Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

目前在TO C场景中,AI在哪前三个场景中应用最为广泛

Answer

在 To C 场景中,AI 应用较为广泛的前三个场景包括:

  1. 角色扮演类产品:如“猫箱”“剧本戏”“名人朋友圈”等,在 LLM 基础上通过添加特定角色定义实现。
  2. 陪伴类产品:以“星野”“Talkie”“BubblePal”等为代表,在 LLM 基础上对长短记忆进行处理,突出陪伴意义,随着时间积累知识库,使 AI 更懂用户。
  3. 搜索工具类产品:像“秘塔”“360 搜索”等,本质上是 RAG 方案,部分产品会对搜索内容结构化,形成图谱或脑图。
Content generated by AI large model, please carefully verify (powered by aily)

References

观点:LLM落地思考

这个方向对大模型的任务理解、编程能力、输出遵循有较高的要求,并且需要一些LLM前处理与后处理的工程来进行兜底,毕竟企业流程自动化一旦出错影响面很广。但可以预见的是这个方向是最有意义也是能承载厂商最多的方向,这个方向可以简单的归结为,使用大模型帮助企业完成数字化转型并直接升级至业务自动化。而因为这其中需要每一家大模型服务商针对性的帮助企业去设计大模型赋能的方案(因为每个企业的业务流、数据流都不相同)因此全部是定制化服务,因此可以承载非常多的业务。但是其业务爆发期判断可能要到几年后,待这次经济下行结束回暖后,目前可能需求方还是优先国企与金融,数字化较成熟且有国家AI+任务驱动的地方。3、采用RAG方案进行知识应用的工程框架,这方面包括AI搜索、智能客服、流水线问题定位等场景,通过给予大模型已有行业知识来让其在一定范围内解决问题。这个方向也是比较火的方向,可以将其看作现阶段能力还不足的大模型的工程优化,通过RAG解决模型幻觉、模型包含知识过时的问题。但是这个方向有个很明显的问题,就是整个前处理过程对整个方案的效果有着更高的影响(怎样拆query、怎样匹配检索、怎样排序、怎样供给信息)。3、ToC业务最后说说ToC业务,由于我不是ToC出身,对这个方向看的不够透彻,首先是这个问题,ToC业务当前能够说有爆款吗?目前看来,chatgpt肯定是最爆的,其次可能是midjourney。然后c.ai、talkie等产品也还比较火,剩下的一些产品可能是短期火一下然后就沉寂了。目前暂时还没有出现像微信这样的大杀器C端产品,当然这也跟LLM的发展相关,毕竟突破才一年多。向QQ这种产品也是在互联网泡沫后逐步出现的,而且未来C端的产品形态也难说,毕竟当前C端最火的产品竟然是本应是产品架构最底层的模型端提供的。

展望2025,AI行业有哪些创新机会? | 峰瑞报告

目标用户群体:ToB服务于企业或组织,提升整体运营效率;ToP则针对内容创作者、技术专家等专业用户,提高个人工作效率和专业能力。应用场景:ToB嵌入企业流程,如销售和供应链管理;ToP聚焦个人工作流程,如内容创作和数据分析。销售模式:ToB依赖定制化开发和长期客户支持,销售周期较长;ToP通常采用产品驱动增长(PLG)的策略,销售周期较短。定价策略:ToB定价灵活,与企业规模相关;ToP多为透明的订阅或一次性购买产品复杂度:ToB复杂度高,需专业培训;ToP注重易用性,支持需求较低。在AI应用的ToB方向,峰瑞投资了Brix、时来智能等企业。Brix面向北美和欧洲企业,提供全球雇佣的AI驱动解决方案。通过Hiring Agent,Brix触达全球约2000万以上的人才,自动完成候选人筛选、简历分析和面试流程,帮助企业快速组建高效团队。通过Working Agent支持远程团队的智能化管理,为企业构建100至500人规模的全球化组织提供一站式解决方案。时来智能,则是通过自研的AI Agent以及强化学习等技术,为线下餐饮服务门店提供全自动管理私域流量营销运营的解决方案。他们基于垂直场景数据训练的AI营销模型可以针对不同消费者实时生成并推送个性化的营销折扣方案,从而在优化营销成本的同时显著提升营销转化效果。时来的AI Agent营销系统能帮助门店提升50%-100%的营销转化效果,以及相应提升平均15-20%的营业额。3、ToC——颠覆时刻未至,商业模式有挑战当前,ToCAI应用在美颜修图、游戏、教育、娱乐等方向已形成一定用户规模。然而,这些应用距离实现大规模商业化仍有距离,同时面临同质化竞争,以及来自行业现有头部公司的压力。

Ranger:【AI 大模型】非技术背景,一文读懂大模型(长文)

ok,如果上面这些大家已经消化掉了的话,我们可以回过头来盘一盘目前市面上出现的这些ai产品了。[heading3]1.To C领域[content]toc领域,目前看到比较成体系的主要有这几类产品:1)一类是主打ai角色扮演赛道的产品例如“猫箱”“剧本戏”“名人朋友圈”这类其实就是在llm基础上,在prompt上加了些特定角色定义2)一类是主打ai陪伴类的产品例如“星野”“Talkie”“BubblePal”等为代表这类产品其实也是在llm基础上,在prompt上加了些特定角色定义。不过不一样的是,这类产品往往会在长短记忆上做出些处理,以突出其陪伴意义。随着陪伴的时间越久,知识库沉淀的个性化记录就越丰富,ai也会越懂你。老实说这类产品我觉得还是很有意义的。3)一类是做ai搜索工具的产品例如“秘塔”“360搜索”等这类产品说白了就是上文提到的rag,没啥别的。不过也有会在搜索内容基础上,把内容结构化,整出一个图谱或者脑图的,这个也还算有意思。4)一类是单纯的做aigc的产品例如“可灵”“ai写作手”“即梦”“md”等这类产品其实就是借助ai的生成能力做出的产品5)还有一类是agent产品这个目前只有头部的厂商在做,比如字节的扣子,支付宝的智能助理,百度的文心智能体,腾讯的元宝。这类产品会提供一套ai开放平台框架,允许三方在上面通过组装llm和组件和自有的知识库信息等,定义自己专属垂域的agent。这个其实很像之前的小程序,主打的是一个生态和分发,做这个平台的前提是,你得有完备且有吸引力的分发渠道才可以。不然哪有开发者愿意上你的平台开发agent是不。

Others are asking
怎么免费生成一张我需要的场景照片
以下是几种免费生成您需要的场景照片的方法: 1. 利用 MJ 应用: 构思适合画绘本的故事,将其分为多个场景,用包含环境、人物、动作的话描述每个场景。例如:故事名《Lily 的奇妙之旅》,场景 1 为“Lily 来到一个阳光明媚的森林,跳过清澈的小溪,愉快玩耍。在路上结识了一只友善的棕熊,她们成为了旅伴。” 为每个场景生成图片时,设置 prompt 包括场景和风格,如“Walking in a mysterious cave with glittering gems,little girl Lily wearing a yellow floral skirt,her friend brown bear,dim,dreamlike,super high details,HDsmooth,by Jon Burgerman,s 400niji 5style expressivear 3:4”。 若只需要场景图像,可使用 mj 的 region vary 工具将人物完全框选,删除人物描述词后重新生成。 2. 悠船的使用: 写好提示词,右上可下载对应图片。 进行参数调整,注意任何点击都会重新生成图片,免费用户可能会提示超出套餐。 常用的图片调整内容包括变化(幅度有细微和强烈之分)、高清(有“直接”和“创意”两种方式)、风格变化(基于生成的图片再创作)、拓展(上下左右拓展图片)、缩放(指镜头)、局部重绘(选择区域要大)。 可以使用垫图、参考风格和提示词配合生成符合要求的图片。 3. Stable Diffusion 的使用: 把觉得好看的照片导进去,如果是从 SD 下载下来的 PNG 格式照片,右边会自动弹出照片的信息,包括正面关键词、负面关键词等,复制这些信息到“文生图”页面的关键词文本框中,点击生成按钮下的第一个小按钮,SD 会自动分配信息,就能得到差不多的照片(前提是有一样的大模型和 Lora)。 如果导入照片后右边没有生成信息,可用“标签器(Tagger)”来生成照片的关键词。
2025-03-07
企业场景AI办公案例
以下是为您整理的企业场景 AI 办公案例: 社区 AI 讲师招募 招募要求: 具有丰富的企业端 AI 实践经验,包括以下场景(具备其中一个或多个场景的实践能力沉淀): AI 生成爆款内容:利用 AI 分析挖掘同品类爆款内容,借助 AI 工具生成电商商品图、小红书图文内容、种草短视频内容等。 公域阵地场景:基于视频号、抖音、小红书、公众号等平台搭建企业营销推广能力,包括矩阵号和 IP 号,通过短视频、直播等方式获取 leads,涉及矩阵号工具、内容抓取分析、脚本创作、AI 剪辑、自动回复评论、无人直播工具等。 私域阵地场景:朋友圈、小红书、社群、个人 IP 的获客转化,使用销售企微 SCRM 工具、企业智能体进行 AI 内容抓取和自动回复。 服务自动化工具,数据监控和预警,流程优化,自动运营等。 快速搭建数据分析看板。 跨境电商场景:tiktok 视频制作及投放、电商图片设计、精准营销、语言翻译、AI 独立站建设、社媒私域、批量混剪、海外达人直播、无人直播(数字人直播)等。 具备良好的表达能力,能清晰条理地阐述在技术和业务方面的沉淀。 招募流程:对感兴趣的小伙伴,提交个人简历(包括基本信息介绍、学历、专业、工作经验,以及 AI 企业端的案例),填写问卷,预约电话面谈,面谈通过后进行公开课试讲。 AI 决策背后的黑箱:企业如何避免陷入智能陷阱,重塑决策流程 创新与效率的平衡:AI 时代的人类创新力 AI 效率的优势与创新力的挑战:AI 的核心优势在于高效处理复杂数据任务、快速发现规律并生成解决方案,显著提升企业日常运营效率,如生产制造流程优化、客户服务自动化、财务数据分析精准化等。但随着 AI 深入应用,需反思效率提升是否抑制企业创新潜力。 企业的创新挑战:企业中,AI 可提升工作效率,但过度依赖可能导致员工失去主动创新空间,如市场部依赖 AI 生成广告创意。企业需在使用 AI 时确保员工有创新空间,如设计跨部门合作项目。 案例场景:在一家科技公司中,AI 系统接管日常决策工作,起初减轻负担,但员工逐渐依赖 AI 生成的“最佳方案”,不再主动提出想法,导致团队自主创新能力削弱,失去探索新市场和开发创新产品的动力,揭示了过度依赖 AI 的潜在风险,即缺乏情境理解与直觉性创造,长期依赖可能导致员工丧失提出突破性想法的勇气和能力,阻碍企业未来创新发展。
2025-03-07
AI工具在人力资源岗位提效的应用场景
AI 工具在人力资源岗位提效的应用场景主要包括以下方面: 1. 招聘环节: 职位描述生成。 简历分析。 面试题设计。 自动化筛选候选人简历,提升筛选工作的效率和准确性,减少人力资源部门的工作负担,降低因人为错误导致的招聘成本浪费。 2. 员工绩效评估: 分析员工工作表现。 识别绩效趋势和提升点。 为管理层提供数据支持的绩效反馈。 3. 员工培训与发展。 在全行业中,基础办公提效方面如 PPT、Excel、会议报告、策划会、文案包装、图文海报、客服机器人 bot 等,都可以从【单个任务 task>角色 role>角色间协同 collaboration】显著提高工作效率。 此外,阿里云百炼大模型与猎聘携手共同推动招聘领域 AI 技术的全面升级,AI 赋能的全链路招聘流程,通过大模型的深度参与,显著提升了招聘效率和候选人体验,优化了整体业务效能。 但同时,人工智能在招聘中也存在潜在风险,如算法偏见、数据隐私和歧视等方面: 1. AI 偏见:训练数据集存在对特定社会群体或性别的偏见,可能会复制甚至加剧这些偏见。 2. 数据隐私:公司使用 AI 招聘系统收集大量个人数据,若被滥用,可能侵犯候选人隐私。 3. 算法偏见:数据集存在偏差会导致 AI 系统存在偏差。 4. 对残疾申请人:雇主使用 AI 招聘工具时,需为残疾申请人提供合理便利,确保不会无意或故意排除这些群体。 5. 种族和性别影响:AI 在招聘和晋升过程中存在无意中歧视某些种族和性别群体的风险。
2025-03-06
Midjourney多人物在不同场景下的一致性
以下是关于 Midjourney 多人物在不同场景下一致性的相关内容: 参数局限性: 最好使用 Midjourney 生成的图像,因为其对自身输出的解读已优化,使用真实世界图像可能导致扭曲或不一致。 无法精确复制每一个小细节,AI 更倾向于关注更广泛的视觉特征。 不太适用于多人组合,通常会让组内所有人看起来相同。 实际应用案例: 分镜和漫画:在不同面板和场景中保持同一角色的一致性,不丧失角色核心身份。 角色设计:为角色创建不同版本,如不同服装、姿势或环境中的版本。 奇幻和叙事艺术:以视觉一致的方式描绘角色在旅程中的变化。 最佳结果的技巧: 使用清晰、放大的图片,其中角色面部特征清晰可见,最好正对镜头,有助于 AI 更好地解读关键面部特征。 从 cw 100 开始,若希望引入变化,可逐渐降低该值。 角色参考: Midjourney 中的 cref 是一个高级命令参数,允许用户在多张图像之间保持角色一致性。无论创作故事板还是创建不同场景中的角色变化,该命令参数能确保角色的核心视觉特征(如面部特征、发型和服装)在每次生成时得以保留。 频道说明: 您可以仅描述环境、周围环境、背景或情境,Midjourney 将努力将角色融入场景中。但可能会出现不连贯的结果,此时可尝试使用更高值的样式化(s),如 s 800。 多个角色的放置: cref 命令适用于单一主题、单一角色的图像。若计划在场景中添加多个角色,需要使用平移按钮来添加。 基于 cref 的多个角色放置到单个画布上的最佳方法是使用平移功能将新的画布与现有画布拼接在一起,每个新画布的部分都将有自己的 cref。 1. 使用 /settings 将 Remix 打开,然后选择 。 2. 选择将包含第二个字符的图像,然后使用 U 将其从网格中分离出来。 3. 寻找蓝色小箭头。⬆️⬇️⬅️➡️每个都会在现有图像中添加一条新图像。选择新角色的前进方向并输入提示及其 cref。这将缝合一条新的画布。
2025-03-06
打工使用ai的场景
以下是一些打工中使用 AI 的场景: 1. 在处理信息方面,可输入 AI 产品的网址,如 https://www.anthropic.com/news/introducingclaude ,让 AI 自动处理并返回产品的名称、简介等信息。当下的 AI 产品大都支持自定义回复方式,如在 ChatGPT/GPTs 里是“Instructions”,在 Coze 里是“人设与回复逻辑”。设定时,其写法类似于 Prompt,可充分相信 AI 的理解能力,但由于其特性,可能不会总能返回合适结果,处理方法包括重试、优化 Prompt 或使用 Workflow 等。 2. 在工作中,要注意 AI 带来的影响,如信息茧房问题,不能过度依赖 AI 而忽视独立思考,同时应重视自身的行业积累。虽然 AI 目前不能大幅减少工作时间,且可能只是内卷手段,但它是技术和工程的结晶,对于推动创新和实用应用具有重要价值。
2025-03-05
ai使用场景
AI 的应用场景广泛,涵盖以下多个领域: 1. 医疗保健: 医学影像分析,辅助诊断疾病。 药物研发,加速研发进程。 个性化医疗,提供定制治疗方案。 机器人辅助手术,提高手术精度和安全性。 2. 金融服务: 风控和反欺诈,降低金融机构风险。 信用评估,辅助贷款决策。 投资分析,帮助投资者做出明智决策。 客户服务,提供 24/7 服务并回答常见问题。 3. 零售和电子商务: 产品推荐,根据客户数据推荐感兴趣的产品。 搜索和个性化,改善搜索结果和购物体验。 动态定价,根据市场需求调整产品价格。 聊天机器人,回答客户问题和解决问题。 4. 制造业: 预测性维护,预测机器故障避免停机。 质量控制,检测产品缺陷提高质量。 供应链管理,优化供应链提高效率和降低成本。 机器人自动化,控制工业机器人提高生产效率。 5. 交通运输: 自动驾驶,提高交通安全性和效率。 交通管理,优化信号灯和交通流量缓解拥堵。 物流和配送,优化路线和配送计划降低运输成本。 无人机送货,将货物快速送达偏远地区。 6. 其他领域: 教育,提供个性化学习体验。 农业,分析农田数据提高农作物产量和质量。 娱乐,开发虚拟现实和增强现实体验。 能源,优化能源使用提高能源效率。 此外,还有众多具体的 AI 应用产品,如辅助创作与学习方面的 AI 智能写作助手、语言学习助手等;推荐与规划方面的图像识别商品推荐、旅游行程规划器等;监控与预警方面的宠物健康监测设备、家居安全监控系统等;优化与管理方面的办公自动化工具、物流路径优化工具等;销售与交易方面的艺术作品生成器、汽车销售平台等。总之,AI 的应用场景还在不断扩展,未来将对我们的生活产生更深远的影响。
2025-03-05
飞书多维表格中使用deepseek有100万tokens总量的限制?
飞书多维表格中使用 DeepSeek 有一定的 token 总量限制。DeepSeekR1、V3 模型分别提供了 50 万免费额度和 API 半价活动(算下来 5 元有 100 万)。即日起至北京时间 20250218 23:59:59,所有用户均可在方舟享受 DeepSeek 模型服务的价格优惠。 不同模型的 token 限制有所不同,例如 Claude2100 k 模型的上下文上限是 100k Tokens,即 100000 个 token;ChatGPT16 k 模型的上下文上限是 16k Tokens,即 16000 个 token;ChatGPT432 k 模型的上下文上限是 32k Tokens,即 32000 个 token。 Token 限制同时对一次性输入和一次对话的总体上下文长度生效,不是达到上限就停止对话,而是会遗忘最前面的对话。 如果想直观查看 GPT 如何切分 token,可以打开,在其中可以看到实时生成的 tokens 消耗和对应字符数量。需要注意的是,英文的 Token 占用相对于中文较少,这也是很多中文长 Prompt 会被建议翻译成英文设定然后要求中文输出的原因。
2025-03-07
数据标注领域的TOP公司有哪些
在数据标注领域,以下是一些相关的公司: 整数智能:致力于成为 AI 行业的数据合伙人,对标美国头部公司 Scale ai,其提供的智能数据工程平台(MooreData Platform)与数据集构建服务(ACE Service),服务于智能驾驶、生成式人工智能、具身智能等多个人工智能应用场景,不仅深耕服务中国本地客户,还在积极拓展海外市场。 需要注意的是,数据标注领域的公司情况可能会随时间变化而有所不同。
2025-03-07
我指的是用AI来辅助小红书内容的优化方面,我应该在WaytoAGI中学习什么内容?
在 WaytoAGI 中,您可以学习以下与用 AI 辅助小红书内容优化相关的内容: 1. 智能纪要中的数据转化与创作提示词工具:包括从数据到模型的转化过程,以及基于 AGI 特调的生成 MJ 和 SD 提示词的工具扣子,还有利用这些工具生成山海经神兽等创作提示词的方法和迭代优化方式。 2. 人文数据转化的不同层面:了解数据转化成模型的结构过程和情感层面的结构,以及人类世界人文价值对齐翻译对 AI 发展的重要性。 3. 关于神兽提示词创作及相关工具的交流:如社区建立种子群收集知识库,推荐表现力好的提示词组等。 4. 相关社区及平台的介绍:例如嘟嘟社区的现状,以及在队友平台上跑效果图等。 5. 开展的创作挑战活动:如 10 分钟神兽提示词创作挑战,包括挑战方式、成果检验和配方获取等。 6. 第 11 期 Video Battle AI 视频挑战活动:包括选题参考,如 AI 视频领域国内外近期热点话题事件、技术工作流拆解等;话题要求,如小红书内容文案需附特定字样和带特定标签;大赛主题和创意支持,以及视频工具建议等。 希望以上内容对您有所帮助。
2025-03-07
长token处理
以下是关于长 token 处理的相关信息: 通义千问方面: 开源的 Qwen2.51M 大模型推出 7B、14B 两个尺寸,在处理长文本任务中稳定超越 GPT4omini,同时开源推理框架,在处理百万级别长文本输入时可实现近 7 倍的提速,首次将开源 Qwen 模型的上下文扩展到 1M 长度。 在上下文长度为 100 万 Tokens 的大海捞针任务中,Qwen2.51M 能够准确地从 1M 长度的文档中检索出隐藏信息,仅有 7B 模型出现少量错误。 对于更复杂的长上下文理解任务,通义官方选择了等测试集。 Qwen2.51M 系列模型在大多数长上下文任务中显著优于之前的 128K 版本,特别是在处理超过 64K 长度的任务时表现出色。Qwen2.514BInstruct1M 模型不仅击败了 Qwen2.5Turbo,还在多个数据集上稳定超越 GPT4omini,可作为现有长上下文模型的优秀开源替代。 OpenAI API 方面: 模型通过将文本分解为标记(Token)来理解和处理文本,Token 可以是单词,也可以是字符块。 对于英文文本,1 个 Token 大约相当于 4 个字符或 0.75 个单词。 给定的 API 请求中处理的 Token 数量取决于输入和输出长度,文本提示词和生成的补全合起来不能超过模型的最大上下文长度(对于大多数模型,这是 2048 个 Token,或大约 1500 个单词),可查看分词器工具了解更多信息。
2025-03-07
toolformer是什么?
Toolformer 是一种语言模型。它通过微调语言模型来学习使用外部工具的 API。例如,在论文“Toolformer: Language Models Can Teach Themselves to Use Tools”中,作者训练该模型决定何时使用何种工具以及 API 需要的参数,工具包括不同的搜索引擎或计算器等。同时,TALM(工具增强语言模型)和 Toolformer 都通过根据新添加的 API 调用注释能否提高模型输出质量来扩展数据集。
2025-03-06
token与参数的关系
Token 与参数存在密切关系。在大模型中,用于表达 token 之间关系的参数众多,主要指模型中的权重(weight)与偏置(bias)。例如,GPT3 拥有 1750 亿参数,而词汇表 token 数相对较少,只有 5 万左右。 目前使用的大模型存在 token 限制,如 Claude2100k 模型的上下文上限是 100k Tokens(100000 个 token),ChatGPT16k 模型的上下文上限是 16k Tokens(16000 个 token),ChatGPT432k 模型的上下文上限是 32k Tokens(32000 个 token)。这种 token 限制同时对一次性输入和一次对话的总体上下文长度生效,当达到上限时不是停止对话,而是遗忘最前面的对话。 在分词过程中,不同的字符串会被编码为不同的 token,例如字符串“Tokenization”编码到 token30642 及其后的 token1634,token“is”(包括前面的空格)是 318 等。数字的分解可能不一致,如 127 是由 3 个字符组成的 token,677 是 2 个 token 等。 为了让计算机理解 Token 之间的联系,需要把 Token 表示成稠密矩阵向量,这个过程称为 embedding,常见算法包括基于统计的 Word2Vec、GloVe 等,基于深度网络的 CNN、RNN/LSTM 等,基于神经网络的 BERT、Doc2Vec 等。以 Transform 为代表的大模型采用自注意力机制来学习不同 token 之间的依赖关系,生成高质量 embedding。
2025-03-06
AI与SAAS结合
AI 与 SaaS 的结合具有以下特点和影响: 1. 像 Microsoft 推出的 Copilot 产品升级,如 Copilot Team 与 Studio,能让 Agent 融入企业内部,实现自动化的会议记录和日程安排,还能设计组织内部自动化流程,帮助操作办公软件。这表明软件应用范式已转移,AI Agent 成为新 SaaS。 2. 对于生成式 AI 对 SaaS 生态的影响,起初认为大公司不会受到太大冲击,因为初创公司和大公司各有优势,初创公司机会在于瞄准可自动化工作领域。但现在不确定是否低估了“AI 原生”的巨大潜力。 3. 二十年前传统软件公司对 SaaS 崛起的态度与如今对 AI 变革的态度可能类似。SaaS 带来了业务模式的全面变革,包括开发方式、市场策略和商业模式的转变,只有极少数传统公司成功转型。 4. OpenAI 的目标明确为 all in AGI,商业模式为 SaaS,直接提供 API,接口设计内部决定,按使用付费。其在一些产品上如 ChatGPT Plus、与第三方插件结合等方面的处理方式较为简单直接。
2025-03-08
AI和AGI的区别
AI(Artificial Intelligence,人工智能)和 AGI(Artificial General Intelligence,通用人工智能)有以下区别: 1. 能力范围: AI 通常指的是弱人工智能(ANI,Artificial Narrow Intelligence),它只能完成特定的任务,如智能音箱的语音交互、网站搜索、自动驾驶、工厂与农场的应用等。 AGI 则能够做任何人类可以做的事情。 2. 发展程度: ANI 已经取得了巨大的发展。 而 AGI 目前还没有取得巨大的进展。 3. 模型目的和底层数据量: 以往的 AI 被视为“工具”,而 AGI 更像是“大脑”。 OpenAI 主张的 AGI 模型,如 GPT 系列,致力于成为“世界模型”,将世界上所有的知识压缩到模型里,其底层数据量巨大,正在接近全人类所有数据的量级。
2025-03-08
AI能做什么?无所不能么
AI 具有广泛的应用和能力,但并非无所不能。以下是 AI 能够做到的一些方面: 在医疗领域,AI 可以辅助疾病的预测、诊断和治疗,例如通过训练神经网络预测蛋白质结构,从而推进结构生物学的发展,帮助预防抗生素耐药性、推进疾病研究以及加速对抗塑料污染。 在科学研究方面,AI 能够促进科学发现,例如用于拼凑出首张距离地球 5500 万光年的黑洞图像,还能解决长期困扰科学家的蛋白质折叠难题。 在医疗检测方面,AI 有助于提高疾病检测效率,如应用于乳腺癌筛查,使更多患者能更快接受筛查,让临床医生有更多时间为患者服务并提供更快速的治疗。 在农业领域,AI 机器人可以提高农业生产效率。 然而,对于一些终极问题,答案不可避免且坚决是否定的。但这并不意味着 AI 不能重要地帮助科学进步,例如在非常实用的层面上,语言模型可以为计算功能提供新的语言接口,并通过其知识提供高水平的“自动完成”,辅助科学工作中的“传统答案”或“传统的后续步骤”。
2025-03-08
有没有ai编程的AI rules
目前关于 AI 编程的 AI Rules 主要有以下内容: 在字节发布的全新 AI IDE Trae 中,由于其过于智能,有时难以控制其立即执行任务,且目前没有全局 AI Rules 的设置,需要用“”来引入规则。 在进行 AI 编程时,应遵循一定的准则。例如,能不编程尽量不编,优先寻找线上工具、插件、本地应用等现成的解决方案,先找现成的开源工具和付费服务,最后再考虑自己编程,且编程时要以终为始,聚焦目标。 在 Trae 中,可以新建一个文件“AI Rules”,将相关规则代码复制进去并保存。在与 AI 沟通需求时引入该文件,AI 会按照规则进行开发。同时,AI 生成的代码可能存在随机性和错误,需要花费时间调试 Bug,可以通过终端、测试网页功能时的“F12”等方式查看报错信息并修复。
2025-03-08
AI绘画,有免费的吗
目前有免费的 AI 绘画工具,例如 Imagen 3,其优势包括无需排队、免费使用、交互人性化、具有较好的语义理解能力以及灵活性等。此外,Stable Diffusion 也是主流的 AI 绘画软件,其优势在于开源免费、可以本地化部署、创作自由度很高,但需要较好的电脑配置。如果您想要了解更多关于 AI 绘画的信息,比如具体的安装方法,可以去看看 B 站的【秋葉 aaaki】这个 Up 主的视频。
2025-03-08
利用ai对毕业论文扩写应该使用什么提示词
以下是一些利用 AI 对毕业论文扩写的提示词示例: 1. 请对这部分论文内容进行详细扩展,补充更多相关案例和数据,以增强论证的说服力。 2. 基于现有的论文内容,进一步阐述观点,丰富理论依据,并增加相关领域的前沿研究成果。 3. 对这段论述进行深化,从多个角度展开分析,同时融入更多的学术引用和参考文献。 4. 请将此部分内容扩展为更完整的篇章,增加细节描述,使论述更加全面和深入。 在使用提示词时,要注意内容的准确性和逻辑性,确保扩写后的论文质量得到提升。
2025-03-08