Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

请帮我总结AI AGENT的总体架构,帮助我更快学习相关的知识,尽快进行具体场景的商业落地

Answer

AI Agent 是一个融合了多学科精髓的综合实体,不仅有实体形态,还有丰富的概念形态,并具备许多人类特有的属性。其总体架构包括以下方面:

  1. 大模型 LLM 扮演“大脑”。
  2. 规划:包括子目标分解、反思与改进。子目标分解将大型任务分解为较小可管理的子目标以处理复杂任务;反思和改进可对过去的行动进行自我批评和反思,从错误中学习并改进未来步骤,提高最终结果质量。
  3. 记忆。 此外,AI Agent 还具有以下特点和应用:
  4. 能够自行规划任务执行的工作流路径,面向简单或线性流程的运行。
  5. 可以实现多 Agent 协作,例如让大语言模型扮演不同角色,相互协作共同开发应用或复杂程序。
Content generated by AI large model, please carefully verify (powered by aily)

References

AI-Agent系列(一):智能体起源探究

本文主要向大家讲述智能体的概念、渊源和发展历史,帮助大家对智能体这一概念奠定一个正确认知。[heading2]二、很多人其实并不知道AI Agent是什么[content]打开浏览器,搜索"什么是AI Agent",我们将会得到如下结果:图2.1.1在Bing上搜索“什么是AI Agent”行吧,我们再来问问Kimi什么是AI Agent:图2.1.2问问Kimi"什么是AI Agent?"我耗费了2分钟,却仿佛在寻找一场空欢喜。这就是所谓的AI Agent吗?......罢了,我还是自己寻找答案吧。通过必应和Kimi的搜索,我们发现网络上对AI Agent的介绍往往显得晦涩难懂,仿佛AI Agent是从石头缝儿里蹦出来的一样,神秘莫测。AI Agent的自主性、学习能力、推理能力等核心概念,以及它们如何规划和执行任务,如何理解并处理信息,这些内容似乎都笼罩在一层神秘的面纱之下。这种神秘感让我们仿佛置身于一个赛博朋克的世界,让我们不禁怀疑,是否我们已经生活在了一个充满未来科技的时代?未来是否真的已经到来?在深入探讨AI agent之前,我们首先需要对其进行定义和总结。AI Agent是一个融合了语言学、心理学、神经学、逻辑学、社会科学、计算机科学等多个学科精髓的综合实体。它不仅拥有实体形态,更蕴含着丰富的概念形态,同时它还具备了许多人类特有的属性。因为这些学科大多以人为研究对象,致力于探索人类内在的本质。

AI-Agent系列(一):智能体起源探究

本文主要向大家讲述智能体的概念、渊源和发展历史,帮助大家对智能体这一概念奠定一个正确认知。[heading2]二、很多人其实并不知道AI Agent是什么[content]打开浏览器,搜索"什么是AI Agent",我们将会得到如下结果:图2.1.1在Bing上搜索“什么是AI Agent”行吧,我们再来问问Kimi什么是AI Agent:图2.1.2问问Kimi"什么是AI Agent?"我耗费了2分钟,却仿佛在寻找一场空欢喜。这就是所谓的AI Agent吗?......罢了,我还是自己寻找答案吧。通过必应和Kimi的搜索,我们发现网络上对AI Agent的介绍往往显得晦涩难懂,仿佛AI Agent是从石头缝儿里蹦出来的一样,神秘莫测。AI Agent的自主性、学习能力、推理能力等核心概念,以及它们如何规划和执行任务,如何理解并处理信息,这些内容似乎都笼罩在一层神秘的面纱之下。这种神秘感让我们仿佛置身于一个赛博朋克的世界,让我们不禁怀疑,是否我们已经生活在了一个充满未来科技的时代?未来是否真的已经到来?在深入探讨AI agent之前,我们首先需要对其进行定义和总结。AI Agent是一个融合了语言学、心理学、神经学、逻辑学、社会科学、计算机科学等多个学科精髓的综合实体。它不仅拥有实体形态,更蕴含着丰富的概念形态,同时它还具备了许多人类特有的属性。因为这些学科大多以人为研究对象,致力于探索人类内在的本质。

Inhai: Agentic Workflow:AI 重塑了我的工作流

[title]Inhai:Agentic Workflow:AI重塑了我的工作流如果大家使用Kimi Chat来查询某个问题,你会发现它会在互联网上检索相关内容,并基于检索结果进行总结分析,最后给出结论。这其实是大模型利用「网页搜索」工具的一个典型例子,同时你也会看到PPT中介绍了非常多的不同领域类型的工具,它其实是为大模型在获取、处理、呈现信息上做额外的补充。PlanningAgent通过自行规划任务执行的工作流路径,面向于简单的或者一些线性流程的运行。比如下图中:Agent会先识别男孩的姿势,并可能找到一个姿势提取模型来识别姿势,在接下来要找到一个姿势图像模型来合成一个新的女孩图像,然后再使用图像理解文本的模型,并在最后使用语音合成输出,完成这个流程任务。Multiagent Collaboration吴恩达通过开源项目ChatDev进行举例,你可以让一个大语言模型扮演不同的角色,比如让一个Agent扮演公司CEO、产品经理、设计师、代码工程师或测试人员,这些Agent会相互协作,根据需求共同开发一个应用或者复杂程序。AI Agent基本框架OpenAI的研究主管Lilian Weng曾经写过一篇博客叫做《LLM Powered Autonomous Agents》,其中就很好的介绍了Agent的设计框架,她提出了“Agent = LLM +规划+记忆+工具使用”的基础架构,其中大模型LLM扮演了Agent的“大脑”。Planning(规划)主要包括子目标分解、反思与改进。将大型任务分解为较小可管理的子目标处理复杂的任务。而反思和改进指可以对过去的行动进行自我批评和自我反思,从错误中学习并改进未来的步骤,从而提高最终结果的质量。Memory(记忆)

Others are asking
AI agent 是什么?
AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 AI Agent 包括以下几个概念: 1. Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 2. Router:我们可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 3. Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 总结下来我们需要三个 Agent: 1. Responser Agent:主 agent,用于回复用户(伪多模态) 2. Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体) 3. Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈 这三个 Agent 每隔一段时间运行一次(默认 3 分钟),运行时会分析期间的历史对话,变更人物关系(亲密度,了解度等),变更反感度,如果超标则拉黑用户,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间)。 此外,心灵社会理论认为,智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。心灵社会将智能划分为多个层次,从低层次的感知和反应到高层次的规划和决策,每个层次由多个 Agent 负责。每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务,如视觉处理、语言理解、运动控制等。智能不是集中在单一的核心处理单元,而是通过多个相互关联的 Agent 共同实现。这种分布式智能能够提高系统的灵活性和鲁棒性,应对复杂和多变的环境。同时,在《心灵社会》中,还存在专家 Agent(拥有特定领域知识和技能,负责处理复杂的任务和解决特定问题)、管理 Agent(协调和控制其他 Agent 的活动,确保整体系统协调一致地运行)、学习 Agent(通过经验和交互,不断调整和优化自身行为,提高系统在不断变化环境中的适应能力)。 从达特茅斯会议开始讨论人工智能(Artificial Intelligence),到马文·明斯基引入“Agent”概念,往后,我们都将其称之为 AI Agent。
2025-02-17
有关agent的介绍
AI Agent 是当前 AI 领域中较为热门的概念,被认为是大模型未来的主要发展方向之一。 从原理上看,中间的“智能体”通常是 LLM(语言模型)或大模型。为其增加的四个能力分别是工具、记忆、行动和规划。目前行业中主要使用 langchain 框架,将 LLM 与 LLM 之间以及 LLM 与工具之间通过代码或 prompt 的形式进行串接。例如,给大模型提供长期记忆,相当于给予一个数据库工具让其记录重要信息;规划和行动则是在大模型的 prompt 层进行逻辑设计,如将目标拆解并输出不同的固定格式 action 指令给工具。 从产品角度,Agent 可以有不同的设定。比如是一个历史新闻探索向导,身份为历史新闻探索向导,性格知识渊博、温暖亲切、富有同情心,角色是主导新闻解析和历史背景分析,还可以为其设计背景故事使其更加生动。 在人工智能领域,Agent 智能代理是一种能够感知环境并根据感知信息做出决策以实现特定目标的系统,能够自动执行任务,如搜索信息、监控系统状态或与用户交互。
2025-02-16
AIagent的发展方向
AI Agent 被认为是大模型未来的主要发展方向之一,其发展具有以下特点和阶段: 从原理上看,中间的“智能体”通常是 LLM 或大模型,为其增加了工具、记忆、行动、规划四个能力。目前行业里主要用到的是 langchain 框架,它通过代码或 prompt 的形式将 LLM 与 LLM 之间以及 LLM 与工具之间进行串接。 在人工智能的发展历程中,AI Agent 并非一蹴而就,其发展可分为几个阶段,并受到符号主义、连接主义、行为主义的影响。在人工智能的黎明时期,符号人工智能作为主导范式,以对符号逻辑的依赖著称,代表之作是基于知识的专家系统。其特点是基于逻辑和规则系统,使用符号来表示知识,通过符号操作进行推理。优点是推理过程明确、可解释性强,缺点是知识获取困难、缺乏常识、难以处理模糊性。时间为 20 世纪 50 70 年代。 近期出现的各类 AI 搜索引擎不断颠覆传统搜索引擎,如 perplexity.ai、metaso、360 搜索、ThinkAny 等。AI Agent 在辅助高效处理信息和简便信息表达方面表现出色,例如智能摘要能辅助快速筛选信息,自然语言描述可生成美观可用的图片。在工作流方面,每个人应根据自身情况找到适合的工具,如产品经理可使用 AI 进行用户画像、竞品调研、设计产品测试用例、绘制产品功能流程图等。关于 AI Agent 的未来,曾被认为异想天开的想法都可能成为现实,技术迭代会不断向前。
2025-02-15
AI Agent 或者 工作流, 落地的场景
以下是 AI Agent 或工作流的一些落地场景: Long horizon task 长期任务执行:Agent 能像称职的项目经理,分解大任务为小步骤,保持目标导向并适时调整策略。 多模态理解:Agent 能同时理解文字、图像、声音等多种交流方式,全方位感知世界和任务上下文。 记忆与行动:通过先进的记忆机制,Agent 能积累经验,记住对话、操作步骤和效果,行动更精准高效。 自适应学习:从每次交互中吸取经验,不断完善策略,实现“智慧成长”。 在技术层面,有两条技术路线:以自主决策为核心的 LLM 控制流和以工作流(Workflow)编排为重点的工具集成系统。Anthropic 提出的 MCP(Model Context Protocol)提供了通用接口协议,将外部资源抽象为“上下文提供者”,便于模型与外部世界交互。 工作流驱动的 Agent 搭建,简单情况分为 3 个步骤:规划,包括制定任务关键方法、总结目标与执行形式、分解子任务等;实施,在 Coze 上搭建框架并分步构建和测试功能;完善,全面评估并优化效果。 典型例子如利用 Kimi Chat 进行网页搜索和总结分析。 包括 Agent 自行规划任务执行的工作流路径,适用于简单或线性流程。 多 Agent 协作,如吴恩达通过开源项目 ChatDev 举例,让大语言模型扮演不同角色共同开发应用或复杂程序。 OpenAI 研究主管 Lilian Weng 提出 Agent 的基础架构为“Agent=LLM+规划+记忆+工具使用”,规划包括子目标分解、反思与改进。
2025-02-15
腾讯agent开发
AppAgent 是由腾讯开发的一种基于大型语言模型(LLM)的多模态 Agent 框架。 其主要特点和功能包括: 多模态代理:能够处理和理解多种类型的信息(如文本、图像、触控操作等)。 直观交互:通过模仿人类的直观动作(如点击和滑动屏幕)来与手机应用程序交互,能够在手机上执行各种任务,例如在社交媒体上发帖、帮用户撰写和发送邮件、使用地图、在线购物,甚至进行复杂的图像编辑等。 对于之后模仿数据的反利用也有不错的应用场景,例如互联网或 AI 或涉及到原型+UE 的工作都可以在基于模仿数据的基础上进行反推,进而让设计出的产品原型和 UE 交互更优解。 AppAgent 在 50 个任务上进行了广泛测试,涵盖了 10 种不同的应用程序。该项目由腾讯和德州大学达拉斯分校的研究团开发。 相关链接: 官方网站:https://appagentofficial.github.io 相关报道:https://x.com/xiaohuggg/status/1738083914193965528?s=20
2025-02-14
什么是Agent
Agent(智能体)是一种能够在环境中自主感知、思考并采取行动以实现特定目标的实体。它可以是软件程序,也可以是硬件设备。 从产品角度来看,比如我们的 Agent 可以是一个历史新闻探索向导,具有知识渊博、温暖亲切、富有同情心的性格,主导新闻解析和历史背景分析。为使角色更生动,可设计背景故事,明确其起源、经历和动机,定义性格特点、说话方式和风格,以及设计对话风格和角色技能。 在结合大型语言模型(LLM)的情况下,LLM Agent 能够利用大型语言模型的自然语言处理能力,理解用户的输入,并在此基础上进行智能决策和行动。其组成部分包括规划(负责将复杂任务分解成可执行的子任务,并评估执行策略)、记忆(包括短期记忆用于存储对话上下文,长期记忆存储用户特征和业务数据)、工具(如 API 调用、插件扩展等辅助手段)和行动(将规划和记忆转换为具体输出,包括与外部环境的互动或工具调用)。 在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,还包括规划(子目标分解、反思完善)、记忆(短期记忆、长期记忆)和工具使用(调用外部 API 获取额外信息)等方面。
2025-02-14
请给出目前比较火的各垂类AI工具名称
以下是目前比较火的各垂类 AI 工具: 图像生成器:有 14 个工具,如 Midjourney 等。 AI 聊天机器人:有 8 个工具,如 Claude、ChatGPT、Bing Chat 等。 AI 写作生成器:有 7 个工具,如 Rytr、Copy AI 等。 视频生成器:有 5 个工具。 语音和音乐:有 5 个工具。 设计:有 4 个工具,如 Canva 等。 其他:有 7 个工具。 此外,还有以下一些热门的 AI 工具: AI 研究工具:Claude、ChatGPT、Bing Chat、Perplexity 等。 图片处理:DallE、Leonardo、BlueWillow 等。 版权写作:Rytr、Copy AI、Wordtune、Writesonic 等。 网站搭建:10Web、Framer、Hostinger、Landingsite 等。 视频处理:Klap、Opus、Invideo、Heygen 等。 音频处理:Murf、LovoAI、Resemble、Eleven Labs 等。 SEO 优化:Alli AI、BlogSEO、Seona AI、Clearscope 等。 Logo 设计:Looka、LogoAI、Brandmark、Logomaster 等。 聊天机器人:Droxy、Chatbase、Voiceflow、Chatsimple 等。 自动化工具:Make、Zapier、Bardeen、Postman 等。
2025-02-18
如何制作人事专员ai客服
要制作人事专员 AI 客服,可以参考以下步骤: 1. 明确功能范围: 支持用户发送“关键字”,自助获取分享的“AI 相关资料链接”。 能够回答 AI 相关知识,优先以“自己的知识库”中的内容进行回答,若知识库信息不足则调用 AI 大模型回复,并在答案末尾加上“更多 AI 相关信息,请链接作者:jinxia1859”。 能作为“微信客服助手”发布在微信公众号上。 2. 准备相关内容: 根据 Bot 的目的和核心能力编写 prompt 提示词。 整理“关键字”与“AI 相关资料链接”的对应关系,可用 word、txt、excel 等格式。 创建一个用于回答 AI 相关知识的知识库。 由于要按照一定规则处理知识,创建一个工作流来控制 AI 按照要求处理信息。 准备好微信公众号,以便发布机器人。 此外,智能客服助手的核心构思在于利用企业已有的知识积累,结合大模型的强大能力,为用户提供准确且简洁的答案。具体通过创建企业私有知识库,收录企业过去的问答记录和资料,再利用大模型对用户咨询的问题进行处理,确保回答的准确性和一致性,还能在必要时提供原回答的完整版,以满足用户的深度需求。同时要对接人工客服,在智能助手无法解决用户问题时,让用户快速转接到人工客服,确保问题及时解决,这种人机结合的模式有助于提升整体服务质量和客户满意度。
2025-02-18
哪一款AI 可以实现参考一张柱状图,使用我提供的数据,生成同样的柱状图
以下两款 AI 可以实现参考一张柱状图,使用您提供的数据生成同样的柱状图: 1. PandasAI:这是让 Pandas DataFrame“学会说人话”的工具,在 GitHub 已收获 5.4k+星。它并非 Pandas 的替代品,而是将 Pandas 转换为“聊天机器人”,用户可以以 Pandas DataFrame 的形式提出有关数据的问题,它会以自然语言、表格或者图表等形式进行回答。目前仅支持 GPT 模型,OpenAI API key 需自备。例如,输入“pandas_ai.run”,即可生成相关柱状图。链接:https://github.com/gventuri/pandasai 2. DataSquirrel:这是一款自动进行数据清理并可视化执行过程的数据分析工具,能帮助用户在无需公式、宏或代码的情况下快速将原始数据转化为可使用的分析/报告。目前平台提供的用例涵盖了 B2B 电子商务、人力资源、财务会计和调查数据分析行业。平台符合 GDPR/PDPA 标准。链接:https://datasquirrel.ai/
2025-02-18
AI提效
以下是关于 AI 提效的相关内容: 在大淘宝设计部,今年通过持续探索和实战考量,将 AI 作为工具,主要使用 Midjourney 和 Stabel Diffusion 等,辅助使用 RUNWAY 和 PS beta 等。AI 改变了设计工作流的传统步骤,在营销设计中,整体项目设计时间大约减少 18%左右,其中在创意阶段丰富性提升 150%左右、时间节省 60%左右。具体效果包括创意多样,项目中不同创意概念的提出数量增加了 150%;执行加速,设计师在创意生成阶段的时间缩短了平均 60%;整体提效,从创意发散到落地执行品效都有显著提升。 在软件工程方面,AI 正深刻变革软件工程,涵盖自动代码生成、智能调试、AI 驱动的 DevOps 和敏捷开发优化。自动代码生成工具提高编程效率,AI 也助力智能测试与运维。DevOps 迎来 AI 驱动的 CI/CD 和 AIOps,提升部署自动化和智能监控能力。AI 让敏捷开发更加高效,通过自动化需求分析、测试优化和团队协作增强生产力。 夙愿学长曾给创业小团队定制过 AI 提效解决方案,他将 AI 工作流融入工作中,把 80%重复低产出的工作“外包”给 AI 干,自己只干 20%真正有价值的事情,从而实现了生活和工作的良好改变,走上了 Work Life Balance 的道路。
2025-02-18
ai生成短视频,有没有免费的工具
以下是一些免费生成短视频的工具: 1. Project Odyssey:这是全球最大的生成式 AI 视频竞赛之一,提供超过 30 种工具的免费额度,累计超过 75 万美元。 2. ChatGPT + 剪映:ChatGPT 可以生成视频小说脚本,剪映则可以根据脚本自动分析并生成对应的素材和文本框架。 3. PixVerse AI:在线 AI 视频生成工具,支持将多模态输入转化为视频,且免费无限生成。 4. Pictory:AI 视频生成器,允许用户提供文本描述来生成相应的视频内容。 5. VEED.IO:提供了 AI 图像生成器和 AI 脚本生成器,帮助用户从图像制作视频,并规划内容。 6. 艺映 AI:专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务,用户可以根据文本脚本生成视频。 这些工具各有特点,适用于不同的应用场景和需求,能够帮助您快速生成吸引人的视频内容。但请注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-18
AI如何接入APP
以下是将 AI 接入 APP(以微信为例)的详细步骤: 1. 登录成功后,找另一个人私聊或者在群中@您,就可以看到机器人的正常回复,此时已接通。 2. 若想为 AI 赋予提示词,可返回“目录 4 里的第 17 步”,其中的“中文部分,便是设置 AI 提示词的地方,您可以进行更改。 3. 此后,进行任何更改,都需要“返回首页 右上角 点击重启,重启一下服务器”。 4. 然后,重新在“文件”的【终端】里,直接输入“nohup python3 app.py&tail f nohup.out”重新扫码登录。 5. 再往后就是添加插件,讲解得非常清晰,完成上述步骤后,相信您也能搞定插件的安装。点击文章,会直接定位到您该操作的那一步。 6. 若认为上述步骤简单,尚有余力,可以继续看。 开始部署(这里继续): 1. 复制代码时注意复制全,每次只需要粘贴一行,然后点击一次回车。 第一步:cd /root || exit 1 第二步:下方两行粘贴进入,然后点击回车,等待下载完成。(若有卡点,进行不下去,可能是服务器网络问题,去拉取时下载不全,可复制网址,手动下载到电脑上,然后进入文件夹,找到 root 文件夹,把下载的文件上传进去。) 第三步:rm f Anaconda32021.05Linuxx86_64.sh 第四步:/root/anaconda/bin/conda create y name AI python=3.8 第五步:echo 'source /root/anaconda/bin/activate AI' >> ~/.bashrc 第六步:执行完成后,刷新一下,重新进入终端,若最左侧出现了(AI)的字符,则恭喜您。 配置环境: 1. 打开刚才保存的“外网面板地址”。 2. 输入账号密码。 3. 第一次进入会让您绑定一下,点击免费注册,注册完成后,返回此页,登录账号。 4. 首次会有个推荐安装,只安装 Nginx 1.22 和 MySQL 5.7 即可,其他的取消勾选。 5. 点击“其他菜单”,出现相应样式,会让您关联,点击【关闭】,直接操作第 4 步【开始部署】。绿色字体的三个步骤可以不做。(这里的步骤,用不到,可以不关联)若想关联,可以点击【点击查看】按钮,跳转进入腾讯云。 6. 点击“API 密匙关联”点击“新建秘钥”。复制这两个,一定保存好。 7. 点击确定后,列表上会有一个 APPID,这三个串码,依次对应粘贴到刚才的登录窗口里即可。
2025-02-18
我是一个有23年软件系统开发和设计经验的架构师,但是对AI还没有系统化了解过,请问我该如何开始?如何在短时间内掌握AI的使用、原理以及二次开发?
以下是为您提供的在短时间内系统化学习 AI 的建议: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。我建议您一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 如果希望继续精进,对于 AI,可以尝试了解以下内容作为基础: 1. AI 背景知识 (1)基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 (2)历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础 (1)统计学基础:熟悉均值、中位数、方差等统计概念。 (2)线性代数:了解向量、矩阵等线性代数基本概念。 (3)概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型 (1)监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 (2)无监督学习:熟悉聚类、降维等算法。 (3)强化学习:简介强化学习的基本概念。 4. 评估和调优 (1)性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 (2)模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础 (1)网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 (2)激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 此外,以证件照为例,Code AI 应用开发教学中,智能体开发从最初的 chatbot 只有对话框,到有了更多交互方式,因用户需求扣子推出了 AI 应用,其低代码或零代码的工作流等场景做得较好。但 AI CODING 虽强,目前适用于小场景和产品的第一个版本,复杂应用可能导致需求理解错误从而使产品出错。在创建 AI 应用时,要学习操作界面、业务逻辑和用户界面,包括布局、搭建工作流、用户界面及调试发布,重点熟悉桌面网页版的用户界面。
2025-02-17
你的知识库架构是怎样的,普通人如何迅速找到目标靶向,比如我想学ai绘画
以下是关于您想学习 AI 绘画的相关内容: 1. 知识库提到明天银海老师将详细讲解 AI agent,同时表示知识库内容丰富,您可挑选感兴趣的部分学习,比如较轻松的 AI 绘画等。 2. 强调 AI 绘画是视觉基础,还介绍了针对 AI 绘画学社做的关键词词库精选活动。 3. 讲述了 AI 绘画中的 stable diffusion 扩散模型的运作方式,是通过加噪和去噪,随机生成种子来形成最终图像,还提到生成式 AI 做高清放大可增加细节的原理。 您可以根据以上信息,逐步深入了解 AI 绘画的相关知识。
2025-02-15
大型语言模型(LLM)基于Transformer架构的模型的优缺点是什么,有什么局限性
大型语言模型(LLM)基于 Transformer 架构的模型具有以下优点: 1. 在大量数据集上进行预训练,展现出卓越的语言处理能力,能预测接下来的 Token。 然而,也存在一些缺点和局限性: 1. 瞬态状态:天生缺乏持久的记忆或状态,需要额外的软件或系统来保留和管理上下文。 2. 概率性质:随机性导致响应的不确定性,对相同提示词可能产生不同回答。 3. 过时信息:依赖预训练数据,只能访问历史知识,无法获取实时更新。 4. 内容制造:可能生成看似合理但不准确的信息,即“幻觉”。 5. 资源密集:巨大规模意味着显著的计算和财务成本,影响可扩展性和可访问性。 6. 领域特定性:本质上通用,但通常需要特定领域数据才能在专业任务中表现出色。 7. 缺乏创造性:像一个高性能的知识检索工具,超出检索范围时表现差,甚至出现“幻觉”。面对复杂逻辑推导和新的知识推演能力不足,无法基于新的语料推演出新知识。 8. 对于特定领域或高度专业化的查询,容易产生错误信息或“幻觉”,特别是当查询超出训练数据或需要最新信息时。
2025-02-13
企业级应用集成AI大模型架构白皮书
以下是关于企业级应用集成 AI 大模型架构的相关内容: 从整体分层的角度来看,目前大模型整体架构可以分为以下几层: 1. 基础层:为大模型提供硬件支撑,数据支持等,例如 A100、数据服务器等等。 2. 数据层:这里的数据层指的不是用于基层模型训练的数据基集,而是企业根据自己的特性,维护的垂域数据。分为静态的知识库,和动态的三方数据集。 3. 模型层:包括 LLm 或多模态模型。LLm 即 largelanguagemodel 大语言模型,例如 GPT,一般使用 transformer 算法来实现。多模态模型即市面上的文生图、图生图等的模型,训练所用的数据与 llm 不同,用的是图文或声音等多模态的数据集。 4. 平台层:模型与应用间的平台部分,比如大模型的评测体系,或者 langchain 平台等,提供模型与应用间的组成部分。 5. 表现层:也就是应用层,用户实际看到的地方。 此外,以下报告也涉及相关内容: 1. 量子位智库发布的《》概述了大模型技术在多个行业中的应用和发展趋势。强调大模型在编程、教育、医疗等领域的重要性,并预测其将推动生产力和创新服务的增长。大模型业务模式涵盖应用开发、模型 API 和模型服务,其中模型服务和 API 是核心。报告还讨论了大模型在不同地域和行业的落地情况,以及企业在大模型技术投资方面的需求。 2. 亿欧智库发布的《》聚焦于企业中人工智能大模型的应用和落地情况。报告涵盖了 AI 大模型在企业中的应用现状、发展趋势以及面临的挑战。它详细分析了 AI 技术如何推动企业创新、提高效率和降低成本,并探讨了不同行业如何利用 AI 大模型实现数字化转型。此外,白皮书还提供了关于如何克服实施过程中的障碍和最大化 AI 大模型价值的见解。 对于大模型 API,与大模型对话产品的提示词不同。对于大模型 API,需要利用插件预先获取的网页内容变量、提示词和 API 请求参数,拼搭出完整的 API 提示请求,精确引导 API 返回想要的生成结果。根据 BigModel 官网给出的请求示例,可以看到需要在请求中传递 Model 类型、系统提示词、用户提示词、top_p、temperature 等关键参数。可以构建相应的 API 请求内容,包括设定系统提示词定义基础任务、设定用户提示词提供具体任务数据并要求大模型按 JSON 格式返回生成结果等。如果缺少参数设定的经验,也可以先询问 AI 文本总结类的模型 API 请求,temperature 设定多少合适,再逐步调试效果即可。
2025-02-06
有哪些可以生成系统架构图的工具
以下是一些可以生成系统架构图的工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括逻辑视图、功能视图和部署视图,有拖放界面方便操作。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能,如逻辑视图(类图、组件图)、功能视图(用例图)和部署视图(部署图)。 3. ArchiMate:开源建模语言,与 Archi 工具配合可创建逻辑视图。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持多种架构视图创建。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,有丰富模板用于创建逻辑视图、功能视图和部署视图等。 6. draw.io(现称 diagrams.net):免费在线图表软件,支持创建逻辑视图和部署视图等。 7. PlantUML:文本到 UML 转换工具,通过编写描述性文本自动生成序列图、用例图、类图等,帮助创建逻辑视图。 8. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 9. Archi:免费开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建逻辑视图和部署视图。 需要注意的是,虽然这些工具可以辅助创建架构视图,但它们不都是基于 AI 的。AI 在绘图工具中的应用通常涉及到智能推荐布局、自动生成图表代码或识别图表中的模式和关系。在选择工具时,您应该考虑您的具体需求,比如是否需要支持特定的建模语言、是否需要与特定的开发工具集成、是否偏好在线工具或桌面应用程序等。
2025-01-17
大模型应用架构
大模型应用架构主要包括以下几个方面: 1. 零跑汽车案例: 客户介绍:零跑汽车成立于 2015 年 12 月 24 日,是一家创新型的智能电动汽车品牌,坚持核心技术自主研发,位列新能源品牌销量前三,自 2017 年起与阿里云展开深度合作。 阿里云的解决方案:通过百炼平台实现大模型落地零跑座舱,接入通义大模型实现开放式语音交互,基于语音调用通义万相实现秒级作图,基于百炼构建开放、可扩展的大模型应用架构,降低创新门槛与成本。 2. 整体架构分层: 基础层:为大模型提供硬件支撑和数据支持,如 A100、数据服务器等。 数据层:包括静态的知识库和动态的三方数据集。 模型层:有 LLm(大语言模型,如 GPT,一般使用 transformer 算法实现)和多模态模型(如文生图、图生图等模型)。 平台层:如大模型的评测体系或 langchain 平台等,提供模型与应用间的组成部分。 表现层:即应用层,是用户实际看到的地方。 3. 基于多模态大模型的应用: 前言:随着 ChatGPT 的发展,多模态技术突飞猛进,呈现出一统计算机视觉(CV)和自然语言处理(NLP)的势头。 应用介绍:介绍了一款基于多模态大型模型的应用,能够实时分析当前地区新春的流行趋势。后端采用 llama.cpp 挂载 LLaVA 模型提供推理服务,部署 Flask 应用用于数据前处理和后处理,提供 Stream 流服务,前端页面采用 HTML5 采集画面和用户输入。
2025-01-12
生成式AI教育场景应用 项目式学习 中小学案例
以下是一些中小学在生成式 AI 教育场景应用中采用项目式学习的案例: 北京市新英才学校: 开设“AI 创作家”小学课后服务特色课程,12 个五、六年级的学生在老师的引导和帮助下,主导设计一款实用的桌游。 学生们提出解决学校面积大导致新生和访客迷路的问题,决定制作一款学校地图桌游。 课程中,学生有时听老师讲解人工智能知识和工具使用方法,有时自己写 prompt 与大语言模型对话,还使用文生图 AI 工具生成桌游卡牌背后的图案,手绘第一版学校地图,选择游戏机制并梳理游戏流程。 在教育领域,生成式 AI 带来了诸多改变: 解决了教育科技长期以来在有效性和规模之间的权衡问题,可大规模部署个性化学习计划,为每个用户提供“口袋里的老师”,如实时交流并给予发音或措辞反馈的语言老师。 出现了众多辅助学习的产品,如教授新概念、帮助学习者解决各学科问题、指导数学作业、提升写作水平、协助创建演示文稿等。
2025-02-18
生成式AI教育场景应用 中小学案例
以下是北京市新英才学校在中小学教育场景中生成式 AI 的应用案例: 特色课程方面:学校开设了“AI 创作家”小学课后服务特色课程,12 个五、六年级的学生在老师的引导下,用 AIGC 工具设计一款实用的桌游。学生主导从收集需求、定义问题到设计背景、机制、内容、视觉,再到测试、迭代的全过程。例如,为解决学校面积大导致新生和访客迷路的问题,学生决定做一款学校地图桌游。课程中,学生学习人工智能知识、使用工具写 prompt 与大语言模型对话,还使用 OpenInnoLab平台生成桌游卡牌图案、手绘地图、选择游戏机制、梳理游戏流程。此外,还邀请中国传媒大学的吴卓浩教授合作,采用“大学生,小学生同上一节课”的方式,大学生为小学生讲解 AI 工具、试玩桌游。本学期,学生们测试并迭代桌游,使用 3D 打印机打印配件,用 ChatGPT 和 Midjourney 增强视觉设计,用 Kimi 辅助编写说明书,还计划让学生尝试用文生音乐工具 Suno 制作歌曲加入桌游 2.0 版本。 英语主课方面:初中部的英语课也融入了 AIGC 工具。魏一然协助初中部的英文老师杨佳欣和刘奕玚进行探索。在课程初期,更多是老师带着学生使用 AIGC 工具,prompt 由学生提出,老师引导。例如,在研究学校食堂食物浪费问题时,老师带着学生与 ChatGPT 对话,了解处理方法,让 ChatGPT 为学生生成生词解释和例句,形成生词库,并灵活加工生词生成题目、游戏或文章帮助学生复习单词。在关于社交媒体的英语辩论课上,尝试让学生自主使用 AIGC 工具做辩论准备。
2025-02-18
中小学AI教育场景 生成式 全息
以下是关于中小学 AI 教育场景生成式的相关内容: 北京市新英才学校在中小学 AI 教育方面进行了积极探索。跨学科项目老师带着学生用 AIGC 做学校地图桌游,英语老师在 AIGC 帮助下备课和授课,生物和信息科技老师合作带着学生训练 AI 模型以识别植物。数字与科学中心 EdTech 跨学科小组组长魏一然深入参与其中。 在英语课上,对于初中以上学生,一开始更多是老师带着使用 AIGC 工具,由学生提出 prompt,老师引导。例如在研究学校食堂食物浪费问题时,老师带着学生与 ChatGPT 对话获取信息,还让 ChatGPT 生成单词解释和例句,加工生词生成题目、游戏或文章帮助学生复习单词。在社交媒体的英语辩论课上,尝试让学生自主使用 AIGC 工具做辩论准备。 教育科技长期以来在有效性和规模之间权衡,而有了 AI 这种状况不再存在。现在可以大规模部署个性化学习计划,为每个用户提供“口袋里的老师”。像 Speak、Quazel、Lingostar 已在做实时交流并给予反馈的语言教学。Photomath、Mathly 指导学生解决数学问题,PeopleAI、Historical Figures 通过模拟与杰出人物聊天教授历史。学生在作业中也利用 Grammarly、Orchard、Lex 等工具提升写作水平,处理其他形式内容的产品如 Tome、Beautiful.ai 协助创建演示文稿。
2025-02-17
给我5个midjourney确保场景一致性的Sample提示词
以下是 5 个 Midjourney 确保场景一致性的 Sample 提示词: 1. Scifi movie scene. In the silverwhite space environment, from the overtheshoulder lens on the right side of the man with short hair and navy blue jumpsuit, a transparent virtual screen appeared on the wall in front of him. Behind there is the silhouette of another female employee with long blue hair, operating another screen. Rendered in a C4D style inspired by Unreal Engine, with high resolution and rich detail. sref url cref url ar 16:9 style raw sw 30 cw 100 2. In a magical forest, a fairy with colorful wings is sitting on a huge mushroom. The sunlight filters through the leaves, creating dappled patterns on the ground. cref https://my.image.host/fairy.jpg s 800 3. On a sandy beach at sunset, a couple is walking hand in hand, leaving footprints in the sand. The ocean waves crash gently in the background. cref https://my.image.host/couple.jpg ar 9:16 4. In a medieval castle courtyard, a knight in shining armor is training with a sword. The flags are fluttering in the wind. cref https://my.image.host/knight.jpg s 700 5. At a busy city street corner, a street musician is playing a guitar, surrounded by a crowd of people. The buildings are towering in the background. cref https://my.image.host/musician.jpg ar 4:3
2025-02-14
现在个人应用场景下最新的产品是什么
在个人应用场景下,最新的产品包括以下方面: 个人实操案例: 产品使用场景:为本篇文章配图,通过不同提示词生成搞笑图片等。 产品开发场景:搭建 AI 访谈 bot,以了解做 AI 朋友的访谈意愿和产出内容质量水平;对内容推荐机制感兴趣,希望 bot 具备内容推荐能力。实现方案有简单和复杂之分,复杂方案需考虑用户识别、记录存储入库可查看等问题,在扣子搭建 bot 时存在工作流触发不成功导致访谈记录未成功存储入库的情况。由于要发布到公众号作为订阅号助手,目前部署的是扣子版本,回复关键词【元器】可体验元器版本。 AIGC 落地应用: 筛选出 5 大应用场景、17 个细分方向、40+大模型案例。 使用场景分为改善大模型产品的使用体验、助力用户工作流、细分场景独立实用工具、AI 社区、Chatbot 五个方向。 产品形态分为插件(Chat GPT/Chrome 等)、辅助现有产品能力、深度结合 LLM 能力的独立网站&应用、AI 社区四种。目前产品大多分布在 PC 端。
2025-02-11