直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

本地安装大模型的硬件配置是什么

回答

本地安装大模型的硬件配置如下:

  • 生成文字大模型:
    • 最低配置:8G RAM + 4G VRAM
    • 建议配置:16G RAM + 8G VRAM
    • 理想配置:32G RAM + 24G VRAM(如果要跑 GPT-3.5 差不多性能的大模型)
  • 生成图片大模型(比如跑 SD):
    • 最低配置:16G RAM + 4G VRAM
    • 建议配置:32G RAM + 12G VRAM
  • 生成音频大模型:
    • 最低配置:8G VRAM
    • 建议配置:24G VRAM

例如,Fooocus 本地部署需要不低于 8GB 的内存和 4GB 的英伟达显卡。但需注意,最低配置可能运行非常慢。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

手把手教你本地部署大模型以及搭建个人知识库

所有人都会手把手教你部署XX大模型,听起来很诱人,因为不需要科学上网,不需要高昂的ChatGPT会员费用。但是在开启下面的教程之前,我希望你能有个概念:运行大模型需要很高的机器配置,个人玩家的大多数都负担不起所以:虽然你的本地可能可以搭建出一个知识库,但是它不一定能跑的起来下面我通过一组数据来让大家有个感性的认知。以下文字来源于视频号博主:黄益贺,非作者实操生成文字大模型最低配置:8G RAM + 4G VRAM建议配置:16G RAM + 8G VRAM理想配置:32G RAM + 24G VRAM(如果要跑GPT-3.5差不多性能的大模型)生成图片大模型(比如跑SD)最低配置:16G RAM + 4G VRAM建议配置:32G RAM + 12G VRAM生成音频大模型最低配置:8G VRAM +建议配置:24G VRAM而最低配置我就不建议了,真的非常慢,这个我已经用我自己8G的Mac电脑替你们试过了。讲这个不是泼大家冷水,而是因为我的文章目标是要做到通俗易懂,不希望通过夸大的方式来吸引你的眼球。这是这篇文章的第二次修改,我专门加的这段。原因就是因为好多小伙伴看了文章之后兴致冲冲的去实验,结果发现电脑根本带不动。但是这并不妨碍我们去手把手实操一遍,因为实操可以加深我们对大模型构建的知识库底层原理的了解。如果你想要私滑的体验知识库,可以参考我的另一篇文章:[胎教级教程:万字长文带你使用Coze打造企业级知识库](https://waytoagi.feishu.cn/wiki/CT3UwDM8OiVmOOkohPbcV3JCndb)好了,废话不多说,下面教程还是值得亲自上手搞一遍的,相信走完一遍流程后,你会对知识库有更深的理解。

【SD】SD的大哥Fooocus重磅问世,三步成图傻瓜式操作

Fooocus使用的是最新推出的SDXL 1.0模型,对stable diffusion和Midjourney做了结合升级:1、保留了SD的开源属性,可以部署到本地免费使用;2、在操作界面吸取了midjourney简洁,省去了WebUI中复杂的参数调节,让用户可以专注于提示和图像。下图就是Fooocus的操作界面。翻译一下:只有图像展示窗口、正向提示词和生成按钮3项。勾选“Advanced”会弹出高级设置的窗口,可以调整画面宽高比、风格、图像数量、种子值、反向提示词、模型、lora权重比值、图像锐利程度等。风格选项这一块是整合了各种常见的画面风格供选择,包含了100多种不同的预设风格,涉及写实、胶片、电影质感、动漫、水彩、黏土、3D、等距、像素、霓虹、赛博朋克、波普、纸艺等各个方面:高级选项这部分是用于设置模型,lora,清晰度等。非常简单且容易上手,很值得试一试。二、Fooocus安装:配置要求:本地部署,需要不低于8GB的内存和4GB的英伟达显卡。Fooocus介绍/安装包下载:https://github.com/lllyasviel/Fooocus(文末领取软件+模型整合包:16G)使用指南:https://github.com/lllyasviel/Fooocus/discussions/117大模型(base和Refiner)默认放在这里:\Fooocus_win64_1-1-10\Fooocus\models\checkpoints

【SD】向未来而生,关于SDXL你要知道事儿

SDXL的大模型分为两个部分:第一部分,base+refiner是必须下载的,base是基础模型,我们使用它进行文生图的操作;refiner是精炼模型,我们使用它对文生图中生成的模型进行细化,生成细节更丰富的图片。第二部分,是SDXL还有一个配套的VAE模型,用于调节图片的画面效果和色彩。这三个模型,我已经放入了云盘链接中,大家可以关注我的公众号【白马与少年】,然后回复【SDXL】获取下载链接。想要在webUI中使用SDXL的大模型,首先我们要在秋叶启动器中将webUI的版本升级到1.5以上。接下来,将模型放入对应的文件夹中,base和refiner放在“……\sd-webui-aki-v4.2\models\Stable-diffusion”路径下;vae放在“……\sd-webui-aki-v4.2\models\VAE”路径下。完成之后,我们启动webUI,就可以在模型中看到SDXL的模型了。我们正常的使用方法是这样的:先在文生图中使用base模型,填写提示词和常规参数,尺寸可以设置为1024*1024,进行生成。我这边使用了一个最简单的提示词“1girl”,来看看效果。生成的图片大家可以看一下,我觉得是相当不错的。我知道大家心里可能会想——“就这,还好吧,也没有那么惊艳吧?”,那么,我用同样的参数再给你画一幅sd1.5版本的图像,你就能看出进步有多大了。是不是没有对比就没有伤害?SDXL,真香!还没完,我们到现在还只使用了一个base模型,接下来,将图片发送到图生图当中,大模型切换为“refiner”,重绘幅度开小一点,再次点击生成。

其他人在问
AI硬件
以下是关于 AI 硬件的相关信息: AI Native 产品: AI Pin:由 Humane 公司开发的可穿戴设备,通过激光投影技术在手掌显示信息,由高通 Snapdragon 芯片驱动,运行 OpenAI 的 GPT4 语言模型,集成麦克风、摄像头和传感器,能语音通话、上网和回答问题,注重隐私保护,价格高昂,市场接受度可能受影响。 TAB AI:挂在脖子上的小冰盘,本质是麦克风和电池,使用蓝牙传输音频到手机和云端,ChatGPT 转录对话,各种人工智能模型提取见解,被称为“人工智能伴侣”或“clarity machine”。 OpenAI 和 Lovefrom 在软银 10 亿美元融资开发的“人工智能 iPhone”。 主流 AI 笔记本电脑: 截止 2024 年 5 月,主流的 AI 笔记本电脑是为人工智能和深度学习设计的高性能移动工作站,通常配备强大的 GPU(如 NVIDIA RTX 系列)、大容量内存和高速固态硬盘。 知名品牌包括:微软(Microsoft)第 11 代 Surface Pro、微星(MSI)Creator/Workstation 系列、技嘉(GIGABYTE)Aero/Aorus 系列、戴尔(Dell)Precision 移动工作站、惠普(HP)ZBook 移动工作站、联想(Lenovo)ThinkPad P 系列。 一般采用英特尔酷睿或 AMD Ryzen 的高端移动 CPU,配备 NVIDIA RTX 30/40 系列或 AMD Radeon Pro 专业级 GPU,提供大容量内存和高速 NVMe SSD 存储选配,预装 NVIDIA CUDA、cuDNN 等深度学习框架和 AI 开发工具。 价格相对较高,通常在 2000 美元以上,用户需根据自身需求和预算选择,同时关注散热、续航等实际使用体验。 GenAI 硬件 TikTok 热度总榜: RayBan Meta Smart Glasses:眼镜,Meta 和 RayBan 出品,180000 个 TT 作品,价格 299 美元。 Vision Pro:眼镜,苹果出品,38600 个 TT 作品,价格 3999 美元。 cozmo:玩具机器人,Digital Dream Labs 出品,10500 个 TT 作品,价格 399 美元。 Lovot:玩具机器人,GROOVE X 出品,5931 个 TT 作品,价格 9000 美元。 Optimus:大型机器人,特斯拉出品,2641 个 TT 作品。 AI pin:吊坠,Humane 出品,1200 个 TT 作品,价格 699 美元。 PLAUD:录音机,Smart connection 出品,1072 个 TT 作品,价格 159 美元。 RabbitR1:吊坠,Rabbit Inc 出品,1048 个 TT 作品,价格 199 美元。 Loona:玩具机器人,KEYi Tech 出品,753 个 TT 作品,价格 449 美元。 Timekettle WT2:耳机,Timekettle 出品,751 个 TT 作品,价格 299 美元。 OrCam MYEYE:眼镜,OrCam 出品,532 个 TT 作品,价格 4250 美元。 Jibo:玩具机器人,Ling Technology 出品,492 个 TT 作品,价格 749 美元。 LOOI:玩具机器人,TangibleFuture 出品,400 个 TT 作品,价格 129 美元。 Pixel Buds Pro:耳机,谷歌出品,393 个 TT 作品,价格 199 美元。
2024-11-12
AI硬件
以下是关于 AI 硬件的相关信息: AI Native 产品: AI Pin:由 Humane 公司开发的可穿戴设备,通过激光投影技术在用户手掌上显示信息,由高通 Snapdragon 芯片驱动,运行 OpenAI 的 GPT4 语言模型,集成了麦克风、摄像头和传感器,能进行语音通话、上网和回答问题,注重隐私保护,配备“信任灯”功能,价格高昂,市场竞争可能影响其接受度。计划通过扩展功能和开放平台成为日常生活的智能伴侣,网址:https://hu.ma.ne/ TAB AI:挂在脖子上的小冰盘,本质上是麦克风和电池,使用蓝牙将音频传输到手机并传输到云端,ChatGPT 在云端转录对话,各种人工智能模型提取见解,是一个人工智能伴侣或“clarity machine”,网址:https://twitter.com/AviSchiffmann/status/1708439854005321954 主流 AI 笔记本电脑: 截止 2024 年 5 月,主流的 AI 笔记本电脑主要是为人工智能和深度学习设计的高性能移动工作站。通常配备强大的 GPU(如 NVIDIA RTX 系列)、大容量内存和高速固态硬盘。知名品牌包括: 1. 微软(Microsoft)第 11 代 Surface Pro 2. 微星(MSI)Creator/Workstation 系列 3. 技嘉(GIGABYTE)Aero/Aorus 系列 4. 戴尔(Dell)Precision 移动工作站 5. 惠普(HP)ZBook 移动工作站 6. 联想(Lenovo)ThinkPad P 系列 这些笔记本一般采用英特尔酷睿或 AMD Ryzen 的高端移动 CPU,配备 NVIDIA RTX 30/40 系列或 AMD Radeon Pro 专业级 GPU,提供大容量内存和高速 NVMe SSD 存储选配,预装 NVIDIA CUDA、cuDNN 等深度学习框架和各种 AI 开发工具。价格相对较高,通常在 2000 美元以上。用户应根据自身需求和预算选择,同时关注散热、续航等实际使用体验。 GenAI 硬件 TikTok 热度总榜: |No.|Name|Classification|Company|Number of TT works|Price| ||||||| |1|RayBan Meta Smart Glasses|Glasses|Meta and RayBan|180000|299| |2|Vision Pro|Glasses|apple|38600|3999| |3|cozmo|Toy robot|Digital Dream Labs|10500|399| |4|Lovot|Toy robot|GROOVE X|5931|9000| |5|Optimus|Bodysize robot|Tesla|2641| | |6|AI pin|Pendant|Humane|1200|699| |7|PLAUD|Recorder|Smart connection|1072|159| |8|RabbitR1|Pendant|Rabbit Inc|1048|199| |9|Loona|Toy robot|KEYi Tech|753|449| |10|Timekettle WT2|Headphones|Timekettle|751|299| |11|OrCam MYEYE|Glasses|OrCam|532|4250| |12|Jibo|Toy robot|Ling Technology|492|749| |13|LOOI|Toy robot|TangibleFuture|400|129| |14|Pixel Buds Pro|Headphones|GOOGLE|393|199|
2024-11-07
AI硬件
以下是关于 AI 硬件的相关信息: AI Native 产品:有基础模型可学习用户在特定应用中的意图和行为,模仿并执行操作,如使用图片编辑软件去除水印。 AI Pin:由 Humane 公司开发的可穿戴设备,通过激光投影技术在用户手掌上显示信息,由高通 Snapdragon 芯片驱动,运行 OpenAI 的 GPT4 语言模型,集成了麦克风、摄像头和传感器,能进行语音通话、上网和回答问题,注重隐私保护,配备“信任灯”功能,但价格高昂且面临市场竞争。 诗相机:所需硬件包括 2 个不同颜色的按钮、2 根快速连接线,还需要杂项设备如剪线钳、剥线钳和跨接电缆。 大模型与现有终端融合形态探讨:软件产品经理和硬件产品经理属于不同领域,硬件需要前期大量投入,如工业化设计、3D 冲压模型、招聘硬件团队进行 SDK 调用等,在高并发或长时间使用时构建复杂。AI 硬件是复杂的系统性工程,涉及从设计 PCB 线路板等电子设计流程到供应链中上下游工厂的配合等开发流程。
2024-08-22
我现在想让ai给出计算机硬件配置,然后从京东商城上检索,得到价格,然后给出一个配置单。我想问问大家这个怎么解决?
目前要实现您描述的这个需求具有一定的复杂性。首先,让 AI 直接给出准确的计算机硬件配置并从京东商城上检索价格存在一些技术挑战。因为这需要 AI 具备对计算机硬件的深入了解、与京东商城数据接口的对接以及价格实时更新的处理能力。 从技术实现的角度来看,可能需要以下步骤: 1. 训练一个专门针对计算机硬件配置的 AI 模型,使其能够根据用户的需求和预算生成合理的硬件配置清单。 2. 开发与京东商城的接口程序,以获取实时的商品价格信息。 3. 将生成的配置清单与获取的价格信息进行整合,生成最终的配置单。 但需要注意的是,京东商城的数据接口可能不对外开放,获取价格信息可能存在法律和合规方面的限制。同时,这样的系统开发需要较高的技术水平和资源投入。
2024-08-20
本地安装 comfyui 电脑的硬件配置推荐
以下是关于本地安装 ComfyUI 电脑的硬件配置推荐: 生成文字大模型: 最低配置:8G RAM + 4G VRAM 建议配置:16G RAM + 8G VRAM 理想配置:32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型) 生成图片大模型(比如跑 SD): 最低配置:16G RAM + 4G VRAM 建议配置:32G RAM + 12G VRAM 生成音频大模型: 最低配置:8G VRAM 建议配置:24G VRAM 此外,对于 ComfyUI 安装,建议使用不少于 16GB 内存,并有 60GB 以上的硬盘空间。需要用到 CUDA 架构,推荐使用 N 卡。过度使用显卡会有损坏的风险。进行 512x 图片生成时主流显卡速度也存在差异。
2024-08-13
AI语音翻译硬件
根据搜索结果,以下是一些推荐的语音翻译硬件设备: 1. 科大讯飞翻译机 4.0: 科大讯飞作为AI翻译产品的开创者,拥有23年的技术积累。 支持83种语言在线即时翻译,包括中文、英语、日语、韩语、俄语、法语等。 具备手动和自动两种翻译模式,适用于不同场景。 设备搭载8核高速处理器和4麦克风阵列,集成讯飞降噪算法,翻译速度快且准确。 支持面对面翻译和拍照翻译功能,满足多样化的翻译需求。 设备外观设计简约大气,便于携带。 2. Telelingo 实时电话翻译 : Telelingo使用先进的AI技术实时翻译对话,提供无缝的实时翻译体验。 支持80多种语言的翻译,包括常见语言和独特方言。 采用完全按需付费模式,无隐藏费用,用户只需支付所使用的分钟数。 3. POCKETALK 实时翻译器 : POCKETALK是一款价格合理的实时翻译器,带有小型触摸屏,方便用户浏览和操作。 该设备也支持多种语言的即时翻译,适合出国旅游或国际交流使用。 这些设备通过集成先进的语音识别和机器翻译技术,可以帮助用户在不同语言环境下实现有效沟通。在选择时,用户应考虑支持的语种数量、翻译准确性、设备便携性、价格以及是否支持离线翻译等因素。
2024-06-11
如何用langchian加载本地模型
要使用 Langchain 加载本地模型,您可以按照以下步骤进行: 1. 加载所需的库和模块,例如 feedparse 用于解析 RSS 订阅源,ollama 用于在 Python 程序中跑大模型。使用 ollama 前请确保服务已经开启并下载好模型。 2. 从订阅源获取内容,通过特定函数从指定的 RSS 订阅 URL 提取内容,若需接收多个 URL 稍作改动即可。然后使用专门的文本拆分器将长文本拆分成较小的块,并附带相关元数据,如标题、发布日期和链接,最终将这些文档合并成一个列表用于后续处理。 3. 为文档内容生成向量,使用文本向量模型 bgem3。从 hf 下载好模型后,假设放置在某个路径 /path/to/bgem3,通过函数利用 FAISS 创建高效的向量存储。 在整个过程中,还需要了解以下相关知识: 1. RAG(Retrieval Augmented Generation):大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,可通过检索增强生成。RAG 应用包括文档加载(从多种来源加载文档,LangChain 提供 100 多种文档加载器)、文本分割(把文档切分为指定大小的块)、存储(将切分好的文档块嵌入并存储到向量数据库)、检索(通过检索算法找到与输入问题相似的嵌入片)、输出(把问题及检索出的嵌入片提交给 LLM 生成答案)。 2. Ollama:支持多种大型语言模型,包括通义千问、Llama 2、Mistral 和 Gemma 等,易于使用,适用于 macOS、Windows 和 Linux 系统,支持 cpu 和 gpu,提供模型库,用户可下载不同模型,还支持自定义模型、提供 REST API 用于运行和管理模型及与其他应用程序集成,社区贡献丰富。安装完后确保后台服务已启动,可通过 ollama list 确认,通过 ollama 命令下载模型。
2024-11-23
大模型微调的目的和意义,会产生什么效果
大模型微调具有重要的目的、意义和效果,具体如下: 目的和意义: 提高模型在特定任务中的性能:可以输入更多示例,经过微调的模型在特定任务中会有更好的表现,虽然可能会失去一些通用性。 提高模型效率:实现更低的延迟和更低的成本。通过专门化模型可使用更小的模型,且只对输入输出对进行训练,能舍弃示例或指令,进一步改善延迟和成本。 适应特定领域需求:通用大模型在特定领域如法律或医学中的表现可能不理想,微调能优化模型在该领域的表现,使其更具专业性。 经济高效:从头开始训练具备自然语言处理能力的大模型需要大量时间和资源,小公司负担不起,微调可在现有模型基础上更经济、高效地适应新应用领域,节省成本并加快模型部署和应用速度。 效果: 优化模型参数:在特定领域的数据上训练模型,调整所有层的参数。 增强特定领域表现:使模型在特定领域的任务中表现更佳。 目前业界比较流行的微调方案是 PEFT(ParameterEfficient Fine Tuning),OpenAI 官方微调教程可参考:https://github.com/openai/openaicookbook/blob/main/examples/How_to_finetune_chat_models.ipynb
2024-11-23
图片生成图片的AI模型有哪些
目前比较成熟的图片生成图片(图生图)的 AI 模型主要有: 1. Artguru AI Art Generator:在线平台,能生成逼真图像,为设计师提供灵感,丰富创作过程。 2. Retrato:AI 工具,可将图片转换为非凡肖像,有 500 多种风格供选择,适合制作个性头像。 3. Stable Diffusion Reimagine:新型 AI 工具,通过稳定扩散算法生成精细、具细节的全新视觉作品。 4. Barbie Selfie Generator:专为喜欢梦幻童话风格的人设计的 AI 工具,能将上传的照片转换为芭比风格,效果出色。 此外,一些受欢迎的文生图工具也可用于图生图,例如: 1. DALL·E:由 OpenAI 推出,能根据输入的文本描述生成逼真的图片。 2. StableDiffusion:开源的文生图工具,可生成高质量的图片,支持多种模型和算法。 3. MidJourney:因高质量的图像生成效果和友好的用户界面设计而广受欢迎,在创意设计人群中尤其流行。 在 WaytoAGI 网站(https://www.waytoagi.com/category/104),可以查看更多文生图工具。 关于图生图的操作方式:在相关工具的首页有对话生图对话框,输入文字描述即可生成图片,不满意可通过对话让其修改。例如在吐司网站,图生图时能调整尺寸、生成数量等参数,高清修复会消耗较多算力建议先出小图。Flex 模型对语义理解强,不同模型生成图片的积分消耗不同,生成的图片效果受多种因素影响。国外模型对中式水墨风等特定风格的适配可能存在不足,可通过训练 Lora 模型改善。
2024-11-23
学习大模型的路径
学习大模型的路径主要包括以下几个步骤: 1. 收集海量数据:就像教孩子成为博学多才的人需要让其阅读大量书籍、观看纪录片、与人交谈一样,对于大模型,要收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。 2. 预处理数据:如同为孩子整理学习资料,AI 研究人员需要清理和组织收集到的数据,包括删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段。 3. 设计模型架构:如同为孩子设计学习计划,研究人员要设计大模型的“大脑”结构,通常是一个复杂的神经网络,例如 Transformer 架构,这种架构擅长处理序列数据如文本。 4. 训练模型:如同孩子开始阅读和学习,大模型开始“阅读”提供的数据,通过反复尝试预测句子中的下一个词,不断重复这个过程,逐渐学会理解和生成人类语言。 此外,关于大模型的底层原理,计算机科学家/工程师以大脑神经元细胞结构为灵感,在计算机上利用概览模型实现对人脑结构的模仿,不过计算机的神经元节点更为简单,本质上只是进行一些加法和乘法运算而后输出。大模型内部如同人类大脑是一个混沌系统,即使是 OpenAI 的科学家也无法解释其微观细节。
2024-11-22
现在哪几家的大模型支持通过手机视频多模态实时交流?
以下几家的大模型支持通过手机视频多模态实时交流: 1. PandaGPT:能够理解不同模式的指令并根据指令采取行动,包括文本、图像/视频、音频、热、深度和惯性测量单位。 2. VideoLLaMA:引入了多分支跨模式 PT 框架,使语言模型能够在与人类对话的同时处理给定视频的视觉和音频内容。 3. 视频聊天 GPT:专门为视频对话设计,能够通过集成时空视觉表示来生成有关视频的讨论。 4. NExTGPT:端到端、通用的 anytoany 多模态语言模型,支持图像、视频、音频、文本的自由输入输出。
2024-11-22
siri是不是使用大模型技术
Siri 目前并非使用大模型技术。苹果公司的 Siri 概念虽好,但由于技术限制,其表现未达到人工智能的水平,常被称为“人工智障”。不过,随着技术发展,未来可能会用大模型重新改造 Siri,将手机上的所有功能控制起来,使其成为真正的智能助理。例如,苹果公司在手机算力的芯片发展到能够支撑大模型上手机的情况下,可能会推出大模型的小数据量、专业的版本来替代 Siri。同时,苹果公司若 All in 手机,其大模型可能会是本地化的,以重视个人数据保护和隐私。
2024-11-21
如何安装
以下是关于不同软件安装的相关信息: Python 安装 FittenAI 编程助手: 配置 AI 插件前需先安装 Python 运行环境,可参考。 安装步骤:点击左上角的 File Settings Plugins Marketplace。 注册:安装完成后左侧会出现 Fitten Code 插件图标,注册登录后即可开始使用。 智能补全:按下 Tab 键接受所有补全建议;按下 Ctrl+→键接收单个词补全建议。 AI 问答:通过点击左上角工具栏中的 Fitten Code –开始新对话打开对话窗口进行对话。 自动生成代码:Fitten Code 工具栏中选择“Fitten Code 生成代码”,然后在输入框中输入指令即可生成代码。 代码转换:选中需要进行翻译的代码段,右键选择“Fitten Code –编辑代码”,然后在输入框中输入需求即可完成转换。 自动生成注释:Fitten Code 能够根据代码自动生成相关注释。 【SD】安装无需 Lora 的一键换脸插件 Roop: 安装时间较长,需耐心等待。 安装好后,打开 SD 文件目录下的相关文件夹,在地址栏输入“cmd”,然后回车。 在打开的 dos 界面里,粘贴“python m pip install insightface==0.7.3 user”,会自动开始安装 insightface。若此阶段出错,建议下载最新的秋叶 4.2 整合包(6 月 23 号更新),后台回复【SD】可下载。 安装完成后,重新打开启动器,后台会继续下载一些模型,需全程科学上网。完成这些后,Roop 插件可正常使用。 Python 安装灵码 AI 编程助手: 配置 AI 插件前需先安装 Python 运行环境,可参考。 安装步骤:点击左上角的 File Settings Plugins Marketplace。 登录:安装完成插件会提示登录,按要求注册登录即可。使用上和 Fitten 差不多。
2024-11-23
SD 安装包
以下是关于 SD 安装包的相关内容: 一、Roop 插件安装 1. 安装时间较长,需耐心等待。安装好后,打开 SD 文件目录下的特定文件夹,在地址栏输入“cmd”并回车。 2. 在打开的 dos 界面中,粘贴“python m pip install insightface==0.7.3 user”代码,自动安装 insightface。若此阶段出错,建议下载最新的秋叶 4.2 整合包(6 月 23 号更新),后台回复【SD】可在云盘下载。 3. 安装完成后,重新打开启动器,后台会继续下载模型,全程需科学上网。 4. 选用真实系模型“realisticVisionV20”,启用 ROOP 插件,选择要替换的人物照片,面部修复选择“GFPGAN”,根据需求设置右边参数和放大算法,点击生成。若人脸像素偏低,可发送到“图生图”并使用 controlnet 中的 tile 模型重绘。 5. 想要插件可添加公众号【白马与少年】回复【SD】。 二、SD 云端部署 1. 部署流程 浏览器上按照腾讯云>控制台>云服务器的路径找到购买的实例,点击启动,输入购买时设置的密码进入远程的 Windows 系统环境,安装显卡驱动、配置环境变量。 2. 安装显卡驱动 用内置的 IE 或下载 Chrome,打开英伟达网站,根据购买机器时选定的显卡型号、Windows 版本号下载对应的驱动并安装。 3. 配置环境变量 驱动安装完成后,复制驱动所在目录(一般是在「C:\\Program Files\\NCIDIA Corporation」),找到环境变量配置入口(控制面板>系统和安全>系统),选择「高级系统设置」,在「系统变量」里的 Path 环境变量中新建并粘贴驱动安装地址保存。 4. 下载安装 SD 整合包 以秋叶的 SD 整合包为例,下载地址为:https://pan.baidu.com/s/1uavAJJdYYWhpnfjwQQDviQ?pwd=a123 ,提取码:a123。建议在服务器上安装提高下载速度的工具或有百度会员。安装后打开安装包一级目录,双击启动器运行依赖,安装完成后即可启动 SD。 三、Roop 换脸插件安装的其他步骤 1. 将 inswapper_128.onnx 文件移动到“sdwebuiakiv4\\models\\roop ”目录下(若没有该目录则创建)。 2. 将.ifnude 和.insightface 目录移动到 C:\\Users\\您的用户名目录下(用户名因人而异)。 3. 启动 webui,它会同步内部组件,可能需 5 30 分钟,耐心等待。加载完成后在浏览器打开,可在图生图、文生图中下面列表标签看到 roop V0.0.2。 特别提醒:此插件谨慎使用,切勿触犯法律。
2024-11-22
ComfyUI 安装教程
以下是 ComfyUI 的安装教程: 1. 电脑硬件要求: 系统:Windows 7 以上。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统、AMD 显卡、低显卡的情况也可以安装使用,但功能不全,出错率偏高,严重影响使用体验,个人建议升级设备或者采用云服务器玩耍。 下载并更新 Nvidia 显卡驱动下载地址:https://www.nvidia.cn/geforce/drivers/ 2. 下载并安装所需要环境(安装过 WebUI 的同学请忽略本步骤): 依次下载并安装 python、VSCode、Git,安装过程中一直点击勾选对应选项,一直下一步。 Python 版本 3.10 以上,下载地址: VSCode 下载地址: Git 下载地址: 安装 Python 时选中“将 Python 添加到系统变量”。 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network ,下载文件:cuda_12.2.0_536.25_windows.exe 3. 安装 ComfyUI: 地址:https://github.com/comfyanonymous/ComfyUI 可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git 或者下载安装包 下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 4. 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 5. 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 6. 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到你已经安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 7. 快捷键(未提及具体快捷键内容)
2024-11-17
ollama windows 安装
以下是 Ollama 在 Windows 上的安装步骤: 1. 前往 下载并安装 Ollama。 2. 安装完成后,打开 Powershell 运行相关命令。 3. 编辑 Win 版的 run_win.ps1 文件,将目录中的图片路径和触发词填写,运行即可。 4. 还可以参考以下教程: 张梦飞的【全网最细】从 LLM 大语言模型、知识库到微信机器人的全本地部署教程: 点击进入,根据电脑系统,下载 Ollama:https://ollama.com/download 。 下载完成后,双击打开,点击“Install” 。 安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成:http://127.0.0.1:11434/ 。 4SeasonYou 工作流副本: 首先,下载 ollama,网站: 。 其次,在网站中,复制代码。 然后,像建议一样打开 ComfyUi 根目录下的 custom_nodes\\ComfyUiOllamaYN 的文件路径,在上方的路径下输入 cmd ,进入到下方的命令行,右键即可粘贴刚才的代码,等待下载即可。
2024-11-17
sd安装
以下是关于 SD 安装的详细步骤: 1. 系统要求:系统需为 Win10 或 Win11。 2. Win 系统查看配置: 查看电脑系统:在桌面上找到“我的电脑”,鼠标右键点击,点击“属性”,查看 Windows 规格。 查看电脑配置:检查自己的电脑配置能否带动 SD的显卡,显卡内存 4GB 以上。 打开任务管理器:同时按下 ctrl+shift+esc。 查看电脑运行内存,8GB 运行内存可以勉强运行 SD,推荐 16GB 以上运行内存。 查看电脑显卡内存(显存),4GB 显存可运行 SD,推荐 8GB 以上显存。 3. 配置达标跳转至对应安装教程页:。 4. 配置不够可选择云端部署(Mac 也推荐云端部署):。 5. 备选:SD 好难,先试试简单的无界 AI:。 补充说明: 如果在以上使用过程中发生错误,那么你可能需要部署一下使用环境,我们再次开启最傻瓜安装教学模式。 1. 安装 cuda_11.8.0_522.06_windows.exe。 2. 安装 VisualStudioSetup.exe,选择 C++的桌面开发安装。以上步骤,我们在安装 roop 的时候也做过,如果安装过 roop 的可以跳过。 3. 拷贝 ninja,打开 ninja 文件包,把里面的内容拷贝到秋叶包根目录。 4. 拷贝 python,打开 python 文件包,把里面的内容拷贝到秋叶包根目录替换。 5. 拷贝模型,SAM 和 GroundingDINO 的模型都在这了,放到对应的文件夹即可。 6. 重启,装好了,重启电脑,即可运行。 关于【SD】无需 Lora,一键换脸插件 Roop 的安装: 安装时间比较长,要耐心等待。安装好之后,打开 SD 文件目录下的这个文件夹。在地址栏输入“cmd”,然后回车。在打开的 dos 界面里面,将“python m pip install insightface==0.7.3 user”粘贴进来,就会自动开始安装 insightface。如果这个阶段出现错误,建议去下载使用最新的秋叶 4.2 整合包(6 月 23 号更新),下载包我已经更新到了云盘里,后台回复【SD】就可以下载。安装完成后,重新打开我们的启动器,后台会继续下载一些模型,此时一定要保证全程科学上网。完成这些后,Roop 插件就可以正常使用了。这个插件主要适用于真实的人脸替换,所以对二次元之类的人物作用不大。我们选用一个真实系模型“realisticVisionV20”,关键词描述的是一个老人举着气球。得到了一张如下的照片。接下来启用 ROOP 插件,选择你想要替换的人物照片,面部修复选择“GFPGAN”。右边的参数数值越低,人物会越像,但是图像会很模糊;数值越高人物越不像,但是图像会很清晰。这个就取决于你的需求了,我使用 0.5 测试一下。最下面还有一个放大算法,可以使用一个模型放大你的图像,基本就相当于高清修复。设置好后,点击生成。可以看到,人脸部分的像素是偏低的,有点模糊。但是没有关系,我们可以将这张图发送到“图生图”,开一个比较小的重绘幅度。然后使用 controlnet 中的 tile 模型进行重绘。换脸完成。如果想要这个插件的话,可以添加公众号【白马与少年】,回复【SD】即可。推荐使用最新的秋叶整合包,出错概率最小,另外,科学上网很重要。特别提醒,此插件谨慎使用,切勿触犯法律。
2024-11-16
SD安装包
以下是关于 SD 安装包的详细步骤: 1. SD 云端部署 部署流程 安装和配置基础环境 在浏览器上按照腾讯云>控制台>云服务器的路径找到购买的实例,点击启动,会新开一个远程访问的窗口,输入购买时设置的密码进入,这样就有了一个远程的 Windows 系统环境,接下来安装显卡驱动、配置环境变量。 安装显卡驱动:用内置的 IE 或下载 Chrome,打开英伟达的网站,找到驱动下载,选择购买机器时选定的显卡型号、Windows 版本号,下载对应的驱动并安装。 配置环境变量:驱动安装完成后,先找到驱动所在的目录(一般是在「C:\\Program Files\\NCIDIA Corporation」),复制这个路径。找到环境变量配置入口(控制面板>系统和安全>系统),选择「高级系统设置」,弹窗设置环境变量。找到「系统变量」里的 Path 环境变量,点击「编辑...」,然后「新建」,粘贴刚才复制的 nvidia 驱动安装地址,保存即可。 下载安装 SD 整合包 整合包也就是打包了 SD 和 Web UI 方便大家更好的使用的集合,以秋叶的 SD 整合包举例讲解。 下载 SD 整合包:秋叶 SD 整合包下载地址:https://pan.baidu.com/s/1uavAJJdYYWhpnfjwQQDviQ?pwd=a123 ,提取码:a123 。建议在服务器上装个百度网盘或者其他能够提高下载速度的工具,有百度会员则无所谓。 安装 SD 整合包:安装之后,打开安装包一级目录,双击启动器运行依赖(安装一些 SD 运行所必要的基础环境,比如 Microsoft Desktop Runtime 等),安装完成后就可以启动 SD 了。 2. 补充说明 如果在以上使用过程中发生错误,那么可能需要部署一下使用环境,再次开启最傻瓜安装教学模式。 安装 cuda_11.8.0_522.06_windows.exe。 安装 VisualStudioSetup.exe,选择 C++的桌面开发安装。(如果安装过 roop 的可以跳过) 拷贝 ninja,打开 ninja 文件包,把里面的内容拷贝到秋叶包根目录。 拷贝 python,打开 python 文件包,把里面的内容拷贝到秋叶包根目录替换。 拷贝模型,SAM 和 GroundingDINO 的模型都在这了,放到对应的文件夹即可。 重启,装好了,重启电脑,即可运行。 请注意,如果想要获取插件安装包,可以添加公众号【白马与少年】,回复【SD】即可。
2024-11-11
cursor rules for ai 配置
关于 Cursor 中 AI 的配置规则如下: Rules for AI:您可以通过修改 Cursor Settings > General > Rules for AI 部分来向 Cursor 添加自定义指令。此自定义说明将包含在 Cursor Chat 和 Ctrl/⌘ K 等功能中。对于特定于项目的说明,您可以将其包含在项目根目录的.cursorrules 文件中,且该文件中的说明也将包含在上述功能中。 Codebase Indexing:默认情况下,如果未启用隐私模式,Cursor 将索引代码库中的所有文件。您还可以展开 Show Settings 部分以访问更多高级选项,在这里可以决定是否为新存储库启用自动索引,并配置 Cursor 在存储库索引期间将忽略的文件。如果项目中有 AI 绝对不需要读取的大型内容文件,忽略这些文件可能会提高答案的准确性。 Custom API Keys: OpenAI API Keys:Cursor 允许您输入自己的 OpenAI API 密钥,以自费发送任意数量的 AI 消息。您可以从获取自己的 API 密钥。要使用,请到 Cursor Settings > Models > OpenAI API Key 输入您的 API 密钥,然后点击“Verify”按钮,验证通过后即可启用。 Anthropic API Keys:与 OpenAI 类似,您可以设置自己的 Anthropic API 密钥,以便自费使用基于 claude 的模型。 Google API Keys:您可以设置自己的 Google API 密钥,以便自费使用如 gemini1.5flash500k 等 Google 模型。
2024-11-18
本地运行Llama3需要的电脑是什么配置的?
本地运行 Llama3 所需电脑配置的相关信息如下: 1. 安装 Docker Desktop: 点击/复制到浏览器下载:https://docs.docker.com/desktop/install/windowsinstall/ 。 下载后,双击下载项目,出现相关界面点击 ok 开始加载文件。注意下载相对较快,完成后不要点击“close and restart”,以免导致 llama3 下载中断。等待终端的模型下载完成后再点击重启。 重启后,点击“Accept”,选择第一个,点击“Finish”。 然后会提示注册账号,若打不开网页,可能需要科学上网。按照正常流程注册账号并登录 Docker 即可。 2. 下载 Llama3 模型: 打开终端。如果是 Windows 电脑,点击 win+R,输入 cmd 点击回车;如果是 Mac 电脑,按下 Command(⌘)+ Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 复制相关命令行,粘贴进入并回车,会开始自动下载,文件下载较慢,可同时进行安装 Docker 的步骤。 3. 下载 Open WebUI: 回到桌面,再打开一个新的终端窗口。如果是 Windows 电脑,点击 win+R,输入 cmd 点击回车;如果是 Mac 电脑,按下 Command(⌘)+ Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 将相关命令输入,等待下载。 点击或复制相关地址进入浏览器,进行注册登录。 登入后,点击顶部的 Model,选择“llama3:8b”。 需要注意的是,模型的回复速度取决于您电脑的配置。另外,您还可以参考开源项目 。同时,有教程提到可以通过购买算力解决本地电脑配置不够的问题,但需要充值 50 元。
2024-11-14
联想异能者配置i5-12450八核,32GB内存,1TB固态硬盘,用于本地部署开源大模型可以部署哪些开源大模型
以下是一些您的联想异能者配置(i512450 八核,32GB 内存,1TB 固态硬盘)可部署的开源大模型及相关信息: ComfyUI 相比 WebUI 配置更低,系统资源占用更少,出图速度更快。ComfyUI 最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以运行,但速度极慢。SDXL 出来后提高了运行配置,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。玩 SDwebui 和 ComfyUI 建议使用 6GB 以上的显存的 NVIDIA 显卡(N 卡),内存在 16G 以上。硬盘会影响加载模型的速度,所以最好把软件和模型部署在 SSD(固态硬盘)上。 截止 2024 年 5 月,主流的 AI 笔记本电脑主要是一些专门为人工智能和深度学习设计的高性能移动工作站。一些知名品牌包括微软第 11 代 Surface Pro、微星 Creator/Workstation 系列、技嘉 Aero/Aorus 系列、戴尔 Precision 移动工作站、惠普 ZBook 移动工作站、联想 ThinkPad P 系列。这些笔记本通常配备强大的 GPU(如 NVIDIA RTX 系列)、大容量内存(32GB 以上)和高速固态硬盘,还通常预装了 NVIDIA CUDA、cuDNN 等深度学习框架,以及各种 AI 开发工具。但这类高端 AI 笔记本价格相对较高,通常在 2000 美元以上。用户可根据自身需求和预算选择合适型号,并关注散热、续航等实际使用体验。 请注意,配置上不封顶,您可根据自己的需求和预算来选择。
2024-11-04
帮我找一下comfyui的配置方法
以下是关于 ComfyUI 的配置方法: 硬件配置: 相比 WebUI,ComfyUI 配置更低,系统资源占用更少,出图速度更快。最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以运行,但速度极慢。SDXL 出来后提高了运行配置,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。运行内存最低 32GB,越高越好,最低配会经常爆显存。玩 SDwebui 和 ComfyUI 建议使用 6GB 以上的显存的 NVIDIA 显卡(N 卡),内存在 16G 以上。硬盘会影响加载模型的速度,最好把软件和模型部署在 SSD(固态硬盘)上。如果电脑能顺畅清晰地玩 3A 游戏,那玩 webui 和 ComfyUI 也没问题。配置上不封顶,根据自己的需求和预算来即可。 系统:Windows7 以上。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘留有足够的空间,最低 100G 起步(包括模型)。 环境安装: 依次下载并安装 Python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。 安装 Python:https://www.python.org/downloads/release/python3119/ ,安装的时候选中“将 Python 添加到系统变量”。 安装 VSCode:https://code.visualstudio.com/Download 。 安装 Git:https://gitscm.com/download/win 。 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。
2024-11-01
我想在云服务器部署使用 dify 和 comfyui ,云服务器机器配置需要什么要求呢
在云服务器部署使用 Diffy 和 ComfyUI ,云服务器机器配置要求如下: 1. 系统:Windows 7 以上。 2. 显卡要求:NVIDIA 独立显卡且显存至少 4G 起步。但 SDXL 出来后提高了运行配置,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。 3. 硬盘:留有足够的空间,最低 100G 起步(包括模型)。硬盘会影响加载模型的速度,最好把软件和模型部署在 SSD(固态硬盘)上。 4. 内存:最低 32GB,越高越好,最低配会经常爆显存。 需要注意的是,ComfyUI 相比 WebUI 配置更低,系统资源占用更少,出图速度更快,最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以运行,但速度极慢。如果您的电脑能顺畅清晰地玩 3A 游戏,那玩 WebUI 和 ComfyUI 通常也没问题。配置上不封顶,根据自己的需求和预算来选择即可。
2024-10-19
我需要什么配置的电脑才能比较顺畅地使用目前AI领域的大部分工具
要比较顺畅地使用目前 AI 领域的大部分工具,以下是一些电脑配置方面的建议: 笔记本电脑方面: 主流的 AI 笔记本电脑通常是专门为人工智能和深度学习设计的高性能移动工作站。 这类笔记本一般配备强大的 GPU(如 NVIDIA RTX 系列)、大容量内存(32GB 以上)和高速固态硬盘。 知名品牌包括微软(Microsoft)第 11 代 Surface Pro、微星(MSI)Creator/Workstation 系列、技嘉(GIGABYTE)Aero/Aorus 系列、戴尔(Dell)Precision 移动工作站、惠普(HP)ZBook 移动工作站、联想(Lenovo)ThinkPad P 系列。 通常采用英特尔酷睿或 AMD Ryzen 的高端移动 CPU,配备 NVIDIA RTX 30/40 系列或 AMD Radeon Pro 专业级 GPU。 同时也预装了 NVIDIA CUDA、cuDNN 等深度学习框架,以及各种 AI 开发工具。 但这类高端 AI 笔记本价格相对较高,通常在 2000 美元以上。用户可根据自身的 AI 应用需求和预算情况选择合适的型号,同时关注笔记本的散热、续航等实际使用体验。 另外,在硬件组装方面,如果是组装具身对话机器人,需要准备的工具包括: 一台电脑和一台 iPhone(安卓目前不支持)。 剪刀、钳子、小十字螺丝刀。 单面胶、双面胶。 优先推荐双头 TYPEC 数据线连接电脑和 arduino,其次是 USB TYPEC 数据线,多备几条,注意充电线不一定是数据线,要确保可传输数据。
2024-10-12