直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

请帮我总结AI AGENT的总体架构,帮助我更快学习相关的知识,尽快进行具体场景的商业落地

回答

AI Agent 是一个融合了多学科精髓的综合实体,不仅有实体形态,还有丰富的概念形态,并具备许多人类特有的属性。其总体架构包括以下方面:

  1. 大模型 LLM 扮演“大脑”。
  2. 规划:包括子目标分解、反思与改进。子目标分解将大型任务分解为较小可管理的子目标以处理复杂任务;反思和改进可对过去的行动进行自我批评和反思,从错误中学习并改进未来步骤,提高最终结果质量。
  3. 记忆。 此外,AI Agent 还具有以下特点和应用:
  4. 能够自行规划任务执行的工作流路径,面向简单或线性流程的运行。
  5. 可以实现多 Agent 协作,例如让大语言模型扮演不同角色,相互协作共同开发应用或复杂程序。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

AI-Agent系列(一):智能体起源探究

本文主要向大家讲述智能体的概念、渊源和发展历史,帮助大家对智能体这一概念奠定一个正确认知。[heading2]二、很多人其实并不知道AI Agent是什么[content]打开浏览器,搜索"什么是AI Agent",我们将会得到如下结果:图2.1.1在Bing上搜索“什么是AI Agent”行吧,我们再来问问Kimi什么是AI Agent:图2.1.2问问Kimi"什么是AI Agent?"我耗费了2分钟,却仿佛在寻找一场空欢喜。这就是所谓的AI Agent吗?......罢了,我还是自己寻找答案吧。通过必应和Kimi的搜索,我们发现网络上对AI Agent的介绍往往显得晦涩难懂,仿佛AI Agent是从石头缝儿里蹦出来的一样,神秘莫测。AI Agent的自主性、学习能力、推理能力等核心概念,以及它们如何规划和执行任务,如何理解并处理信息,这些内容似乎都笼罩在一层神秘的面纱之下。这种神秘感让我们仿佛置身于一个赛博朋克的世界,让我们不禁怀疑,是否我们已经生活在了一个充满未来科技的时代?未来是否真的已经到来?在深入探讨AI agent之前,我们首先需要对其进行定义和总结。AI Agent是一个融合了语言学、心理学、神经学、逻辑学、社会科学、计算机科学等多个学科精髓的综合实体。它不仅拥有实体形态,更蕴含着丰富的概念形态,同时它还具备了许多人类特有的属性。因为这些学科大多以人为研究对象,致力于探索人类内在的本质。

AI-Agent系列(一):智能体起源探究

本文主要向大家讲述智能体的概念、渊源和发展历史,帮助大家对智能体这一概念奠定一个正确认知。[heading2]二、很多人其实并不知道AI Agent是什么[content]打开浏览器,搜索"什么是AI Agent",我们将会得到如下结果:图2.1.1在Bing上搜索“什么是AI Agent”行吧,我们再来问问Kimi什么是AI Agent:图2.1.2问问Kimi"什么是AI Agent?"我耗费了2分钟,却仿佛在寻找一场空欢喜。这就是所谓的AI Agent吗?......罢了,我还是自己寻找答案吧。通过必应和Kimi的搜索,我们发现网络上对AI Agent的介绍往往显得晦涩难懂,仿佛AI Agent是从石头缝儿里蹦出来的一样,神秘莫测。AI Agent的自主性、学习能力、推理能力等核心概念,以及它们如何规划和执行任务,如何理解并处理信息,这些内容似乎都笼罩在一层神秘的面纱之下。这种神秘感让我们仿佛置身于一个赛博朋克的世界,让我们不禁怀疑,是否我们已经生活在了一个充满未来科技的时代?未来是否真的已经到来?在深入探讨AI agent之前,我们首先需要对其进行定义和总结。AI Agent是一个融合了语言学、心理学、神经学、逻辑学、社会科学、计算机科学等多个学科精髓的综合实体。它不仅拥有实体形态,更蕴含着丰富的概念形态,同时它还具备了许多人类特有的属性。因为这些学科大多以人为研究对象,致力于探索人类内在的本质。

Inhai: Agentic Workflow:AI 重塑了我的工作流

[title]Inhai:Agentic Workflow:AI重塑了我的工作流如果大家使用Kimi Chat来查询某个问题,你会发现它会在互联网上检索相关内容,并基于检索结果进行总结分析,最后给出结论。这其实是大模型利用「网页搜索」工具的一个典型例子,同时你也会看到PPT中介绍了非常多的不同领域类型的工具,它其实是为大模型在获取、处理、呈现信息上做额外的补充。PlanningAgent通过自行规划任务执行的工作流路径,面向于简单的或者一些线性流程的运行。比如下图中:Agent会先识别男孩的姿势,并可能找到一个姿势提取模型来识别姿势,在接下来要找到一个姿势图像模型来合成一个新的女孩图像,然后再使用图像理解文本的模型,并在最后使用语音合成输出,完成这个流程任务。Multiagent Collaboration吴恩达通过开源项目ChatDev进行举例,你可以让一个大语言模型扮演不同的角色,比如让一个Agent扮演公司CEO、产品经理、设计师、代码工程师或测试人员,这些Agent会相互协作,根据需求共同开发一个应用或者复杂程序。AI Agent基本框架OpenAI的研究主管Lilian Weng曾经写过一篇博客叫做《LLM Powered Autonomous Agents》,其中就很好的介绍了Agent的设计框架,她提出了“Agent = LLM +规划+记忆+工具使用”的基础架构,其中大模型LLM扮演了Agent的“大脑”。Planning(规划)主要包括子目标分解、反思与改进。将大型任务分解为较小可管理的子目标处理复杂的任务。而反思和改进指可以对过去的行动进行自我批评和自我反思,从错误中学习并改进未来的步骤,从而提高最终结果的质量。Memory(记忆)

其他人在问
AI Agent 规划是什么,怎么使用
AI Agent 规划是一个复杂但关键的概念,主要包括以下方面: 自行规划任务执行的工作流路径,适用于简单或线性流程的运行。例如,先识别男孩的姿势,再利用相关模型合成新的女孩图像,接着使用特定模型处理,最后进行语音合成输出。 包含子目标分解、反思与改进。子目标分解将大型任务分解为较小可管理的子目标,以处理复杂任务。反思与改进则可以对过去的行动进行自我批评和自我反思,从错误中学习并改进未来的步骤,从而提高最终结果的质量。 规划通常涉及五种主要方法: 任务分解:将复杂任务分解为简单子任务以简化问题,如 CoT(2022)、ReAct(2022)、HuggingGPT(2023)等。 多计划选择:生成多个备选计划并通过搜索算法选择最优计划执行,如 ToT(2023)、GoT(2023)、LLMMCTS(2023)。 外部模块辅助规划:引入外部规划器来提升规划过程,解决效率和可行性问题,如 LLM+P(2023)、LLMDP(2023)、DRRN(2015)。 反思与细化:通过反思和细化提高规划能力,纠正错误,如 Reflexion(2023)、CRITIC(2023)、SelfRefine(2023)。 记忆增强规划:利用额外记忆模块增强规划能力,存储有价值的信息,如 REMEMBER(2023)、MemoryBank(2023)。 在使用方面,AI Agent 的规划可以帮助其更高效、准确地完成任务,例如在多角色协作的场景中,不同角色的 Agent 相互协作,根据需求共同开发一个应用或者复杂程序。同时,OpenAI 的研究主管 Lilian Weng 提出了“Agent = LLM + 规划 + 记忆 + 工具使用”的基础架构,其中大模型 LLM 扮演了 Agent 的“大脑”。
2024-11-05
你能帮我找到这篇报告吗?他的名字是《InfoQ:中国AI Agent应用研究报告2024》
以下是为您找到的《InfoQ:中国 AI Agent 应用研究报告 2024》的链接:https://waytoagi.feishu.cn/record/Y45LrXJiwe4SgYc5tMZcVVtqn6b
2024-10-31
传统的agent是怎么定义的
传统的 agent 定义如下: 在古希腊哲学中,对“行动者”(Agent)的探讨深刻影响了后世对道德责任和个体决策的理解。尽管当时未使用现代意义的“Agent”术语,苏格拉底、柏拉图和亚里士多德等哲学家已为其奠定基础。 亚里士多德在《尼各马科伦理学》中探讨德性伦理学,认为人的善良和幸福源自由理性和智慧引导的德性生活,区分了“被动行为”与“主动行为”,强调有道德价值的行为应是个体自愿且有明确意图的选择,个体作为行动者不仅要靠理性指导行为,还要对自愿行为承担道德责任。 苏格拉底通过独特对话法促使人们自我反省,考察行为是否符合道德标准,提出“无人有意作恶”,认为错误源于无知,主张通过增长智慧和美德引导正确决策。 柏拉图在《理想国》中构建理想社会模型,探讨灵魂三部分关系,认为理性主导时个体才能做出正确选择,将知识与道德紧密相连。 虽然古希腊哲学家未直接讨论“自由意志”,但他们关于个体自主决策及对结果负责的思考,对后世关于自由意志和道德责任的讨论影响深远,亚里士多德强调人作为理性动物应依据内在理性及外在自然法则实现德性和善。 在 20 世纪 60 年代,马文·明斯基定义“Agent”为一个自主、独立运行的计算或认知实体,具备感知、决策和执行任务的能力,有自己的目标、行为和策略,能与其他 Agent 交互和协作,可视为智能系统中的功能模块,在不同层次执行不同功能,通过协作实现复杂智能行为。在其著作《心智社会》中,深入探讨了人类思维和人工智能的复杂关系。
2024-10-28
Agent是什么 AI agent是什么
AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 心灵社会理论认为,智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。心灵社会将智能划分为多个层次,从低层次的感知和反应到高层次的规划和决策,每个层次由多个 Agent 负责。每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务,如视觉处理、语言理解、运动控制等。智能不是集中在单一的核心处理单元,而是通过多个相互关联的 Agent 共同实现,这种分布式智能能够提高系统的灵活性和鲁棒性,应对复杂和多变的环境。 同时,在《心灵社会》中,明斯基还详细描述了不同类型的 Agent 及其功能,包括专家 Agent(拥有特定领域知识和技能,负责处理复杂的任务和解决特定问题)、管理 Agent(协调和控制其他 Agent 的活动,确保整体系统协调一致地运行)、学习 Agent(通过经验和交互,不断调整和优化自身行为,提高系统在不断变化环境中的适应能力)。 从达特茅斯会议开始讨论人工智能(Artificial Intelligence),到马文·明斯基引入“Agent”概念,“AI”和“Agent”就彻底聚齐了,往后,我们都将其称之为 AI Agent。 AI Agent 还包括下面几个概念: 1. Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 2. Router:可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 3. Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 此外,还需要三个 Agent: 1. Responser Agent:主 agent,用于回复用户(伪多模态)。 2. Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)。 3. Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈。 Responser Agent、Daily Agent、Background Agent 每隔一段时间运行一次(默认 3 分钟),运行时会分析期间的历史对话,变更人物关系(亲密度,了解度等),变更反感度,如果超标则拉黑用户,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间)。
2024-10-28
建立Agent
以下是一些常见的 Agent 构建平台及相关信息: 1. Coze:是新一代的一站式 AI Bot 开发平台,适用于构建基于 AI 模型的各类问答 Bot,集成丰富插件工具,能拓展 Bot 能力边界。 2. Microsoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 3. 文心智能体:百度推出的基于文心大模型的智能体(Agent)平台,支持开发者打造产品能力。 4. MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 5. 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 6. 钉钉 AI 超级助理:依托钉钉强大场景和数据优势,在处理高频工作场景表现出色。 使用扣子 coze.cn 等平台创建智能体 Agent 的过程被创作者形象地比喻为“捏 Bot”,最简单的 Bot 往往 1 分钟内可完成。常见 Bot 有讲故事、减肥提醒、生成 PPT、真假新闻辨识、新闻资讯收集、扮演“甄嬛”等。国内外有多个可在几分钟内完成 Agent 创建的平台,如国内版扣子 coze.cn、海外版 Coze coze.com、百度 AppBuilder、阿里通义千问、智谱 AI 等,可先从扣子 coze.cn 开始。 AgentSims 是国产斯坦福 AI 小镇,在其框架中: command 文件夹下包含所有对外接口,每个接口类实现 execute 方法作为 handler,有关键方法与接口。 系统中有预设的 Agent 样例可选择,初始化沙箱世界时会选默认模板。 游戏界面提供自行创建 Agent 的选项,可选择外观、名字、LLM、记忆系统、计划系统、最终目标、人物特征等,创建后信息保存到 mysql 中,后续可复用,系统宕机也可从数据库进行恢复。 以上信息由 AI 大模型生成,请仔细甄别,您可以根据自己的需求选择适合的平台进行进一步探索和应用。
2024-10-27
deepseek支持function calling,在dify的agent的prompt里要如何写才能调用工具。我说的是如何写提示词,才能让deepseek通过Function Calling调用工具。
要在 Dify 的 agent 的 prompt 里让 DeepSeek 通过 Function Calling 调用工具,您可以参考以下内容: 1. 提示词工程主要由提示词注入和工具结果回传两部分代码组成。 提示词注入:将工具信息及使用工具的提示词添加到系统提示中。INSTRUCTION 包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。TOOL_EAXMPLE 用于提示 LLM 如何理解和使用工具,编写时注意用无关紧要的工具作示例避免混淆。tools_instructions 是将通用工具字典转换成 LLM 可读的工具列表,可动态调整。REUTRN_FORMAT 定义调用 API 的格式。 工具结果回传:利用正则表达式抓取输出中的“tool”和“parameters”参数。对于 interpreter 工具,使用另一种正则表达式提取 LLM 输出的代码。通过识别 LLM 返回的调用工具的字典,提取对应值传入工具函数,将结果以 observation 角色返回给 LLM,对于不接受该角色的 LLM 接口,可改为回传给 user 角色。 2. 当模型判断需要调用工具函数时,检测到返回的 json 里 function_call 字段不为空,则执行异步函数调用,采用回调方式获取函数返回结果。通过判断返回的 functionCall 的名称执行不同函数并返回结果。 3. 在大模型请求中,最大的两个变量是 Messages 和 Tools。Messages 里放 sys prompt、memory、user query;Tools 里放能力的 Json Scheme,两者组合形成整个完全的 Prompt。Agent 应用开发的本质是动态 Prompt 拼接,通过工程化手段将业务需求转述成新的 prompt。短期记忆在 messages 里的历史 QA 对,长期记忆是 summary 之后的文本再塞回 system prompt。RAG 是向量相似性检索,可放在 system prompt 里或通过 tools 触发检索。Action 是触发 tool_calls 标记进入请求循环,拿模型生成的请求参数进行 API request,再把结果返回给大模型交互,没有 tool_calls 标记则循环结束。Multi Agents 是更换 system prompt 和 tools。
2024-10-24
家长如何结合 AI 教育小学生
以下是关于家长如何结合 AI 教育小学生的一些建议: 1. 把 AI 作为追问、反问、问答、交流的工具,让孩子在解题过程中通过与 AI 交流来学习,而不是直接获取答案。但要注意避免孩子过度依赖,比如不能让孩子拍照解题。 2. 家长要了解 AI 的有限和缺点,引导孩子正确使用。例如,在绘画方面,鼓励孩子先做构思创意,让计算机完善,或者计算机出创意,孩子完善细节,实现人和计算机合作作画。 3. 利用 AI 作为立规矩小助手,输入孩子的年龄和需要立规矩的场景,AI 就能生成孩子能听懂的规则、沟通原因以及鼓励和赞赏的具体话术。 4. 认识到 AI 能链接专家方法论和家庭个性化需求,提升教育环节的效率,但也可能加剧知识获取的不平等,所以家长要学会使用,降低“会用”的门槛。
2024-11-05
如何结合AI开展自己的创业之路
以下是结合 AI 开展创业之路的一些建议: 1. 辅助创作与学习方面: 可以开发如 AI 智能写作助手帮助用户快速生成高质量文本;AI 语言学习助手、诗歌创作助手、书法字体生成器、漫画生成器等,为用户的学习和创作提供支持。 2. 推荐与规划方面: 包括开发 AI 图像识别商品推荐、美食推荐平台、旅游行程规划器、时尚穿搭建议平台、智能投资顾问等,根据用户的需求和偏好为其推荐合适的产品、服务或制定个性化的计划。 3. 监控与预警方面: 例如开发 AI 宠物健康监测设备、家居安全监控系统、天气预报预警系统、医疗诊断辅助系统等,实时监测各种情况并提供预警。 4. 优化与管理方面: 涉及开发办公自动化工具、物流路径优化工具、家居清洁机器人调度系统、金融风险评估工具等,提高工作效率和管理水平。 5. 销售与交易方面: 有 AI 艺术作品生成器、书法作品销售平台、摄影作品销售平台、汽车销售平台、房地产交易平台等,为各类产品和服务提供销售渠道。 在宠物领域与 AI 结合的创业方向及学习路径: 1. 创业方向: AI 宠物助手:基于自然语言处理和计算机视觉的 AI 宠物助手,可以帮助主人更好地照顾宠物,比如自动识别宠物情绪、提供饮食建议、监测宠物健康状况等。 AI 宠物互动玩具:利用 AI 技术开发的智能互动玩具,可以增强宠物的娱乐体验,例如会自主移动并引起宠物注意的智能玩具、会发出声音和互动的智能宠物玩具等。 AI 宠物图像生成:使用生成式 AI 模型,可以根据文字描述生成各种宠物形象的图像,帮助宠物主人定制个性化的宠物形象。 AI 宠物医疗诊断:利用计算机视觉和机器学习技术,可以开发 AI 辅助的宠物医疗诊断系统,通过分析宠物的症状图像和病历数据,提供初步诊断建议。 AI 宠物行为分析:基于传感器数据和计算机视觉,可以利用 AI 技术分析宠物的行为模式,帮助主人更好地了解宠物的需求和习性。 2. 学习路径: 掌握基础的机器学习、计算机视觉、自然语言处理等 AI 技术。 了解宠物行为学、宠物医疗等相关领域知识。 关注业内先进的 AI+宠物应用案例,学习其技术实现。 尝试开发简单的 AI 宠物应用原型,并不断迭代优化。 总之,AI 领域为创业者提供了丰富的选择和广阔的发展前景,创业者可以根据自己的兴趣、技能和市场需求,选择适合自己的项目进行创业。
2024-11-05
使用AI赚钱的方法
以下是一些使用 AI 赚钱的方法: 1. 艺术创作:生成式 AI 可用于内容创作,如通过像 Lensa 这样的应用生成肖像画等,从消费者“仅为了娱乐”地创造内容,到创作者或个体创业者通过内容实现盈利。 2. 就业于相关岗位:学会 AI 技术,如成为数据科学家、机器学习工程师等,在相关岗位工作获得不错的收入。AI 技术在金融、医疗、制造业等各行各业都有应用,掌握 AI 技能可增加就业机会和职业发展可能性。 3. 开发 AI 产品或应用:例如创建自己的 GPTs 等,但大多数人可能难以成功,需要综合考虑多种因素,如对市场和商业的理解等。
2024-11-05
用什么ai工具可以写文献综述
以下是一些可以用于写文献综述的 AI 工具: 1. 文献管理和搜索方面: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,可提供文献推荐和引用分析。 2. 内容生成和辅助写作方面: Grammarly:通过 AI 技术提供文本校对、语法修正和写作风格建议,有助于提高语言质量。 Quillbot:基于 AI 的重写和摘要工具,可帮助精简和优化内容。 3. 研究和数据分析方面: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,利于数据分析和可视化。 Knitro:用于数学建模和优化的软件,可进行复杂的数据分析和模型构建。 4. 论文结构和格式方面: LaTeX:结合自动化和模板,能高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测方面: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:通过与已发表作品比较,检测潜在抄袭问题。 需要注意的是,AI 工具可以作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行文献综述写作时,应保持批判性思维,并确保研究的质量和学术诚信。
2024-11-05
如何使用ai写文献综述,保证参考文献有正确出处
利用 AI 写文献综述并保证参考文献有正确出处,可以按照以下步骤进行: 1. 确定课题主题:明确您的研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件来搜集相关的研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成课题的大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:利用 AI 工具来帮助撰写文献综述部分,确保内容的准确性和完整性。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术来设计研究方法。 7. 数据分析:如果课题涉及数据收集和分析,可以使用 AI 数据分析工具来处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具来撰写课题的各个部分,并进行语法和风格的检查。 9. 生成参考文献:使用 AI 文献管理工具来生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具来检查课题的逻辑性和一致性,并根据反馈进行修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具来确保课题的原创性,并进行最后的格式调整。 需要注意的是,AI 工具可以作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行课题写作时,应保持批判性思维,并确保研究的质量和学术诚信。
2024-11-05
怎么学习AI
以下是关于新手学习 AI 的全面指导: 一、了解 AI 基本概念 1. 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 2. 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 1. 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 2. 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 1. 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 2. 体验 AI 产品,与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 五、持续学习和跟进 1. AI 是一个快速发展的领域,新的研究成果和技术不断涌现。关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 2. 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 对于中学生学习 AI,还可以: 1. 从编程语言入手学习,如 Python、JavaScript 等,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识,了解其基本概念、发展历程、主要技术及在各领域的应用案例。 4. 参与 AI 相关的实践项目,参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题。 5. 关注 AI 发展的前沿动态,关注权威媒体和学者,思考 AI 技术对未来社会的影响。
2024-11-05
AI生成系统架构图 用什么
以下是一些可以用于绘制逻辑视图、功能视图和部署视图的工具: 1. Lucidchart:流行的在线绘图工具,支持多种图表创建,包括上述视图,用户可通过拖放轻松创建架构图。 2. Visual Paradigm:全面的 UML 工具,提供创建各种架构视图的功能。 3. ArchiMate:开源建模语言,与 Archi 工具配合可创建逻辑视图。 4. Enterprise Architect:强大的建模、设计和生成代码工具,支持多种视图创建。 5. Microsoft Visio:广泛使用的图表和矢量图形应用程序,有丰富模板用于创建相关视图。 6. draw.io(现 diagrams.net):免费在线图表软件,支持创建逻辑和部署视图等。 7. PlantUML:文本到 UML 转换工具,可通过描述文本自动生成相关视图。 8. Gliffy:基于云的绘图工具,提供创建架构图功能。 9. Archi:免费开源工具,支持逻辑视图创建。 10. Rational Rose:IBM 的 UML 工具,支持创建逻辑和部署视图。 请注意,虽然这些工具可以辅助创建架构视图,但它们不都是基于 AI 的。AI 在绘图工具中的应用通常涉及智能推荐布局、自动生成图表代码或识别图表中的模式和关系。在选择工具时,您应该考虑您的具体需求,比如是否需要支持特定的建模语言、是否需要与特定的开发工具集成、是否偏好在线工具或桌面应用程序等。
2024-10-30
AI搜索工程架构
以下是关于 AI 搜索工程架构的相关内容: 一、可插拔架构 在整个搜索回答的全流程,有很多节点可以做 Hook 埋点,每个 Hook 可以挂载零至多个插件,多个插件构成了 AI 搜索的可插拔架构。一些常用的功能,可以由 AI 搜索平台自身或第三方创作者抽离成标准插件,用在 AI 搜索主流程或者智能体/工作流等辅助流程。比如,自定义一个思维导图摘要插件,用户可以在搜索的步骤中选择这个自定义插件,实现用思维导图输出搜索结果。 二、提升可玩性 可以预置一个 after_answer 钩子,在大模型回答完用户 query 之后,把请求大模型的上下文信息和大模型的回答内容一起发给第三方插件,第三方插件可以把内容整理成文章/思维导图等格式,再同步到第三方笔记软件。 三、自定义智能体 Agent 智能体一般是对一些自定义操作的封装,用于解决某个场景的某类问题。以 ChatGPT 的 GPTs 举例,一个智能体应用由以下几部分自定义操作组成: 1. 提示词:描述智能体的作用,定义智能体的回复格式。 2. 知识库:上传私有文件作为回答参考。 3. 外挂 API:请求第三方 API 获取实时数据。 4. 个性化配置:是否联网/是否使用图片生成/是否使用数据分析等。 四、提升准确度 1. 为获取足够信息密度,需获取链接详情页内容。通过上一步的 Reranking 选择最匹配的 top_k 条数据,避免获取全部内容导致 context 超限。为保证获取详情内容的效率,可做并行处理,如通过 goroutine 或者 python 的协程并行读取 top_k 条链接。获取链接详情内容有多种方案,如网页爬虫、无头浏览器抓取、第三方 Reader 读取等。 2. 构建上下文内容池 Context Pool,将历史搜索结果和历史对话消息组成 Context Pool。每次搜索后追问,都带上这个 Context Pool 做意图识别/问题改写,拿到新的检索结果后更新这个 Context Pool,并带上最新的 Context Pool 内容作为上下文请求大模型回答。需要保证 Context Pool 的内容有较高的信息密度,同时控制其内容长度,不要超过大模型的 context 极限。 五、检索增强生成 以 Sana 的企业搜索用例为例,RAG 过程始于应用程序加载和转换无结构文件,转换为 LLM 可查询格式,文件被“分块”成更小的文本块,并作为向量嵌入和存储在数据库中。当用户提出问题时,系统会检索语义上最相关的上下文块,并将其折叠到“元提示”中,与检索到的信息一起馈送给 LLM,然后 LLM 合成答复返回给用户。在生产中,AI 应用程序具有更复杂的应用程序流程,包含多个检索步骤和提示链,不同类型的任务并行执行,然后将结果综合在一起,以生成最终输出。
2024-10-26
有没有RAG 基本架构的中文图示
以下是关于 RAG 基本架构的介绍: RAG 是当今大多数现代人工智能应用程序的标准架构。以 Sana 的企业搜索用例为例,其工作原理如下: 1. 应用程序加载和转换无结构文件(如 PDF、幻灯片、文本文件),跨越企业数据孤岛(如 Google Drive 和 Notion),通过数据预处理引擎(如 Unstructured)转换为 LLM 可查询格式。 2. 这些文件被“分块”成更小的文本块,作为向量嵌入并存储在数据库(如 Pinecone)中,以实现更精确的检索。 3. 当用户提出问题时,系统检索语义上最相关的上下文块,并将其折叠到“元提示”中,与检索到的信息一起馈送给 LLM。 4. LLM 从检索到的上下文中合成答复返回给用户。 RAG 的基本概念: RAG 是一种结合了检索和生成的技术,能让大模型在生成文本时利用额外的数据源,提高生成的质量和准确性。其基本流程为: 首先,给定用户输入(如问题或话题),RAG 从数据源中检索出相关文本片段(称为上下文)。 然后,将用户输入和检索到的上下文拼接成完整输入传递给大模型(如 GPT),输入通常包含提示,指导模型生成期望输出(如答案或摘要)。 最后,从大模型的输出中提取或格式化所需信息返回给用户。
2024-10-17
怎们架构专属自己企业的AI系统
要架构专属自己企业的 AI 系统,可以参考以下步骤: 一、逐步搭建 AI 智能体 1. 搭建整理入库工作流 新建工作流「url2table」,根据弹窗要求自定义工作流信息。 工作流全局流程设置需根据实际需求进行。 2. 在外层 bot 中封装工作流,完成整体配置 创建 Bot。 填写 Bot 介绍。 切换模型为“通义千问”,测试下来通义对提示词理解和执行效果较好。 把配置好的工作流添加到 Bot 中。 新增变量{{app_token}}。 添加外层 bot 提示词(可按需求和实际效果优化调整)。 二、相关术语 以下是一些在 AI 系统架构中可能涉及的术语: 1. AI 或 AI 系统或 AI 技术:具有“适应性”和“自主性”的产品和服务,如在定义的第 3.2.1 节中所述。 2. AI 供应商:在 AI 系统的研究、开发、培训、实施、部署、维护、提供或销售中发挥作用的任何组织或个人。 3. AI 用户:使用 AI 产品的任何个人或组织。 4. AI 生命周期:与 AI 系统的寿命相关的所有事件和过程,从开始到退役,包括其设计、研究、培训、开发、部署、集成、操作、维护、销售、使用和治理。 5. AI 生态系统:在 AI 生命周期中实现 AI 使用和供应的复杂网络,包括供应链、市场和治理机制。 6. 基础模型:在大量数据上训练的一种 AI 模型,可适用于广泛的任务,可作为构建更具体 AI 模型的基础。 经过上述配置,您可以在「预览与调试」窗口与 AI 智能体对话并使用全部功能。
2024-09-11
输入文字,生成组织架构图
以下是一些可以用于生成组织架构图的工具: 1. PlantUML:这是一个文本到 UML 的转换工具,通过编写描述性文本可自动生成序列图、用例图、类图等,能帮助创建逻辑视图。 2. Gliffy:基于云的绘图工具,提供创建各种架构图的功能,包括逻辑视图和部署视图。 3. Archi:免费的开源工具,用于创建 ArchiMate 和 TOGAF 模型,支持逻辑视图的创建。 4. Rational Rose:IBM 的 UML 工具,支持创建多种视图,包含逻辑视图和部署视图。 需要注意的是,这些工具并非都基于 AI。AI 在绘图工具中的应用通常涉及智能推荐布局、自动生成图表代码或识别图表中的模式和关系。在选择工具时,应考虑具体需求,如是否需要支持特定建模语言、与特定开发工具集成、偏好在线工具或桌面应用程序等。 另外,增强版 Bot 是基于 AI 驱动的智能创作平台,可实现一站式内容生成(包括图片、PPT、PDF)。在图片理解与生成场景中,在对话框输入诉求即可测试效果,比如生成常见的系统架构风格架构设计图,给出一张图片。通过简短的文本就能让 Bot 生成相应的图片,这背后是文本到图片或视频等其他格式内容的映射关系,在日常工作中使用便捷。当然,也可以根据图片提取里面的关键知识内容。
2024-09-03
文生图中DiT架构比SDXL架构好在哪
DiT 架构相比 SDXL 架构具有以下优势: 1. Scaling 能力:相比于 Unet,Transformer 结构的 Scaling 能力更受认可,即模型参数量越大,性能越强。 2. 额外信息处理:DiT 在 Vision Transformer 模块基础上做了略微修改,能够在图片生成过程中接受一些额外的信息,如时间步 t 和标签 y。 3. 场景模拟真实性:Sora 背后的 DiT 架构在大数据量情况下具有强大的刻画能力,能展现出类似大语言模型涌现出逻辑推理等能力的现象。 4. 文本编码器:在提升文生图模型的语义理解能力方面,新的文生图模型纷纷优化文本编码器的能力,而 HunyuanDiT 作为使用 DiT 架构的模型,在中文生图方面有一定进展,但开源界中文、细粒度文生图模型的文本编码器仍有较大优化空间。
2024-08-20
AI办公场景的小工具有哪些?请用模板给我介绍 模板:产品名称、产品适用场景、产品卖点
以下是一些 AI 办公场景的小工具: |产品名称|产品适用场景|产品卖点| |||| |AI 智能写作助手|辅助创作与学习|帮助用户快速生成高质量文本| |AI 语言学习助手|辅助创作与学习|辅助用户学习语言,提供个性化学习方案| |爱奇艺智能推荐|推荐与规划|根据用户喜好推荐电影,发现优质影片| |WPS Office|优化与管理|提高办公效率,实现自动化办公流程| |销售:定制销售解决方案|销售|为企业定制销售方案| |客服:定制客服话术|客服|提供针对性的客服话术| |HR:团队绩效管理|人力资源|分析员工绩效并提供考评和改进建议| |HR:面试工具|人力资源|帮助求职者在面试中生成完美回答| |科学:研制采摘机器人|科学研究|借助 ChatGPT 设计并研制番茄收割机器人|
2024-11-01
AI办公场景的小工具有哪些?
以下是一些常见的 AI 办公场景小工具: 在企业运营方面,有用于日常办公文档材料撰写整理、营销对话机器人、市场分析、销售策略咨询、法律文书起草、案例分析、法律条文梳理、人力资源简历筛选、预招聘、员工培训的工具。 在教育领域,有协助评估学生学习情况、为职业规划提供建议、针对学生情况以及兴趣定制化学习内容、论文初稿搭建及论文审核、帮助低收入国家/家庭通过 GPT 获得平等教育资源的工具。 在游戏/媒体行业,有定制化游戏、动态生成 NPC 互动、自定义剧情、开放式结局、出海文案内容生成、语言翻译及辅助广告投放和运营、数字虚拟人直播、游戏平台代码重构、AI 自动生成副本的工具。 在零售/电商领域,有舆情、投诉、突发事件监测及分析、品牌营销内容撰写及投放、自动化库存管理、自动生成或完成 SKU 类别选择、数量和价格分配、客户购物趋势分析及洞察的工具。 在金融/保险行业,有个人金融理财顾问、贷款信息摘要及初始批复、识别并检测欺诈活动风险、客服中心分析及内容洞察、保险理赔处理及分析、投资者报的工具。 此外,还有以下具体的工具: Sameday 可以接电话并预约。 Truelark 可以处理短信、电子邮件和聊天。 Osome 可以管理后台办公室。 Durable 可以创建一个完整的专业网站。 通用内容创建工具如 Jasper、Copy 和 Writer 在小型和中型企业中已经获得了显著的用户基础。 针对特定类型企业的垂直化工具,如 Harvey 和 Spellbook 帮助法律团队自动化任务,Interior AI 使代理商能够虚拟布置房产,Zuma 帮助物业经理将潜在客户转化为预定的参观。 用于高效做 PPT 的工具,如先让 ChatGPT 用 Markdown 语法展示内容,再借用 MindShow 把 Markdown 内容转换为精美的 PPT。
2024-11-01
LangChain的技术方案和应用场景
LangChain 是一个为简化大模型应用开发而设计的开源框架。 其技术方案具有以下特点: 提供模块化的工具和库,便于开发者集成和操作多种大模型。 注重简化开发流程,让开发者能将更多精力投入到应用的核心价值创造上。 支持广泛的模型,具有良好的可扩展性,能适应业务需求的变化。 在应用方面: 作为得到社区广泛支持的开源项目,拥有活跃的贡献者和持续更新。 提供全面的文档和示例代码,有助于新用户快速掌握。 充分考虑应用的安全性和用户数据的隐私保护。 是多语言支持的灵活框架,适用于各种规模的项目和不同背景的开发者。 LangChain 官方手册:https://python.langchain.com/docs/get_started/introduction/
2024-11-01
在办公场景中的AI工具清单
以下是在办公场景中常见的 AI 工具清单: PPT 制作工具: Gamma:在线 PPT 制作网站,可通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。链接:https://gamma.app/ 美图 AI PPT:通过输入简单文本描述生成专业 PPT 设计,有丰富模板库和设计元素。链接:https://www.xdesign.com/ppt/ Mindshow:AI 驱动的 PPT 辅助工具,提供智能设计功能,如自动布局、图像选择和文本优化等。链接:https://www.mindshow.fun/ 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术,提供智能文本生成、语音输入、文档格式化等功能。链接:https://zhiwen.xfyun.cn/ 商业顾问工具: Sameday:可以接电话并预约。链接:https://www.gosameday.com/ Truelark:可以处理短信、电子邮件和聊天。链接:https://truelark.com/ Osome:可以管理后台办公室。链接:https://osome.com/sg/ Durable:可以创建一个完整的专业网站。链接:https://durable.co/ Harvey 和 Spellbook:帮助法律团队自动化任务,如接待、研究和文件起草。 Interior AI:使代理商能够虚拟布置房产。链接:https://interiorai.com/ Zuma:帮助物业经理将潜在客户转化为预定的参观。链接:https://www.getzuma.com/ 通用内容创建工具:Jasper(https://www.jasper.ai/)、Copy(http://copy.ai/)、Writer(http://writer.ai/) 其他类型工具: 辅助创作与学习:AI 智能写作助手、AI 语言学习助手、诗歌创作助手、书法字体生成器、漫画生成器等。 推荐与规划:AI 图像识别商品推荐、美食推荐平台、旅游行程规划器、时尚穿搭建议平台、智能投资顾问等。 监控与预警:AI 宠物健康监测设备、家居安全监控系统、天气预报预警系统、医疗诊断辅助系统等。 优化与管理:办公自动化工具、物流路径优化工具、家居清洁机器人调度系统、金融风险评估工具等。 销售与交易:AI 艺术作品生成器、书法作品销售平台、摄影作品销售平台、汽车销售平台、房地产交易平台等。
2024-10-30
AI能应用在哪些场景
AI 已经广泛应用于众多场景,包括但不限于以下方面: 1. 医疗保健: 医学影像分析,辅助诊断疾病。 药物研发,加速研发过程。 个性化医疗,提供个性化治疗方案。 机器人辅助手术,提高手术精度和安全性。 2. 金融服务: 风控和反欺诈,降低金融机构风险。 信用评估,帮助做出贷款决策。 投资分析,辅助投资者决策。 客户服务,提供 24/7 服务并回答常见问题。 3. 零售和电子商务: 产品推荐,分析客户数据推荐感兴趣产品。 搜索和个性化,改善搜索结果和购物体验。 动态定价,根据市场需求调整产品价格。 聊天机器人,回答客户问题和解决问题。 4. 制造业: 预测性维护,预测机器故障避免停机。 质量控制,检测产品缺陷提高质量。 供应链管理,优化供应链提高效率和降低成本。 机器人自动化,控制工业机器人提高生产效率。 5. 交通运输: 自动驾驶,提高交通安全性和效率。 交通管理,优化信号灯和交通流量缓解拥堵。 物流和配送,优化路线和配送计划降低成本。 无人机送货,将货物送达偏远地区。 6. 其他应用场景: 教育,提供个性化学习体验。 农业,分析农田数据提高农作物产量和质量。 娱乐,开发虚拟现实和增强现实体验。 能源,优化能源使用提高效率。 此外,市面上还有众多具体的 AI 应用产品,如: 1. 辅助创作与学习:AI 智能写作助手、AI 语言学习助手、诗歌创作助手、书法字体生成器、漫画生成器等。 2. 推荐与规划:AI 图像识别商品推荐、美食推荐平台、旅游行程规划器、时尚穿搭建议平台、智能投资顾问等。 3. 监控与预警:AI 宠物健康监测设备、家居安全监控系统、天气预报预警系统、医疗诊断辅助系统等。 4. 优化与管理:办公自动化工具、物流路径优化工具、家居清洁机器人调度系统、金融风险评估工具等。 5. 销售与交易:AI 艺术作品生成器、书法作品销售平台、摄影作品销售平台、汽车销售平台、房地产交易平台等。 总之,AI 的应用场景还在不断扩展,未来将对我们的生活产生更加深远的影响。
2024-10-28
投资相关的AI应用场景有哪些
以下是一些投资相关的 AI 应用场景: 1. 金融服务中的风控和反欺诈:AI 可用于识别和阻止欺诈行为,降低金融机构风险。 2. 信用评估:帮助金融机构评估借款人的信用风险,辅助做出更好的贷款决策。 3. 投资分析:通过分析市场数据,协助投资者做出更明智的投资决策。 4. 智能理财助手:如蚂蚁财富智能理财助手,根据用户风险偏好和资产状况提供投资方案。 此外,还有一些具体的应用案例,比如 FundGuard 是 AI 投资会计系统,为金融领域提供服务。
2024-10-28