直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

本地安装 comfyui 电脑的硬件配置推荐

回答

以下是关于本地安装 ComfyUI 电脑的硬件配置推荐:

  • 生成文字大模型:
    • 最低配置:8G RAM + 4G VRAM
    • 建议配置:16G RAM + 8G VRAM
    • 理想配置:32G RAM + 24G VRAM(如果要跑 GPT-3.5 差不多性能的大模型)
  • 生成图片大模型(比如跑 SD):
    • 最低配置:16G RAM + 4G VRAM
    • 建议配置:32G RAM + 12G VRAM
  • 生成音频大模型:
    • 最低配置:8G VRAM
    • 建议配置:24G VRAM 此外,对于 ComfyUI 安装,建议使用不少于 16GB 内存,并有 60GB 以上的硬盘空间。需要用到 CUDA 架构,推荐使用 N 卡。过度使用显卡会有损坏的风险。进行 512x 图片生成时主流显卡速度也存在差异。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

教程:深入浅出完整解析Stable Diffusion(SD)核心基础知识 - 知乎

[ComfyUI](https://link.zhihu.com/?target=https%3A//github.com/comfyanonymous/ComfyUI)是一个基于节点式的Stable Diffusion AI绘画工具。和Stable Diffusion WebUI相比,ComfyUI通过将Stable Diffusion模型生成推理的pipeline拆分成独立的节点,实现了更加精准的工作流定制和清晰的可复现性。目前ComfyUI能够非常成熟的使用Stable Diffusion模型,下面是Rocky使用ComfyUI来加载Stable Diffusion模型并生成图片的完整Pipeline:使用ComfyUI来加载Stable Diffusion模型大家可以看到上图是文生图的工作流,另外大家只需关注Rocky的公众号WeThinkIn,并回复“ ComfyUI ”,就能获取文生图,图生图,图像Inpainting,ControlNet以及图像超分在内的所有Stable Diffusion经典工作流json文件,大家只需在ComfyUI界面右侧点击Load按钮选择对应的json文件,即可加载对应的工作流,开始愉快的AI绘画之旅。话说回来,下面Rocky将带着大家一步一步使用ComfyUI搭建Stable Diffusion推理流程,从而实现上图所示的生成过程。首先,我们需要安装ComfyUI框架,这一步非常简单,在命令行输入如下代码即可:安装好后,我们可以看到本地的ComfyUI文件夹。ComfyUI框架安装到本地后,我们需要安装其依赖库,我们只需以下操作:

手把手教你本地部署大模型以及搭建个人知识库

所有人都会手把手教你部署XX大模型,听起来很诱人,因为不需要科学上网,不需要高昂的ChatGPT会员费用。但是在开启下面的教程之前,我希望你能有个概念:运行大模型需要很高的机器配置,个人玩家的大多数都负担不起所以:虽然你的本地可能可以搭建出一个知识库,但是它不一定能跑的起来下面我通过一组数据来让大家有个感性的认知。以下文字来源于视频号博主:黄益贺,非作者实操生成文字大模型最低配置:8G RAM + 4G VRAM建议配置:16G RAM + 8G VRAM理想配置:32G RAM + 24G VRAM(如果要跑GPT-3.5差不多性能的大模型)生成图片大模型(比如跑SD)最低配置:16G RAM + 4G VRAM建议配置:32G RAM + 12G VRAM生成音频大模型最低配置:8G VRAM +建议配置:24G VRAM而最低配置我就不建议了,真的非常慢,这个我已经用我自己8G的Mac电脑替你们试过了。讲这个不是泼大家冷水,而是因为我的文章目标是要做到通俗易懂,不希望通过夸大的方式来吸引你的眼球。

SD新手:入门图文教程

建议使用不少于16 GB内存,并有60GB以上的硬盘空间。需要用到CUDA架构,推荐使用N卡。(目前已经有了对A卡的相关支持,但运算的速度依旧明显慢于N卡,参见:[Install and Run on AMD GPUs · AUTOMATIC1111/stable-diffusion-webui Wiki · GitHub](https://link.zhihu.com/?target=https%3A//github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs)过度使用,显卡会有损坏的风险。进行512x图片生成时主流显卡速度对比:

其他人在问
comfyUI
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,以下是关于它的详细介绍: 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优劣势: 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 webui 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要有清晰的逻辑。 生态没有 webui 多(常用的都有),但也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI 安装部署: 电脑硬件要求: 系统:Windows7 以上。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统,AMD 显卡,低显卡的情况也可以安装使用,但功能不全,出错率偏高,严重影响使用体验,个人建议升级设备或者采用云服务器玩耍。 下载并安装所需要环境: 依次下载并安装 python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。 安装 Python:https://www.python.org/downloads/release/python3119/ ,安装时选中“将 Python 添加到系统变量”。 安装 VSCode:https://code.visualstudio.com/Download 。 安装 Git:https://gitscm.com/download/win 。 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。 安装步骤: 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,https://github.com/comfyanonymous/ComfyUI ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 快捷键:暂未提及。
2024-11-09
comfyui做视频
以下是关于 comfyui 做视频的相关信息: 一些人员在相关领域的情况: 德方:18600081286,从事设计、建模、绘图、效果图、视频工作。 谌峰:13925911177,从事视频,人物,室内设计工作。 陈铭生:18861511571,利用 comfyUI 做 AI 视频,掌握 comfy 工作流设计,给一些公司定制 comfy 流程。 郑路:18868755172,进行出图、短视频创作。 塵:从事绘图与视频工作。 阿牛:13720121256,掌握 comfy 工作流。 Stable Video Diffusion 模型核心内容与部署实战中 ComfyUI 部署实战的相关步骤: 运行 ComfyUI 并加载工作流。在命令行终端操作,在浏览器输入相应地址,出现界面。默认的 ComfyUI 版本存在一些问题,需安装 ComfyUI Manager 插件。再次运行 python main.py 出现 Manager 菜单,可跑文生视频的工作流。工作流可从指定途径获取,使用 ComfyUI 菜单的 load 功能加载,点击菜单栏「Queue Prompt」开始视频生成,通过工作流上的绿色框查看运行进度,在 ComfyUI 目录下的 output 文件夹查看生成好的视频。若生成视频时出现显存溢出问题,有相应解决办法。 关于 ComfyUI 的介绍:现在甚至可以生成视频等,包括写真、表情包、换脸、换装等,只需要一个工作流一键完成,后续会一一讲解介绍如何使用。如何启动搭建 Comfyui 界面的部分简单带过。
2024-11-09
comfyui教程
以下是为您提供的 ComfyUI 教程相关信息: 有几个网站提供了关于 ComfyUI 的学习教程: ComfyUI 官方文档:提供了使用手册和安装指南,适合初学者和有经验的用户。网址:https://www.comfyuidoc.com/zh/ 优设网:提供了详细的入门教程,适合初学者,介绍了特点、安装方法及生成图像等内容。网址:https://www.uisdc.com/comfyui3 知乎:有用户分享了部署教程和使用说明,适合有一定基础并希望进一步了解的用户。网址:https://zhuanlan.zhihu.com/p/662041596 Bilibili:提供了从新手入门到精通各个阶段的系列视频教程。网址:https://www.bilibili.com/video/BV14r4y1d7r8/ 全面的 ComfyUI 教程:https://www.comflowy.com/zhCN 超有意思的 ComfyUI 教程:https://comfyanonymous.github.io/ComfyUI_tutorial_vn/ 此外,ComfyUI 基础教程中关于 KSampler 的部分: KSampler 即采样器,包含以下参数: seed:随机种子,用于控制潜空间的初始噪声,若要重复生成相同图片,需种子和 Prompt 相同。 control_after_generate:设置每次生成完图片后 seed 数字的变化规则,有 randomize(随机)、increment(递增 1)、decrement(递减 1)、fixed(固定)。 step:采样的步数,一般步数越大效果越好,但与使用的模型和采样器有关。 cfg:一般设置为 6 8 之间较好。 sampler_name:可设置采样器算法。 scheduler:控制每个步骤中去噪的过程,可选择不同的调度算法。 denoise:表示要增加的初始噪声,文生图一般默认设置成 1。 内容由 AI 大模型生成,请仔细甄别。
2024-11-09
comfyui
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,以下是关于它的详细介绍: 简介:可以想象成集成了 stable diffusion 功能的 substance designer,通过将 stable diffusion 的流程拆分成节点,实现更精准的工作流定制和完善的可复现性。 优劣势: 优势: 对显存要求相对较低,启动速度快,出图速度快。 具有更高的生成自由度。 可以和 webui 共享环境和模型。 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 操作门槛高,需要有清晰的逻辑。 生态没有 webui 多(常用的都有),但也有一些针对 Comfyui 开发的有趣插件。 官方链接:从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可:https://github.com/comfyanonymous/ComfyUI 安装部署: 电脑硬件要求: 系统:Windows7 以上。 显卡要求:NVDIA 独立显卡且显存至少 4G 起步。 硬盘留有足够的空间,最低 100G 起步(包括模型)。 注:mac 系统,AMD 显卡,低显卡的情况也可以安装使用,但功能不全,出错率偏高,严重影响使用体验,个人建议升级设备或者采用云服务器玩耍。 下载并安装所需要环境: 依次下载并安装 python、Git、VSCode,安装过程中一直点击勾选对应选项,一直下一步。 安装 Python:https://www.python.org/downloads/release/python3119/ ,安装时选中“将 Python 添加到系统变量”。 安装 VSCode:https://code.visualstudio.com/Download 。 安装 Git:https://gitscm.com/download/win 。 安装 CUDA:https://developer.nvidia.com/cuda1220downloadarchive?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_network 。 安装步骤: 地址:https://github.com/comfyanonymous/ComfyUI ,可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,https://github.com/comfyanonymous/ComfyUI ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 节点存放目录:comfyUI 的节点包括后面安装的拓展节点都存放在本目录下 D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\vae 。 模型共用:已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。
2024-11-09
ComfyUI是什么
ComfyUI 是一个基于节点流程式的 stable diffusion AI 绘图工具 WebUI,您可以将其视为集成了 stable diffusion 功能的 substance designer。通过把 stable diffusion 的流程拆分成节点,实现了更精准的工作流定制和良好的可复现性。 其具有以下优劣势: 优势: 1. 对显存要求相对较低,启动速度快,出图速度快。 2. 具有更高的生成自由度。 3. 可以和 webui 共享环境和模型。 4. 可以搭建自己的工作流程,可以导出流程并分享给别人,报错时能清晰发现错误所在步骤。 5. 生成的图片拖进后会还原整个工作流程,模型也会选择好。 劣势: 1. 操作门槛高,需要有清晰的逻辑。 2. 生态没有 webui 多(但常用的都有),也有一些针对 Comfyui 开发的有趣插件。 ComfyUI 是一个开源的图形用户界面,主要基于 Stable Diffusion 等扩散模型。其工作原理包括: 1. Pixel Space(像素空间):图的左边表示输入图像的像素空间,在 ComfyUI 中,对应于可能通过“图像输入”模块或直接从文本提示生成的随机噪声图像。生成过程结束时,系统会将处理后的潜在表示转换回像素空间,生成最终的图像。 2. Latent Space(潜在空间):ComfyUI 中的许多操作都在潜在空间中进行,如 KSampler 节点就是在这个空间中执行采样过程。图像被映射到潜在空间后,扩散过程在这个空间中进行。在 ComfyUI 中,您可以通过节点调整对潜在空间的操作,如噪声添加、去噪步数等。 3. 扩散过程(Diffusion Process):噪声的生成和逐步还原。扩散过程表示从噪声生成图像的过程。在 ComfyUI 中,通常通过调度器(Schedulers)控制,典型的调度器有 Normal、Karras 等,它们会根据不同的采样策略逐步将噪声还原为图像。您可以通过 ComfyUI 中的“采样器”节点选择不同的调度器,来控制如何在潜在空间中处理噪声,以及如何逐步去噪回归到最终图像。时间步数:在生成图像时,扩散模型会进行多个去噪步。 您可以从 github 上下载作者部署好环境和依赖的整合包,按照官方文档安装即可,官方链接为:https://github.com/comfyanonymous/ComfyUI 。 此外,开源项目作者 ailm 在 ComfyUI 上搭建了一个可以接入飞书的 AI 女友麦洛薇(mylover),实现了稳定人设,无限上下文,永久记忆,无缝联动 SD 绘图等功能,适合完全没有代码基础的小伙伴们复现并且按自己的想法修改。
2024-11-06
ComfyUI 工作流
ComfyUI 的工作流是其核心部分,指的是节点结构及数据流运转过程。以下为您介绍一些相关内容: 推荐工作流网站: “老牌” workflow 网站 Openart.ai:https://openart.ai/workflows/ 。流量较高,支持上传、下载、在线生成,免费账户有 50 个积分,加入 Discord 可再加 100 积分,开通最低每月 6 美元的套餐后,每月有 5000 积分。 ComfyWorkflows 网站:https://comfyworkflows.com/cloud 。支持在线运行工作流,从实际下载量和访问量来看,略少于 openart。 Flowt.ai:https://flowt.ai/community 工作流设计方面: ComfyUI 将开源绘画模型 Stable Diffusion 进行工作流化操作,用户在流程编辑器中配置 pipeline,通过节点和连线完成模型操作和图片生成,提高流程可复用性,降低时间成本,其 DSL 配置文件支持导出导入。 Dify.AI 的工作流设计语言与 ComfyUI 有相似之处,都定义了标准化的 DSL 语言,方便导入导出复用工作流。 模仿式工作流是一种快速学习方法,Large Action Model 采用“通过演示进行模仿”的技术,从用户示例中学习。 但 Agentic Workflow 存在使用用户较少、在复杂流程开发上不够稳定可靠等问题。 动画工作流示例: :https://bytedance.feishu.cn/space/api/box/stream/download/all/GCSQbdL1oolBiUxV0lRcjJeznYe?allow_redirect=1 :https://bytedance.feishu.cn/space/api/box/stream/download/all/LcYfbgXb4oZaTCxWMnacJuvbnJf?allow_redirect=1 :https://bytedance.feishu.cn/space/api/box/stream/download/all/WGdJbouveo6b9Pxg3y8cZpXQnDg?allow_redirect=1 :https://bytedance.feishu.cn/space/api/box/stream/download/all/KZjObxCpSoF1WuxQ2lccu9oinVb?allow_redirect=1 :https://bytedance.feishu.cn/space/api/box/stream/download/all/EVdUbp7kvojwH4xJEJ3cuEp0nPv?allow_redirect=1 :https://bytedance.feishu.cn/space/api/box/stream/download/all/TnwFbAx3FoU617x8iabcOSYcnXe?allow_redirect=1 :https://bytedance.feishu.cn/space/api/box/stream/download/all/TWwCbnVOtoyMpyxpGBqcUECLnNc?allow_redirect=1
2024-11-04
AI硬件
以下是关于 AI 硬件的相关信息: AI Native 产品: AI Pin:由 Humane 公司开发的可穿戴设备,通过激光投影技术在手掌显示信息,由高通 Snapdragon 芯片驱动,运行 OpenAI 的 GPT4 语言模型,集成麦克风、摄像头和传感器,能语音通话、上网和回答问题,注重隐私保护,价格高昂,市场接受度可能受影响。 TAB AI:挂在脖子上的小冰盘,本质是麦克风和电池,使用蓝牙传输音频到手机和云端,ChatGPT 转录对话,各种人工智能模型提取见解,被称为“人工智能伴侣”或“clarity machine”。 OpenAI 和 Lovefrom 在软银 10 亿美元融资开发的“人工智能 iPhone”。 主流 AI 笔记本电脑: 截止 2024 年 5 月,主流的 AI 笔记本电脑是为人工智能和深度学习设计的高性能移动工作站,通常配备强大的 GPU(如 NVIDIA RTX 系列)、大容量内存和高速固态硬盘。 知名品牌包括:微软(Microsoft)第 11 代 Surface Pro、微星(MSI)Creator/Workstation 系列、技嘉(GIGABYTE)Aero/Aorus 系列、戴尔(Dell)Precision 移动工作站、惠普(HP)ZBook 移动工作站、联想(Lenovo)ThinkPad P 系列。 一般采用英特尔酷睿或 AMD Ryzen 的高端移动 CPU,配备 NVIDIA RTX 30/40 系列或 AMD Radeon Pro 专业级 GPU,提供大容量内存和高速 NVMe SSD 存储选配,预装 NVIDIA CUDA、cuDNN 等深度学习框架和 AI 开发工具。 价格相对较高,通常在 2000 美元以上,用户需根据自身需求和预算选择,同时关注散热、续航等实际使用体验。 GenAI 硬件 TikTok 热度总榜: RayBan Meta Smart Glasses:眼镜,Meta 和 RayBan 出品,180000 个 TT 作品,价格 299 美元。 Vision Pro:眼镜,苹果出品,38600 个 TT 作品,价格 3999 美元。 cozmo:玩具机器人,Digital Dream Labs 出品,10500 个 TT 作品,价格 399 美元。 Lovot:玩具机器人,GROOVE X 出品,5931 个 TT 作品,价格 9000 美元。 Optimus:大型机器人,特斯拉出品,2641 个 TT 作品。 AI pin:吊坠,Humane 出品,1200 个 TT 作品,价格 699 美元。 PLAUD:录音机,Smart connection 出品,1072 个 TT 作品,价格 159 美元。 RabbitR1:吊坠,Rabbit Inc 出品,1048 个 TT 作品,价格 199 美元。 Loona:玩具机器人,KEYi Tech 出品,753 个 TT 作品,价格 449 美元。 Timekettle WT2:耳机,Timekettle 出品,751 个 TT 作品,价格 299 美元。 OrCam MYEYE:眼镜,OrCam 出品,532 个 TT 作品,价格 4250 美元。 Jibo:玩具机器人,Ling Technology 出品,492 个 TT 作品,价格 749 美元。 LOOI:玩具机器人,TangibleFuture 出品,400 个 TT 作品,价格 129 美元。 Pixel Buds Pro:耳机,谷歌出品,393 个 TT 作品,价格 199 美元。
2024-11-12
AI硬件
以下是关于 AI 硬件的相关信息: AI Native 产品: AI Pin:由 Humane 公司开发的可穿戴设备,通过激光投影技术在用户手掌上显示信息,由高通 Snapdragon 芯片驱动,运行 OpenAI 的 GPT4 语言模型,集成了麦克风、摄像头和传感器,能进行语音通话、上网和回答问题,注重隐私保护,配备“信任灯”功能,价格高昂,市场竞争可能影响其接受度。计划通过扩展功能和开放平台成为日常生活的智能伴侣,网址:https://hu.ma.ne/ TAB AI:挂在脖子上的小冰盘,本质上是麦克风和电池,使用蓝牙将音频传输到手机并传输到云端,ChatGPT 在云端转录对话,各种人工智能模型提取见解,是一个人工智能伴侣或“clarity machine”,网址:https://twitter.com/AviSchiffmann/status/1708439854005321954 主流 AI 笔记本电脑: 截止 2024 年 5 月,主流的 AI 笔记本电脑主要是为人工智能和深度学习设计的高性能移动工作站。通常配备强大的 GPU(如 NVIDIA RTX 系列)、大容量内存和高速固态硬盘。知名品牌包括: 1. 微软(Microsoft)第 11 代 Surface Pro 2. 微星(MSI)Creator/Workstation 系列 3. 技嘉(GIGABYTE)Aero/Aorus 系列 4. 戴尔(Dell)Precision 移动工作站 5. 惠普(HP)ZBook 移动工作站 6. 联想(Lenovo)ThinkPad P 系列 这些笔记本一般采用英特尔酷睿或 AMD Ryzen 的高端移动 CPU,配备 NVIDIA RTX 30/40 系列或 AMD Radeon Pro 专业级 GPU,提供大容量内存和高速 NVMe SSD 存储选配,预装 NVIDIA CUDA、cuDNN 等深度学习框架和各种 AI 开发工具。价格相对较高,通常在 2000 美元以上。用户应根据自身需求和预算选择,同时关注散热、续航等实际使用体验。 GenAI 硬件 TikTok 热度总榜: |No.|Name|Classification|Company|Number of TT works|Price| ||||||| |1|RayBan Meta Smart Glasses|Glasses|Meta and RayBan|180000|299| |2|Vision Pro|Glasses|apple|38600|3999| |3|cozmo|Toy robot|Digital Dream Labs|10500|399| |4|Lovot|Toy robot|GROOVE X|5931|9000| |5|Optimus|Bodysize robot|Tesla|2641| | |6|AI pin|Pendant|Humane|1200|699| |7|PLAUD|Recorder|Smart connection|1072|159| |8|RabbitR1|Pendant|Rabbit Inc|1048|199| |9|Loona|Toy robot|KEYi Tech|753|449| |10|Timekettle WT2|Headphones|Timekettle|751|299| |11|OrCam MYEYE|Glasses|OrCam|532|4250| |12|Jibo|Toy robot|Ling Technology|492|749| |13|LOOI|Toy robot|TangibleFuture|400|129| |14|Pixel Buds Pro|Headphones|GOOGLE|393|199|
2024-11-07
本地安装大模型的硬件配置是什么
本地安装大模型的硬件配置如下: 生成文字大模型: 最低配置:8G RAM + 4G VRAM 建议配置:16G RAM + 8G VRAM 理想配置:32G RAM + 24G VRAM(如果要跑 GPT3.5 差不多性能的大模型) 生成图片大模型(比如跑 SD): 最低配置:16G RAM + 4G VRAM 建议配置:32G RAM + 12G VRAM 生成音频大模型: 最低配置:8G VRAM 建议配置:24G VRAM 例如,Fooocus 本地部署需要不低于 8GB 的内存和 4GB 的英伟达显卡。但需注意,最低配置可能运行非常慢。
2024-11-06
AI硬件
以下是关于 AI 硬件的相关信息: AI Native 产品:有基础模型可学习用户在特定应用中的意图和行为,模仿并执行操作,如使用图片编辑软件去除水印。 AI Pin:由 Humane 公司开发的可穿戴设备,通过激光投影技术在用户手掌上显示信息,由高通 Snapdragon 芯片驱动,运行 OpenAI 的 GPT4 语言模型,集成了麦克风、摄像头和传感器,能进行语音通话、上网和回答问题,注重隐私保护,配备“信任灯”功能,但价格高昂且面临市场竞争。 诗相机:所需硬件包括 2 个不同颜色的按钮、2 根快速连接线,还需要杂项设备如剪线钳、剥线钳和跨接电缆。 大模型与现有终端融合形态探讨:软件产品经理和硬件产品经理属于不同领域,硬件需要前期大量投入,如工业化设计、3D 冲压模型、招聘硬件团队进行 SDK 调用等,在高并发或长时间使用时构建复杂。AI 硬件是复杂的系统性工程,涉及从设计 PCB 线路板等电子设计流程到供应链中上下游工厂的配合等开发流程。
2024-08-22
我现在想让ai给出计算机硬件配置,然后从京东商城上检索,得到价格,然后给出一个配置单。我想问问大家这个怎么解决?
目前要实现您描述的这个需求具有一定的复杂性。首先,让 AI 直接给出准确的计算机硬件配置并从京东商城上检索价格存在一些技术挑战。因为这需要 AI 具备对计算机硬件的深入了解、与京东商城数据接口的对接以及价格实时更新的处理能力。 从技术实现的角度来看,可能需要以下步骤: 1. 训练一个专门针对计算机硬件配置的 AI 模型,使其能够根据用户的需求和预算生成合理的硬件配置清单。 2. 开发与京东商城的接口程序,以获取实时的商品价格信息。 3. 将生成的配置清单与获取的价格信息进行整合,生成最终的配置单。 但需要注意的是,京东商城的数据接口可能不对外开放,获取价格信息可能存在法律和合规方面的限制。同时,这样的系统开发需要较高的技术水平和资源投入。
2024-08-20
AI语音翻译硬件
根据搜索结果,以下是一些推荐的语音翻译硬件设备: 1. 科大讯飞翻译机 4.0: 科大讯飞作为AI翻译产品的开创者,拥有23年的技术积累。 支持83种语言在线即时翻译,包括中文、英语、日语、韩语、俄语、法语等。 具备手动和自动两种翻译模式,适用于不同场景。 设备搭载8核高速处理器和4麦克风阵列,集成讯飞降噪算法,翻译速度快且准确。 支持面对面翻译和拍照翻译功能,满足多样化的翻译需求。 设备外观设计简约大气,便于携带。 2. Telelingo 实时电话翻译 : Telelingo使用先进的AI技术实时翻译对话,提供无缝的实时翻译体验。 支持80多种语言的翻译,包括常见语言和独特方言。 采用完全按需付费模式,无隐藏费用,用户只需支付所使用的分钟数。 3. POCKETALK 实时翻译器 : POCKETALK是一款价格合理的实时翻译器,带有小型触摸屏,方便用户浏览和操作。 该设备也支持多种语言的即时翻译,适合出国旅游或国际交流使用。 这些设备通过集成先进的语音识别和机器翻译技术,可以帮助用户在不同语言环境下实现有效沟通。在选择时,用户应考虑支持的语种数量、翻译准确性、设备便携性、价格以及是否支持离线翻译等因素。
2024-06-11
让AI帮我操作电脑
目前在让 AI 操作电脑方面,有以下相关信息: 去年夏天在处理自动备份配置脚本的任务中,尽管对运维领域不熟悉且编写 Shell 脚本遇到困难,但 AI 可以作为很好的教练,通过请教如“请告诉我 rclone 命令的用法”“Shell 里面的循环怎么写”等具体问题,AI 能提供解决方案,甚至写出带详细中文注释的代码。 4 月动态中有一些相关的 AI 新产品,如 AutoGPT GUI 开放了 waitlist,MULTI·ON plugin 能在笔记本电脑上自动执行许多任务,BabyBeeAGI 有更强的任务管理等能力,MiniAGI 基于 GPT3.5Turbo/4 能执行多种任务。 生成式 AI Studio 中,可定义场景让 AI 响应特定查询,如设定名字和身份后对 help desk 查询做出特定回应。还提到 Google 提供了 API 和 SDK 帮助构建应用程序,以及调整语言模型以提高响应质量,提示的设计会影响模型结果,但制作提示可能存在一定难度。
2024-11-13
喂AI需不需要电脑?
喂 AI 通常需要电脑或类似的计算设备。例如,在一些 AI 应用中: 像“诗相机”这样的项目,选择了 Raspberry Pi Zero 2 W 这样的计算机作为硬件,它具有一定的处理能力和紧凑的尺寸,但可能存在对电源敏感、软件操作需注意等问题。 在游戏相关的 AI 场景中,也需要一定的计算设备来支持相关的开发和应用。 总之,电脑或具备计算能力的设备对于实现和运行许多 AI 任务是必要的。
2024-11-13
我的电脑显卡是1060 5g,可以使用ai软件吗
1060 5G 显卡可以使用一些 AI 软件,但性能可能会受到一定限制。对于一些对显卡性能要求不太高的 AI 应用,例如简单的图像识别、文本处理等,您的显卡能够满足基本需求。然而,对于较为复杂的 AI 任务,如大规模的深度学习模型训练、高质量的 AI 绘画生成等,可能会出现运行速度较慢、效果不理想的情况。 如果您只是初步尝试使用 AI 软件,或者进行一些轻度的应用,您的显卡或许可以胜任。但如果您有更专业、高强度的使用需求,可能需要考虑升级显卡以获得更好的性能体验。
2024-11-10
如何用ai提升电脑刺绣的自动化程度
以下是一些可以辅助提升电脑刺绣自动化程度的 AI 相关方法和工具: 1. 图像识别技术:利用 AI 的图像识别能力,对刺绣图案进行精准识别和分析,为自动化刺绣提供准确的图案信息。 2. 智能设计软件:一些具备 AI 功能的设计软件,能够根据用户需求和设定的参数,自动生成刺绣图案的设计方案。 3. 自动化控制算法:通过 AI 算法优化刺绣设备的控制流程,提高刺绣的速度和精度。 4. 质量检测系统:借助 AI 的视觉检测技术,对刺绣成品进行自动质量检测,及时发现并纠正问题。 需要注意的是,在应用这些 AI 技术时,可能需要一定的专业知识和技能,同时要根据实际情况进行调整和优化,以达到最佳的自动化效果。
2024-11-05
ai在电脑刺绣领域的应用
以下是关于您所提到的“AI 在电脑刺绣领域的应用”的相关信息: 在电脑刺绣领域,目前可能尚未有直接针对该领域的成熟 AI 应用。但从相关技术和理念的角度推测,AI 可能在以下方面发挥作用: 1. 图案设计:利用 AI 的图像识别和生成能力,辅助设计新颖、复杂的刺绣图案。 2. 色彩搭配:通过分析大量的色彩组合数据,为刺绣作品提供更具美感和协调性的色彩方案。 3. 针法优化:根据图案特点和材质要求,智能推荐合适的针法,提高刺绣效率和质量。 需要注意的是,以上只是基于 AI 在其他类似领域的应用进行的推测,实际的应用还需要进一步的研究和开发。 另外,为您提供一些与 CAD 图绘制相关的 AI 工具信息: 1. CADtools 12:这是一个 Adobe Illustrator(AI)插件,为 AI 添加了 92 个绘图和编辑工具,包括图形绘制、编辑、标注、尺寸标注、转换、创建和实用工具。 2. Autodesk Fusion 360:Autodesk 开发的一款集成了 AI 功能的云端 3D CAD/CAM 软件,能够帮助用户创建复杂的几何形状和优化设计。 3. nTopology:基于 AI 的设计软件,可帮助用户创建复杂的 CAD 模型,包括拓扑优化、几何复杂度和轻量化设计等。 4. ParaMatters CogniCAD:基于 AI 的 CAD 软件,可根据用户输入的设计目标和约束条件自动生成 3D 模型,适用于拓扑优化、结构设计和材料分布等领域。 5. 一些主流 CAD 软件,如 Autodesk 系列、SolidWorks 等,提供了基于 AI 的生成设计工具,能根据用户输入的设计目标和约束条件自动产生多种设计方案。 这些工具通常需要一定的 CAD 知识和技能才能有效使用。对于 CAD 初学者,建议先学习基本的 3D 建模技巧,然后尝试使用这些 AI 工具来提高设计效率。
2024-11-05
未来,想要用AI更多,买苹果电脑还是windows电脑
在未来如果想要更多地使用 AI ,选择苹果电脑还是 Windows 电脑取决于您的具体需求和使用场景。 苹果电脑通常具有出色的稳定性和优化的操作系统,其硬件和软件的整合度较高,对于一些特定的 AI 应用,如基于苹果生态的开发和设计工作,可能会有较好的体验。 Windows 电脑则具有更广泛的硬件选择和软件兼容性。在 AI 领域,许多专业的软件和工具在 Windows 平台上也有良好的支持。 如果您更注重系统的稳定性和一体化体验,且对苹果的生态系统有偏好,那么苹果电脑可能是不错的选择。但如果您需要更多的硬件配置选择和更广泛的软件支持,Windows 电脑可能更适合您。 最终的决策还需综合考虑您的预算、具体的 AI 应用需求以及个人使用习惯等因素。
2024-11-01
SD安装包
以下是关于 SD 安装包的详细步骤: 1. SD 云端部署 部署流程 安装和配置基础环境 在浏览器上按照腾讯云>控制台>云服务器的路径找到购买的实例,点击启动,会新开一个远程访问的窗口,输入购买时设置的密码进入,这样就有了一个远程的 Windows 系统环境,接下来安装显卡驱动、配置环境变量。 安装显卡驱动:用内置的 IE 或下载 Chrome,打开英伟达的网站,找到驱动下载,选择购买机器时选定的显卡型号、Windows 版本号,下载对应的驱动并安装。 配置环境变量:驱动安装完成后,先找到驱动所在的目录(一般是在「C:\\Program Files\\NCIDIA Corporation」),复制这个路径。找到环境变量配置入口(控制面板>系统和安全>系统),选择「高级系统设置」,弹窗设置环境变量。找到「系统变量」里的 Path 环境变量,点击「编辑...」,然后「新建」,粘贴刚才复制的 nvidia 驱动安装地址,保存即可。 下载安装 SD 整合包 整合包也就是打包了 SD 和 Web UI 方便大家更好的使用的集合,以秋叶的 SD 整合包举例讲解。 下载 SD 整合包:秋叶 SD 整合包下载地址:https://pan.baidu.com/s/1uavAJJdYYWhpnfjwQQDviQ?pwd=a123 ,提取码:a123 。建议在服务器上装个百度网盘或者其他能够提高下载速度的工具,有百度会员则无所谓。 安装 SD 整合包:安装之后,打开安装包一级目录,双击启动器运行依赖(安装一些 SD 运行所必要的基础环境,比如 Microsoft Desktop Runtime 等),安装完成后就可以启动 SD 了。 2. 补充说明 如果在以上使用过程中发生错误,那么可能需要部署一下使用环境,再次开启最傻瓜安装教学模式。 安装 cuda_11.8.0_522.06_windows.exe。 安装 VisualStudioSetup.exe,选择 C++的桌面开发安装。(如果安装过 roop 的可以跳过) 拷贝 ninja,打开 ninja 文件包,把里面的内容拷贝到秋叶包根目录。 拷贝 python,打开 python 文件包,把里面的内容拷贝到秋叶包根目录替换。 拷贝模型,SAM 和 GroundingDINO 的模型都在这了,放到对应的文件夹即可。 重启,装好了,重启电脑,即可运行。 请注意,如果想要获取插件安装包,可以添加公众号【白马与少年】,回复【SD】即可。
2024-11-11
python安装后文本文档改为".py"后跳转不到IDLE
很抱歉,目前知识库中没有关于“python 安装后文本文档改为‘.py’后跳转不到 IDLE”这一问题的相关内容。但通常情况下,出现这种情况可能是以下原因导致的: 1. 文件关联设置问题:您的系统可能没有正确将.py 文件与 IDLE 关联,您可以检查系统的文件关联设置。 2. IDLE 配置问题:IDLE 的配置可能存在异常,您可以尝试重新安装或配置 IDLE。 3. 环境变量问题:Python 的环境变量设置不正确也可能导致此问题,您需要确认环境变量是否正确配置。 建议您逐一排查以上可能的原因,以解决该问题。
2024-11-10
如何安装SD
安装 SD 的步骤如下: 1. 系统要求:系统需为 Win10 或 Win11。 2. Win 系统查看配置: 查看电脑系统:在桌面上找到“我的电脑”,鼠标右键点击,点击“属性”,查看 Windows 规格。 查看电脑配置:检查自己的电脑配置能否带动 SD的显卡;显卡内存 4GB 以上。 打开任务管理器:同时按下 ctrl+shift+esc。 查看电脑运行内存,8GB 运行内存可以勉强运行 SD,推荐 16GB 以上运行内存。 查看电脑显卡内存(显存),4GB 显存可运行 SD,推荐 8GB 以上显存。 3. 配置达标跳转至对应安装教程页: 4. 配置不够可选择云端部署(Mac 也推荐云端部署): 5. 备选:SD 好难,先试试简单的无界 AI: 此外,还有以下相关插件的安装: 1. 【SD】无需 Lora,一键换脸插件 Roop: 安装时间比较长,要耐心等待。 安装好之后,打开 SD 文件目录下的这个文件夹。 在地址栏输入“cmd”,然后回车。 在打开的 dos 界面里面,将“python m pip install insightface==0.7.3 user”粘贴进来,就会自动开始安装 insightface。 如果这个阶段出现错误,建议去下载使用最新的秋叶 4.2 整合包(6 月 23 号更新),下载包已更新到云盘,后台回复【SD】即可下载。 安装完成后,重新打开启动器,后台会继续下载一些模型,此时一定要保证全程科学上网。 完成这些后,Roop 插件就可以正常使用。 2. 【SD】商业换装如此简单,Segment Anything 保姆级教学: 补充说明:如果在使用过程中发生错误,可能需要部署使用环境。 安装 cuda_11.8.0_522.06_windows.exe。 安装 VisualStudioSetup.exe,选择 C++的桌面开发安装(安装过 Roop 的可跳过)。 拷贝 ninja,打开 ninja 文件包,把里面的内容拷贝到秋叶包根目录。 拷贝 python,打开 python 文件包,把里面的内容拷贝到秋叶包根目录替换。 拷贝模型,SAM 和 GroundingDINO 的模型都在这了,放到对应的文件夹即可。 最后:重启电脑,即可运行。 特别提醒:相关插件使用需谨慎,切勿触犯法律。获取插件安装包,可添加公众号【白马与少年】,回复【SD】。
2024-11-10
本地安装大模型使用4060显卡和4060TI显卡有什么区别
在本地安装大模型时,4060 显卡和 4060TI 显卡主要有以下区别: 显存方面:显存是选择显卡的重要因素。4060 显卡的显存通常小于 4060TI 显卡。对于一些对显存要求较高的任务,如生成更大分辨率的超清图片、使用更高的参数进行 Dream booth 微调等,4060TI 显卡的大显存更具优势。 生成速度方面:4060TI 显卡的速度比 4060 显卡快。但在某些情况下,如果显存不足导致无法执行任务,速度稍慢就显得不那么重要了。 总体而言,在预算允许的情况下,16GB 的 4060TI 显卡由于其较大的显存,可以执行更多样的 AI 生成任务。但如果预算有限,4060 显卡也是一个可行的选择。
2024-11-06
如何安装AUTOGLM
AutoGLM 目前处于内测阶段,安装步骤如下: 1. 申请入口在智谱清言 APP 中,直接跟 AutoGLM 内测申请小助手对话提交申请即可。智谱将传统表单的提交通过 Tools 的方式做到了对话中,体验提升很多。 2. 目前只能在安卓设备上使用,iOS 很长时间内都不会支持。 3. 因为数据的获取和操作是通过安卓的无障碍权限来控制的,所以在登录 AutoGLM 后的第一件事情就是引导您去开启无障碍权限和悬浮球权限,不然无法继续体验。无障碍服务(AccessibilityService)是一套可以模拟操作的系统级别的 API。用户同意应用获取无障碍服务的权限之后就可以模拟操作,来控制用户的手机。但开启无障碍服务可能会引起手机卡顿和存在隐私问题。在权限授权正常之后,您就会进入到首页。
2024-11-04