供的信息回答问题。因为这个上下文包括了检索到的信息,所以相当于同时拿到了问题和参考答案,通过大语言模型的全文理解,生成准确和连贯的答案。 批判性思维与复杂问题解决: 批判性思维指分析、评估、推理并做出明智判断的能力,在 AI 时代尤为关键。培养批判性思维需要养成质疑习惯,通过辩论、逻辑训练、阅读反面意见等方式锻炼,注重逻辑推理和定量分析能力的培养。复杂问题解决与批判性思维密切相关,指在不确定情境下分析问题、设计解决方案的能力,往往需要综合运用多种思维技能,通过参与实际复杂项目、案例研究来提高经验,可利用 AI 作为资料提供者或头脑风暴助手,但关键在于人类自己的分析和决策过程。 纯强化学习: DeepSeek R1 引入纯强化学习,不依赖大量人类标注数据,而是让 AI 通过自我探索和试错来学习。在“冷启动”阶段,通过少量人工精选的思维链数据进行初步引导,建立符合人类阅读习惯的推理表达范式,随后主要依靠强化学习,在奖励系统的反馈下(包括准确率奖励和格式奖励),自主探索推理策略,不断提升回答的准确性,实现自我进化。纯强化学习有可能解锁新的人工智能水平,DeepSeek R1 更注重学习推理的底层策略,培养通用推理能力,实现跨领域的知识迁移运用和推理解答。
2025-03-07
怎么在AI文生图中精准的输出想要的文字
要在 AI 文生图中精准输出想要的文字,可以参考以下方法: Recraft 模型: 提供提示词加上文本位置,因为模型获得的输入数据越多,越容易产生精确输出。遵循指令比仅理解提示词更容易。 Tusiart 模型: 定主题:明确生成图片的主题、风格和表达的信息。 选择基础模型 Checkpoint:根据主题选择内容贴近的模型,如麦橘、墨幽的系列模型。 选择 lora:寻找内容重叠的 lora 以控制图片效果及质量。 ControlNet:可控制图片中特定的图像,如人物姿态、生成特定文字等,属于高阶技能。 局部重绘:下篇再学。 设置 VAE:选择 840000 即可。 Prompt 提示词:用英文写需求,使用单词和短语组合,用英文半角逗号隔开,不用管语法和长句。 负向提示词 Negative Prompt:用英文写避免产生的内容,同样用单词和短语组合,用英文半角逗号隔开,不用管语法。 采样算法:一般选 DPM++2M Karras,也可参考模型作者推荐的采样器。 采样次数:选 DPM++2M Karras 时,采样次数在 30 40 之间。 尺寸:根据个人喜好和需求选择。 Liblibai 模型: 定主题:明确生成图片的主题、风格和表达的信息。 选择 Checkpoint:根据主题选择内容贴近的模型,如麦橘、墨幽的系列模型。 选择 lora:寻找内容重叠的 lora 以控制图片效果及质量。 设置 VAE:选择 840000 即可。 CLIP 跳过层:设成 2 。 Prompt 提示词:用英文写需求,使用单词和短语组合,用英文半角逗号隔开,不用管语法和长句。 负向提示词 Negative Prompt:用英文写避免产生的内容,同样用单词和短语组合,用英文半角逗号隔开,不用管语法。 采样方法:一般选 DPM++2M Karras,也可参考模型作者推荐的采样器。 迭代步数:选 DPM++2M Karras 时,迭代步数在 30 40 之间。 尺寸:根据个人喜好和需求选择。 生成批次:默认 1 批。
2025-03-06
如果用AI精准且快速总结视频网站的视频。
要使用 AI 精准且快速总结视频网站的视频,可参考以下步骤: 1. 对于有字幕的视频,如 B 站视频,先确认视频栏下方是否有字幕按钮,若有则说明视频作者已上传字幕或后台适配了 AI 字幕。 2. 安装油猴脚本“Bilibili CC 字幕工具”,安装后刷新浏览器,点击字幕会出现“下载”按钮。 3. 点击下载按钮,选择多种字幕格式,如带时间或不带时间的。 4. 将下载的字文字内容全选复制发送给 GPTs 进行总结。 5. 总结完视频内容后,还可继续向 AI 提问更多细节内容或与其探讨视频内容。 此外,通义千问的 Qwen2.5VL 模型在视频理解方面也有出色表现,如支持最长 1 小时视频理解,具备秒级的事件定位能力,能够对视频的不同时间段进行要点总结等。
2025-03-06
图片的提示词的精准度
以下是关于图片提示词精准度的相关内容: 画面精度提示词: high detail(高细节) hyper quality(高品质) high resolution(高分辨率) FHD, 1080P, 2K, 4K, 8K 8k smooth(8K 流畅) 渲染效果提示词: Unreal Engine(虚幻引擎) octane render(渲染器) Maxon Cinema 4D 渲染器 architectural visualisation(建筑渲染) Corona Render(室内渲染) Quixel Megascans Render(真实感) VRay(V 射线) Behance C4D 3D blender surreal photography(超现实摄影) realistic 3D(真实 3D) zbrush 在描述图片提示词时,通常的逻辑包括:人物及主体特征(服饰、发型发色、五官、表情、动作),场景特征(室内室外、大场景、小细节),环境光照(白天黑夜、特定时段、光、天空),画幅视角(距离、人物比例、观察视角、镜头类型),画质(高画质、高分辨率),画风(插画、二次元、写实)。通过这些详细的提示词,能更精确地控制绘图。 对于新手而言,有以下辅助书写提示词的方法和网站: 下次作图时,先选择模板,点击倒数第二个按钮快速输入标准提示词。 功能型辅助网站,如:http://www.atoolbox.net/,通过选项卡方式快速填写关键词信息。 https://ai.dawnmark.cn/,每种参数有缩略图参考,方便直观选择提示词。 去 C 站(https://civitai.com/)抄作业,每一张图都有详细参数,可点击复制数据按钮,粘贴到正向提示词栏,Stable Diffusion 会自动匹配参数,但要注意图像作者使用的大模型和 LORA,不然即使参数一样,生成的图也会不同。也可以只取其中较好的描述词,如人物描写、背景描述、小元素或画面质感等。 提示词所做的工作是缩小模型出图的解空间,即缩小生成内容时在模型数据里的检索范围,而非直接指定作画结果。提示词的效果受模型影响,不同模型对自然语言、单词标签等语言风格的反应不同。 提示词中可以填写以下内容: 自然语言:可以使用描述物体的句子作为提示词,大多数情况下英文有效,也可用中文,避免复杂语法。 单词标签:使用逗号隔开的单词作为提示词,一般使用普通常见单词,单词风格要和图像整体风格搭配,避免拼写错误,可参考 Emoji、颜文字:Emoji 表情符号准确且在语义准确度上表现良好,对构图有影响。关于 emoji 确切含义,可参考。对于使用 Danbooru 数据的模型,西式颜文字可在一定程度上控制出图的表情。
2025-02-26
我想了解现在有什么文生图的模型或者工具,可以精准的按照prompt给的位置大小把文字写在最终出来的图像上的,这个字不会是幻觉,是实打实的字,或者有没有通过训练lora来达到这个效果的
以下是一些关于文生图的模型和工具的信息: Tusiart: 定主题:确定生成图片的主题、风格和表达的信息。 选择基础模型 Checkpoint:可选用麦橘、墨幽等系列模型。 选择 lora:寻找与生成内容重叠的 lora 以控制图片效果和质量。 ControlNet:可控制图片中特定的图像。 设置 VAE:选择 840000 。 Prompt 提示词:用英文写需求,单词和短语用英文半角逗号隔开。 负向提示词 Negative Prompt:用英文写避免产生的内容,单词和短语用英文半角逗号隔开。 采样算法:一般选 DPM++2M Karras ,也可参考模型作者推荐的采样器。 采样次数:选 DPM++2M Karras 时,采样次数在 30 40 之间。 尺寸:根据需求和喜好选择。 吐司网站: 文生图的操作方式:在首页的对话生图对话框输入文字描述即可生成图片,不满意可通过对话修改。 模型及生成效果:Flex 模型对语义理解强,不同模型生成图片的积分消耗不同,生成效果受多种因素影响。 图生图及参数设置:可基于图片做延展,能调整尺寸、生成数量等参数,高清修复消耗算力多,建议先出小图。 特定风格的生成:国外模型对中式水墨风等特定风格的适配可能不足,可通过训练 Lora 模型改善。 Liblibai: 定主题:确定生成图片的主题、风格和表达的信息。 选择 Checkpoint:可选用麦橘、墨幽等系列模型。 选择 lora:寻找与生成内容重叠的 lora 以控制图片效果和质量。 设置 VAE:选择 840000 。 CLIP 跳过层:设成 2 。 Prompt 提示词:用英文写需求,单词和短语用英文半角逗号隔开。 负向提示词 Negative Prompt:用英文写避免产生的内容,单词和短语用英文半角逗号隔开。 采样方法:一般选 DPM++2M Karras ,也可参考模型作者推荐的采样器。 迭代步数:选 DPM++2M Karras 时,迭代步数在 30 40 之间。 尺寸:根据需求和喜好选择。 生成批次:默认 1 批。
2025-02-25
文本提炼
以下是对您提供的文本的提炼: 文本补全: 学习如何生成或操作文本。 完成端点可用于多样任务,提供简单强大接口连接模型。输入提示,模型生成补全,受任务复杂性和提示质量影响。 可通过 Playground 探索,API 输出非确定性,设置温度可调整。 本指南涵盖提示设计最佳实践,了解代码工作可访问代码指南。 Claude2 中文精读: 可执行多种文本处理任务,如摘要、编辑重写、情感识别、信息提取和删除、翻译等。 示例包括提取电子邮件地址、删除个人身份信息等。 提示工程关键原则: 原则 1 是编写清晰具体的指令,包括使用分隔符清楚限定输入不同部分,分隔符可以是多种明显标点符号,能避免提示注入。 策略 2 是要求结构化输出,如 HTML 或 JSON 格式,便于解析模型输出。
2025-03-10
最近想要出一本书,书籍的主题是“Deepseek的应用革命:打造AI时代的竞争力”主要是面相企业家和企业高管,希望能够将知识库内容中关于企业应用的部分提炼成书,请根据知识库素材,输出一个图书内容规划和重点参考资料
以下是为您规划的图书内容和重点参考资料: 一、图书内容规划 1. 引言 介绍 AI 时代的背景和企业面临的挑战与机遇。 阐述 DeepSeek 在塑造企业竞争力方面的重要性。 2. DeepSeek 的技术创新 详细介绍 DeepSeek 最新模型 V3 与 R1 的架构创新,如混合专家(MoE)架构、多头潜注意力(MLA)等。 解释其如何提升计算效率和推理能力,打破算力壁垒。 3. 多领域的应用案例 字节跳动的新技术 OmniHuman 在视频生成方面的突破。 Coinbase 全面推动 AI 应用的实践,如在欺诈预防和客户支持等领域的应用。 4. 对企业管理的影响 探讨善于沟通上下文、明晰 AI 能力边界、合理授权并监督等管理经验如何提升 AI 协作效率。 5. 行业趋势与挑战 分析 AI 基础大模型参数量的变化趋势。 讨论初级程序员面临的职业挑战以及编程领域的颠覆性变化。 6. 未来展望 预测 DeepSeek 及相关技术在未来的发展方向和可能的创新。 二、重点参考资料 1. 《》 2. 《》 3. 《》 4. 《》 5. 《》 6. 《[零基础掌握 Deepseek》》 7. 日报 8. 日报
2025-03-08
如果我想给一份数学题目,把里面的数学题目进行知识点提炼分类,怎么利用AI实现?
要利用 AI 对数学题目进行知识点提炼分类,可以参考以下方法: 1. 题目内容识别:通过适当的方式将数学题目输入给 AI,让其理解题目内容。 2. 利用经过训练的 AI 模型:这些模型可能能够对题目中的数学概念、公式、定理等进行初步的分析和提取。 3. 人工校对与验证:AI 给出的结果需要人工进行校对,确保知识点提炼分类的准确性。 4. 清晰完整的指令输入:向 AI 提供清晰、准确且完整的指令,以提高其处理效果。 需要注意的是,AI 目前仍存在一定的局限性,不能完全替代人的思考和判断,在使用其结果时要谨慎验证。
2025-02-21
从你的知识库中总结提炼一下,形成一个表格,告诉我目前已经有哪些面向个人和面向企业的AI应用\工具\智能体,以及具体的功能简介
|应用类型|应用名称|使用技术|功能简介|示例场景| |||||| |智能体应用(Assistant)|无|基于上下文对话,自主决策并调用工具|客户服务:了解客户诉求,解决客户问题。如查询订单状态、处理退款等。个人助理:管理日程安排、提醒事项、发送邮件等。技术支持:了解技术问题,提供解决方案,帮助用户排除故障。| |工作流应用(Workflow)|无|将复杂任务拆解为若干子任务|AI 翻译:实现初步翻译、内容审校、再次优化的翻译流程,提升翻译质量。| |智能体编排应用|无|支持多智能体协作|综合调研报告:组建一个报告撰写团队,包括负责写作意图识别、大纲书写、总结摘要、智能绘图、事件研判、段落撰写、文笔润色等任务的智能体。软件开发团队:组建一个智能体开发团队,包括负责需求分析、系统设计、编码实现、测试调试、文档编写等任务的智能体。| |AI 游戏道具推荐系统|游戏内商城推荐功能|数据分析、机器学习|根据玩家需求推荐游戏道具。|在一些游戏中,利用 AI 分析玩家的游戏风格和进度,为玩家推荐合适的游戏道具,如武器、装备等。| |AI 天气预报分时服务|彩云天气分时预报|数据分析、机器学习|提供精准的分时天气预报。|彩云天气利用 AI 提供每小时的天气预报,帮助用户更好地安排出行和活动。| |AI 医疗病历分析平台|医渡云病历分析系统|数据分析、自然语言处理|分析医疗病历,辅助诊断。|医渡云利用 AI 分析医疗病历中的症状、检查结果等信息,为医生提供辅助诊断建议。| |AI 会议发言总结工具|讯飞听见会议总结功能|自然语言处理、机器学习|自动总结会议发言内容。|讯飞听见在会议中利用 AI 自动总结发言者的主要观点和重点内容,方便回顾和整理。| |AI 书法作品临摹辅助工具|书法临摹软件|图像识别、数据分析|帮助书法爱好者进行临摹。|书法临摹软件利用 AI 识别书法作品的笔画和结构,为用户提供临摹指导和评价。| |超级简历优化助手|无|自然语言处理|帮助用户优化简历提高求职成功率。|超级简历优化助手分析简历内容并提供优化建议。| |AI 室内设计方案生成|酷家乐|图像生成、机器学习|快速生成个性化室内设计方案。|酷家乐允许用户上传户型图,通过 AI 生成多种设计方案。| |AI 音乐创作辅助工具|Amper Music|机器学习、音频处理|协助音乐创作者进行创作。|Amper Music 根据用户需求生成旋律和编曲。| |AI 情感咨询助手|松果倾诉智能助手|自然语言处理、情感分析|提供情感支持和建议。|松果倾诉智能助手通过文字或语音交流为用户提供情感咨询。| |AI 宠物健康监测设备|小佩宠物智能设备|传感器数据处理、机器学习|实时监测宠物健康状况。|小佩宠物智能设备可监测宠物活动、饮食等,提供健康预警。| |AI 旅游行程规划器|马蜂窝智能行程规划|数据分析、自然语言处理|根据用户需求生成个性化旅游行程。|马蜂窝智能行程规划根据目的地、时间等因素为用户定制旅游路线。|
2025-02-06
我想要搭建一个能够帮我阅读并总结提炼,同时能在我提出问题时,随时在我给他提供的知识库中检索的AI Agent,如何用Coze搭建?
搭建能够阅读、总结提炼并在给定知识库中检索的 AI Agent 可以使用 Coze 按照以下步骤进行: 1. 规划 制定任务的关键方法。 总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 关于一些其他问题: 1. 如何判断自己的任务/Prompt 是否需要拆解为工作流? 构建稳定可用的 AI Agent 是一个需要不断调试和迭代的过程。通常先从当前性能最强的 LLM(如 ChatGPT4 和 Claude 3.5 sonnet)着手,先用单条 Prompt 或 Prompt Chain 来测试任务的执行质量和稳定性。然后,根据实际执行情况、最终投产使用的 LLM,逐步拆解子任务,降低 LLM 执行单任务的难度,直到达成工程目标。一般对于场景多样、结构复杂、对输出格式要求严格的内容,基本可以预见到需要将其拆解为工作流。此外,如果涉及生成多媒体内容或从网络自主获取额外信息等能力,必然需要通过工作流来调用相应的插件。 2. 只用了一段 Prompt 的 Agent,还算 AI Agent 吗? 算。详见
2025-02-06
哪个AI对PDF文件的提炼总结能力最强
目前在对 PDF 文件的提炼总结能力方面,Claude 2 表现出色。将整本书粘贴到 Claude 的前一版本中能取得令人印象深刻的结果,新模型更强大。可以通过查看相关经验和提示。此外,myaidrive.com 网站上的 AI PDF 也能处理较大的 PDF 文件,并为冗长的文档提供上级摘要。同时,近期出现的各类 AI 搜索引擎,如 perplexity.ai、metaso、360 搜索、ThinkAny 等,其智能摘要功能能够辅助快速筛选信息。但需要注意的是,这些系统仍可能产生幻觉,若要确保准确性,需检查其结果。
2025-01-23